Abstract
Chronological age is not an accurate predictor of morbidity and mortality risk, as individuals’ aging processes are diverse. Phenotypic age acceleration (PhenoAgeAccel) is a validated biological age measure incorporating chronological age and biomarkers from blood samples commonly used in clinical practice that can better reflect aging-related morbidity and mortality risk. The heterogeneity of age-related decline is not random, as environmental exposures can promote or impede healthy aging. Social Vulnerability Index (SVI) is a composite index accounting for different facets of the social, economic, and demographic environment grouped into four themes: socioeconomic status, household composition and disability, minority status and language, and housing and transportation. We aim to assess the concurrent and combined associations of the four SVI themes on PhenoAgeAccel and the differential effects on disadvantaged groups. We use electronic health records data from 31,913 patients from the Mount Sinai Health System (116,952 person-years) and calculate PhenoAge for years with available laboratory results (2011-2022). PhenoAge is calculated as a weighted linear combination of lab results and PhenoAgeAccel is the differential between PhenoAge and chronological age. A decile increase in the mixture of SVI dimensions was associated with an increase of 0.23 years (95% CI: 0.21, 0.25) in PhenoAgeAccel. The socioeconomic status dimension was the main driver of the association, accounting for 61% of the weight. Interaction models revealed a more substantial detrimental association for women and racial and ethnic minorities with differences in leading SVI themes. These findings suggest that neighborhood-level social vulnerability increases the biological age of its residents, increasing morbidity and mortality risks. Socioeconomic status has the larger detrimental role amongst the different facets of social environment.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was supported by the Mount Sinai transdisciplinary center on early environmental exposures (P30 ES023515) and through the computational and data resources and staff expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Review Board of Mount Sinai (STUDY 22-01400) gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.