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Abstract 

Objective 

Current studies leveraging social media data for disease monitoring face challenges like 

noisy colloquial language and insufficient tracking of user disease progression in 

longitudinal data settings. This study aims to develop a pipeline for collecting, cleaning, 

and analyzing large-scale longitudinal social media data for disease monitoring, with a 

focus on COVID-19 pandemic. 

Materials and Methods 

This pipeline initiates by screening COVID-19 cases from tweets spanning February 1, 

2020, to April 30, 2022. Longitudinal data is collected for each patient, two months 

before and three months after self-reporting. Symptoms are extracted using Name 

Entity Recognition (NER), followed by denoising with a combination of Graph 

Convolutional Network (GCN) and Bidirectional Encoder Representations from 

Transformers (BERT) model to retain only User Symptom Mentions (USM). 

Subsequently, symptoms are mapped to standardized medical concepts using the 

Unified Medical Language System (UMLS). Finally, this study conducts symptom 

pattern analysis and visualization to illustrate temporal changes in symptom prevalence 

and co-occurrence. 

Results 

This study identified 191,096 self-reported COVID-19-positive cases from COVID-19-

related tweets and retrospectively collected 811,398,280 historical tweets, of which 

2,120,964 contained symptoms information. After denoising, 39% (832,287) of 

symptom-sharing tweets reflected user-related mentions. The trained USM model 

achieved an F1 score of 0.926. Further analysis revealed a higher prevalence of upper 

respiratory tract symptoms during the Omicron period compared to the Delta and wild-

type periods. Additionally, there was a pronounced co-occurrence of lower respiratory 

tract and nervous system symptoms in the wild-type strain and Delta variant. 



Conclusion 

This study established a robust framework for pandemic monitoring via social media, 

integrating denoising of user-related symptom mentions and longitudinal data. The 

findings underscore the importance of denoising procedures in revealing accurate 

prevalence trends, thereby minimizing biases in symptom analysis. 
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Introduction 

Social media platforms bring together a large number of users for health-related 

discussions, such as disease symptoms sharing, preventive measures discussion, and 

health information dissemination, which have shown great potential in the development 

and evaluation of infectious disease outbreaks, health crisis management, and health 

promotion strategies [1–3]. During the COVID-19 pandemic, social media has been 

utilized in public health for various purposes such as monitoring disease outbreaks [4], 

establishing early warning systems [5–8], gathering public opinions regarding 

medications and vaccines [9–12], and evaluating mental health [13]. Furthermore, 

social media has the potential to monitor disease symptoms in populations [14–16], and 

identify specific cohorts for observational studies [17–19]. Data from social media is 

low-cost, wide-coverage, and real-time. This provides unprecedented opportunities for 

syndromic surveillance when compared to traditional bio-surveillance which relies on 

phone surveys, electronic health records, and laboratory testing, which are time-

consuming, restricted access and limited population coverage[20–22].  

  

The challenges in social media analytics, particularly in the context of public health 

concepts, stem from the limitations of traditional natural language processing (NLP) 

techniques that heavily rely on rule-based approaches [23]. These traditional methods 

have shown poor performance in the social media domain due to the noisy colloquial 

language used, leading to a shift towards machine-learning-based approaches in recent 

years [24]. The informal and unstructured nature of social media language complicates 

the accurate capture of essential public health concepts. This challenge is exacerbated 

by the fact that many symptom terms identified through these methods may not 

necessarily be user-related content but could be news reports or general discussions 

about health events [25–27]. The accuracy of symptom identification and classification 

is paramount for ensuring the integrity of individual analysis, as misclassification of 



posts and inaccurate reporting on user-related health events can lower the confidence 

of subsequent data analysis [28].   

  

While many studies have focused on cross-sectional analyses, there is a growing 

recognition of the need for more in-depth and continuous tracking of users over time 

[10,29–31]. Longitudinal social media analysis is essential for comprehending the 

dynamics of user’s health status during the pandemic, particularly concerning public 

health issues such as disease evolution and user behaviors [32,33]. Understanding these 

dynamics over time is essential for developing targeted interventions to control diseases, 

such as vaccine advertisement, public health education of infectious disease [34]. By 

tracking these trends longitudinally, researchers can identify patterns and associations 

that may inform public health measures aimed at promoting healthier behaviors during 

crises like the COVID-19 pandemic. 

  

The COVID-19 pandemic is one of the major pandemics throughout documented 

human history, with various variants emerging and affecting different regions [35]. 

These variants, such as the Omicron variant, have led to changes in the frequency and 

severity of common symptoms like fever, cough, sore throat, and fatigue [36]. 

Understanding the impact of these variants is crucial for public health responses and 

policymaking. One critical aspect of COVID-19 is the persistence of symptoms in some 

individuals, leading to what is commonly referred to as long COVID. Research has 

shown that persistent symptoms after a mild COVID-19 infection can have major 

consequences for work and daily functioning [37]. Furthermore, the burden of post-

acute COVID-19 symptoms is substantial, with a high percentage of individuals 

reporting persistent symptoms [38]. These persistent symptoms can be associated with 

the severity of the initial COVID-19 infection [39]. The broad impact of COVID-19, 

the emergence of variants, the persistence of symptoms in long COVID, and the 

significance of analyzing symptom persistence are crucial areas of research that require 



further investigation to enhance our understanding of the disease and improve patient 

outcomes. 

  

While current studies leveraging social media data for disease symptom tracking have 

made meaningful progress, they often face challenges such as insufficient long-term 

individual tracking or limited noise reduction, which reduces the accuracy of the results  

[10,14–16,29–31]. In this work, we proposed a pipeline that introduces a 

comprehensive NLP based framework that denoises longitudinal social media for 

pandemic monitoring. The key components of this pipeline include patient screening 

and retrospective data collection, symptom identification, symptom denoising, and 

symptom normalization. Taken COVID-19 as the use case, we demonstrated how this 

pipeline can support downstream processes related to tracking and analyzing the 

evolution of symptom patterns during different pandemic phases. The three main 

contributions of this study are: 

1). By denoising the dataset, we provided clean and reliable symptom data for analysis, 

ensuring that downstream tasks are based on accurate information. 

2). We integrated longitudinal data in the analysis which offers a dynamic perspective 

on how symptoms manifest and evolve throughout different stages of the pandemic. 

3). We established a unified framework that enhances the process and interpretation of 

data for pandemic monitoring. 

Methods 

Overall Workflow 

The overall workflow is visualized in Figure 1 and consists of two main parts. The first 

part comprises four key modules: patient screening, symptom identification, symptom 

denoising, and symptom mapping. These modules work in tandem to filter, identify, 

refine, and categorize symptom data from social media, ensuring the extraction of high-



quality, relevant health information. The second part focuses on evaluating symptom 

prevalence, exploring risk recovery times, and assessing the strength of symptom co-

occurrence across different variants. By integrating these components, our pipeline 

offers a robust tool for long-term monitoring and analysis of symptom patterns, 

illustrated using COVID-19 as a case study. 

 

Figure 1. Overall workflow. (Note: Nt, Np, NER, and GCN represent the number of tweets, the 

number of patients, Name Entity Recognition, and Graph Convolutional Network, respectively) 

Data Collection 

Using Twitter's Application Programming Interface (API), we downloaded non-

retweeted English tweets related to COVID-19 from an open-source database of 

COVID-19 tweets [40,41], accessed through a collaborative network at Harvard 

Medical School. The collection period for these tweets spanned from February 1, 2020, 

to April 30, 2022. These tweets were selected based on their inclusion of popular topics 



or specific keywords associated with COVID-19, such as 'COVID-19' and 'SARS-CoV-

2'. 

Patient screening 

Using predefined rules, we filtered self-reported COVID-19-positive cases (Figure 2). 

These rules include constructing a list of keywords and phrases, applying dependency 

parsing techniques, and filtering through regular expressions. Initially, we created a list 

of keywords and phrases directly related to self-reported COVID-19-positive cases, 

focusing on identifying tweets with expressions like “get COVID-19” and “test 

positive.” Subsequently, we employed dependency parsing [42] to determine the 

structural relationships among sentence elements, such as subjects and objects, to 

identify subjects associated with specific COVID-19-related expressions. For example, 

in tweets like “I got COVID” and “I tested positive,” dependency parsing confirmed 

that ‘I,’ as the subject, was directly associated with these expressions. Finally, we used 

a unique form of regular expression, known as zero-width assertions [43], to identify 

texts near specific words or phrases (such as personal pronouns), excluding tweets that, 

despite containing keywords, were contextually incorrect, such as “I wonder if I got 

COVID” and “I imagine I tested positive.” In these cases, the personal pronoun ‘I’ does 

not actually indicate a positive COVID-19 result. 

 

Upon completion of these steps, tweets from individuals self-reporting as COVID-19 

positive were collated. Subsequently, we removed duplicate tweets by using unique user 

IDs, retaining only the first tweet in which a user self-reports being positive for COVID-

19. At this point, each self-reporting COVID-19-positive user was associated with their 

first self-reporting tweet, which included a timestamp indicating when the tweet was 

posted. However, it is important to note that this timestamp does not directly reflect the 

time of self-reported COVID-19-positive. Therefore, to infer the time of self-reported 

COVID-19-positive, we used regular expressions to extract time-related information 

(such as “yesterday,” “last Sunday,” etc.) from the positive tweets and combined this 



information with the tweet's timestamp. For example, if a user posted “I got COVID-

19 yesterday” on “2020-03-05,” the inferred date of self-reported positivity would be 

“2020-03-04.” This study retained only the data of users whose self-reported COVID-

19-positive dates could be precisely determined. Additionally, the standard method M3 

[44] was employed to identify users' organizational identities and filter out official 

accounts, ensuring the research primarily focuses on content generated by individual 

users. After successfully filtering positive patients, we conducted a retrospective data 

collection for each patient, including historical tweet data from two months before to 

three months after the time of self-reported COVID-19-positive.  

 

Figure 2. Flow diagram for the step-by-step COVID-19 patient screening. (Note: Nt 

represents the number of tweets, and Np represents the number of patients.) 

  



In the subsequent analysis of symptom patterns, we categorized patients into three 

mutually exclusive groups based on the time of self-reported COVID-19-positive: the 

Wild-type group, the Delta group, and the Omicron group. The Wild-type group 

includes patients who reported positive from April 27, 2020 to December 21, 2020; the 

Delta group includes those reporting positive from June 5, 2021 to November 22, 2021; 

and the Omicron group covers patients reporting positive from December 20, 2021 to 

April 30, 2022. These time frames were chosen based on the periods during which each 

target variant strain accounted for more than 80% of all sequences [45]. 

Symptom Identification 

To extract symptom information from historical self-reported COVID-19 user data, we 

employed a Named Entity Recognition (NER) model to identify COVID-19 symptom 

entities. The NER model utilized in the study was CT-BERT (COVID-Twitter-BERT) 

[46]. This model underwent training on the METS-CoV (Medical Entities and Targeted 

Sentiments on COVID-19-related Tweets) dataset within the YATO framework [47,48].  

Symptom Denoising 

Given that symptom entities identified by the NER model may not accurately reflect 

users' actual health conditions, we developed the User Symptom Mention (USM) text 

classification model. This model aims to determine whether symptoms mentioned in 

social media tweets genuinely represent the health issues experienced by the users. 

 

To train the USM classification model, we developed a USM dataset (Table 1), 

collaboratively annotated by team members with medical backgrounds. The dataset 

facilitates a comprehensive examination through binary classification of whether the 

symptoms discussed are directly pertinent to the users themselves. It comprises 3,000 

tweets encompassing 6,617 symptom entities, with the annotation process divided into 

three stages (The statistics and distribution of USM dataset are listed in Table 2). The 

F1 score was used as the primary metric to assess the consistency among annotators. 

All annotators worked on the same corpus and strictly adhered to the annotation 



guidelines. After completing the annotations, the project supervisor compared all results 

to establish the final gold standards, which were then used to calculate annotator 

consistency. This process resulted in F1 scores of 0.805, 0.835, and 0.864 for the three 

rounds of annotations, respectively, underscoring the reliability of our method. The 

USM dataset’s train-dev-test splitting is with a ratio of 70:15:15. 

Table 1. USM label categories and examples 

Category Example 

User-related-symptom “I woke up yesterday at 3 am in a cold sweat.” 

“I got a really bad cramp in my foot.” 

“My back just started hurting.” 

Non-user-related-

symptom 

“It’s SO cold!!! My poor chihuahua just shivers.” 

“It’s interesting to read your point, but I’m feeling sick 

to my stomach.” 

“A Month Before a Heart Attack, Your Body Will 

Warn You With These 8 Signals.” 

 

The text classification model [49] integrates the complex structural and relational 

processing capabilities of Graph Convolutional Networks (GCN) [50] with the deep 

semantic understanding of the CT-BERT model. Initially, the model employs the CT-

BERT text encoder to extract textual features, yielding an embedded representation of 

the text. Concurrently, it utilizes the "stanza" library [51] to extract a sentence 

dependency graph from the original text, capturing syntactic information and 

dependencies between words to enhance the understanding of semantic nuances and 

contextual meanings. GCNs associate syntactically related words with the target aspect 

and, by learning through GCN layers, improve the model's comprehension of textual 

structures and semantics by incorporating distant word relationships and syntactic 



information. The embedded text representation and the dependency graph are input 

together into the GCN layer, merging deep semantic and syntactic structural 

information to generate new features. These features, along with the dependency graph, 

are then fed into subsequent GCN layers for further feature fusion. 

 

After processing through the GCN layers, the extracted features are combined with the 

initial text embedding. This combination is then input into an attention mechanism layer, 

which assigns attention scores based on semantic features closely related to the target 

vocabulary—specifically, symptom-related words—within the hidden state vectors. 

Finally, a fully connected layer utilizes these attention-weighted features to output the 

ultimate classification results (Figure 3). 

 

Figure 3. Overall structure of the USM classification model. (Note: [CLS], [SEP], and GCN 

represent classifier token, sentence separator, and Graph Convolutional Networks, respectively) 



Symptom Mapping  

Given the informal nature of symptom descriptions in social media text data, it is 

necessary to standardize the mapping of colloquial expressions to unified symptom 

concepts for statistical analysis. Manual construction of a comprehensive lexicon is 

impractical. Therefore, our previous work [31] integrates a normalization and mapping 

module that utilizes the Unified Medical Language System (UMLS) [52] to create a 

colloquial dictionary. We further categorized these concepts into twelve primary 

categories based on physiological systems, including a psychiatric system for mental 

symptoms. For greater precision, respiratory symptoms were subdivided into upper and 

lower respiratory tract systems. Concepts that did not fit into these categories were 

placed in a 'general and others' category. 

  

Symptom Pattern 

The subsequent statistical analyses were conducted using Python version 3.6.3, along 

with the Lifelines and Statsmodels packages. All Latent Class Analysis (LCA) models 

were implemented using Mplus version 8.3. 

Symptom Prevalence 

We analyzed the frequency and prevalence rates of each symptom category within the 

90 days following the date of self-reported COVID-19 positive outcome. This 

examination was conducted across different periods characterized by dominant variants 

of the virus. By focusing on these variant-specific periods, our analysis provides 

insights into how symptom prevalence varies with different viral strains, further 

demonstrating the robustness of our pipeline in tracking and categorizing symptoms 

accurately over time. 

Dynamic Changes in Symptom Prevalence Risk 

The daily Odds Ratio (OR) was employed to track changes in symptom prevalence 

post-SARS-CoV-2 infection. This ratio is calculated by dividing the daily symptom 



prevalence by the baseline prevalence. The baseline period, defined as 60 to 30 days 

before the date of self-reported COVID-19-positive, was selected as a reference point 

to reflect the normal prevalence level of symptoms in the patient population prior to 

COVID-19 infection. OR value greater than 1 indicates an increased risk of symptom 

prevalence; OR value of 1 indicates a risk level at the normal prevalence level. To 

address the variability of daily OR values, we performed 100 non-parametric bootstrap 

resamplings of daily symptom prevalence rates to estimate confidence intervals for 

daily OR values. The risk resolution period was defined as the point when the OR and 

its confidence interval first dropped to 1. The range of the risk resolution period was 

also determined through 100 bootstrap iterations. To describe the range of risk 

resolution period, we used the median and interquartile range (Q1-Q3). The Wilcoxon 

rank-sum test was used to compare medians. 

Symptom Co-occurrence  

We analyzed the co-occurrence strength of symptoms across 12 symptom categories. 

Co-occurrence refers to the simultaneous presence of two symptom categories in the 

same patient within 0 to 90 days after the self-reported COVID-19 positive date. To 

calculate the strength of symptom co-occurrence, we employed the Kaplan-Meier 

method to estimate the probability of symptom A occurring between two time points (t1 

to t2) [53]. 

P!(t", t#) = P!(t#) − P!(t") 

PA(t) represents the probability of symptom A occurring up to time t since the start of 

the follow-up period. In estimating probabilities using the Kaplan-Meier method, only 

the first occurrence of an event within the follow-up period is considered. Thus, if a 

patient exhibits the same symptom multiple times, only the first occurrence is included 

in the analysis. 

D!,%(t", t#) = 	
P!&%(t", t#)

1
2 ,P!(t", t#) + P%(t", t#).

 



Similarly, the co-occurrence probability of symptoms A and B, PA&B (t1, t2), is estimated 

using the Kaplan-Meier method. Using these probability estimates, we calculate the 

Dice coefficient [54] to measure the degree of simultaneous occurrence of two 

symptoms. The Dice coefficient ranges from 0 to 1, with values closer to 1 indicating a 

higher degree of symptom co-occurrence. 

Results 

As shown in Figure 2, a total of 191,096 self-reported COVID-19-positive patients were 

screened from COVID-19-related tweets. We retrospectively collected 811,398,280 

historical tweets from these patients. Using the NER model, we identified and filtered 

2,120,964 tweets containing symptom information. Further denoising through the USM 

model filtered out 832,297 tweets documenting the patients' own symptom information, 

excluding 1,288,667 (60.76%) non-USM tweets. The remaining data were then utilized 

for the analysis of symptom patterns. 

The USM Dataset and Model Performance 

We developed the USM dataset (Table 2) for model training and evaluation. The dataset 

encompasses 6,617 symptom entities with a broad range of coverage. Neurological 

symptoms are the most prevalent, totaling 2,068 entities, while endocrine system 

symptoms are the least common, with only 82 entities. Overall, the ratio of user-related 

symptoms to non-user-related symptoms in the dataset is nearly 1:1. However, within 

the immune system category, the proportion of non-user-related symptom entities is 

notably higher, reaching 73.15% (79 out of 108). 

 

Table 3 compares the performance of our developed model (GCN+BERT) with several 

baseline models, including Logistic Regression (LR), Random Forest (RF), Support 

Vector Machine (SVM), and another BERT-based model (BERT-SPC). Our 

GCN+BERT model outperforms the baseline models in all three metrics: F1 score, 

precision, and recall. Specifically, the GCN+BERT model achieves an F1 score of 0.926,  



Table 2. Summary statistics of the USM dataset 

Symptom category 

Number of user-

related symptom 

entities 

Number of non-

user-related 

symptom entities 

Total 

Circulatory system 133 93 226 

Digestive system 316 353 669 

Endocrine system 54 28 82 

General and others 494 537 1031 

Genitourinary system 34 54 88 

Immune system 29 79 108 

Integumentary system 174 124 298 

Lower respiratory tract system 359 398 757 

Musculoskeletal system 265 251 516 

Nervous system 1038 1030 2068 

Psychiatric system 241 187 428 

Upper respiratory tract system 200 146 346 

Total 3314 3303 6617 

 

precision of 0.910, and recall of 0.950. In contrast, the LR and RF models both have an 

F1 score of 0.850, with precision and recall scores slightly above 0.850. The SVM 

model performs similarly with an F1 score of 0.845. The BERT-SPC model, while 

demonstrating improved performance over the traditional classifiers with an F1 score 

of 0.912, still falls short compared to our GCN+BERT model. These results highlight 

the performance of our GCN+BERT model in accurately classifying user-related 



symptom mentions, effectively leveraging both graph convolutional networks and 

BERT for enhanced contextual understanding and classification accuracy. As a result, 

we selected GCN+BERT as our USM model in text classification tasks. 

Table 3. Performance Comparison of Different Classifiers on USM Dataset 

Classifier F1 Precision Recall 

LR 0.850 0.845 0.853 

RF 0.850 0.852 0.854 

SVM 0.845 0.842 0.845 

BERT-SPC 0.912 0.910 0.925 

GCN+BERT 0.926 0.910 0.950 

 

Table 4 shows the performance of the USM model in classifying health status mentions 

(including user-related symptoms and non-user-related symptoms) across different 

physiological systems. Overall, the USM model demonstrates high performance, with 

an average F1 score of 0.926, average precision of 0.921, and average recall of 0.930. 

These results indicate the USM model's high accuracy and reliability in differentiating 

between user-related symptoms and non-user-related symptoms, effectively filtering 

and categorizing health-related information from social media texts. 

Table 4. Performance of the USM model on the test set 

Symptom category F1 Precision Recall 

Circulatory system 0.950 1.000 0.905 

Digestive system 0.885 0.900 0.871 

Endocrine system 0.800 0.800 0.800 

General and others 0.908 0.937 0.881 



Genitourinary system 0.909 1.000 0.833 

Immune system 1.000 1.000 1.000 

Integumentary system 0.933 0.875 1.000 

Lower respiratory tract system 0.947 0.918 0.978 

Musculoskeletal system 0.933 0.889 0.982 

Nervous system 0.929 0.921 0.938 

Psychiatric system 0.938 0.968 0.909 

Upper respiratory tract system 0.929 0.897 0.963 

Total 0.926 0.910 0.950 

 

Symptom prevalence among different variants 

We observed that, as the variants evolved, there was a substantial decrease in the 

occurrence rates of most symptoms, with this decline being most pronounced in the 

Omicron variant. This trend was particularly noticeable in symptoms related to the 

nervous system, psychiatric system, musculoskeletal system, lower respiratory system, 

and immune system (Table 5). 

In symptoms related to the nervous system, the prevalence of anosmia or ageusia, 

headache, fatigue, and insomnia largely decreased from 7.14%, 12.09%, 11.43%, and 

6.13% in the wild-type variant to 0.76%, 6.98%, 6.83%, and 0.82% in the Omicron 

variant, respectively. Additionally, the proportions of psychiatric symptoms such as 

anxiety and depression decreased from 7.79% and 5.09% in the wild-type variant to 

0.64% and 1.47% in the Omicron variant, respectively. This indicates that as the virus 

strain evolves, there may be an improvement in the neurological and mental health 

conditions of patients. 



Table 5. Frequency and prevalence of common symptoms in patients with different 

variants 

 Wild-type 
(n=38875) 

Delta 
(n=41683) 

Omicron 
(n=58835) 

Total 
Population 
(n=191096) 

Circulatory system     
  Swelling 1178(3.03) 989(2.37) 674(1.15) 4388(2.30) 
  Palpitations 736(1.89) 493(1.18) 364(0.62) 2412(1.26) 
  Chest pain 736(1.89) 453(1.09) 339(0.58) 2274(1.19) 
  Chest tightness 687(1.77) 393(0.46) 145(0.25) 1883(0.99) 
  Easy bruising 632(1.63) 439(1.05) 49(0.08) 1844(0.96) 
Digestive system     
  Nausea and/or 
vomiting 

1546(3.98) 1214(2.91) 1501(2.55) 6124(3.20) 

  Abdominal pain 1304(3.35) 964(2.31) 337(0.57) 3992(2.09) 
  Loss of appetite 560(1.44) 444(1.07) 90(0.15) 1722(0.90) 
  Endocrine system     
  Sweating 542(1.39) 471(1.13) 487(0.83) 2197(1.15) 
  Hair loss 385(0.99) 251(0.60) 72(0.12) 1039(0.54) 
General and others     
  Fever 2273(5.85) 2286(5.48) 2158(3.67) 9924(5.19) 
  Chills 1290(3.32) 1219(2.92) 1103(1.87) 5620(2.94) 
  Cold sweat 678(1.74) 1055(2.53) 1832(3.11) 4724(2.47) 
Genitourinary system     
  Hematuria 519(1.34) 516(1.24) 434(0.74) 2139(1.12) 
  Dysmenorrhea 35(0.09) 39(0.09) 97(0.16) 226(0.12) 
Immune system     
  Anaphylaxis 1300(3.34) 1019(2.44) 514(0.87) 4635(2.43) 
Integumentary system     
  Skin lesion 2249(5.79) 2371(5.69) 2117(3.60) 10421(5.45) 
  Rash 1099(2.83) 770(1.85) 658(1.12) 3951(2.07) 
  Flushing 635(1.63) 485(1.16) 512(0.87) 2432(1.27) 
Lower respiratory tract 
system 

    

  Shortness of breath 1913(4.92) 1185(2.84) 772(1.31) 5726(3.00) 
  Wheezing 886(2.28) 586(1.41) 177(0.30) 2513(1.32) 
  Cyanosis 461(1.19) 351(0.84) 297(0.50) 1660(0.87) 
Musculoskeletal 
system 

    

  Pain 4488(11.54) 3614(8.67) 1762(2.99) 15420(8.07) 



  Back pain 1785(4.69) 1271(3.05) 292(0.50) 5459(2.86) 
  Muscle cramps 1494(3.84) 1148(2.75) 548(0.93) 4984(2.61) 
Nervous system     
  Headaches 4701(12.09) 4086(9.80) 4107(6.98) 18961(9.92) 
  Fatigue 4445(11.43) 4085(9.80) 4020(6.83) 18601(9.73) 
  Problem with smell 
or taste 

2774(7.14) 3096(7.43) 450(0.76) 9699(5.08) 

  Insomnia 2382(6.13) 1582(3.80) 485(0.82) 7038(3.68) 
Psychiatric system     
  Anxiety 3030(7.79) 1752(4.20) 377(0.64) 8240(4.31) 
  Psychosis 2969(7.64) 3171(7.61) 2837(4.82) 13014(6.81) 
  Depression 1980(5.09) 1371(3.29) 862(1.47) 6404(3.35) 
Upper respiratory tract 
system 

    

  Cough 2399(6.17) 2966(7.12) 4842(8.23) 13534(7.08) 
  Pain in throat 58(0.15) 969(2.32) 2035(3.46) 3930(2.06) 
  Nosebleed 474(1.22) 959(2.30) 1842(3.13) 4441(2.32) 
  Itchy throat 295(0.76) 1087(2.61) 1782(3.03) 4188(2.19) 
  Sinonasal 
congestion 

575(1.48) 768(1.84) 1000(1.70) 3117(1.63) 

 

In the musculoskeletal system, the prevalence of muscle pain, back pain, and muscle 

cramps decreased from 11.54%, 4.69%, and 3.84% in the wild-type variant to 2.99%, 

0.50%, and 0.93% in the Omicron variant, respectively, reflecting a substantial 

reduction in musculoskeletal symptoms. Similarly, the prevalence of dyspnea in the 

lower respiratory system decreased from 4.92% in the wild-type variant to 1.31% in the 

Omicron variant. The prevalence of immune responses in the immune system 

substantially decreased from 3.34% to 0.87%. In the digestive system, the proportion 

of abdominal pain symptoms decreased from 3.35% to 0.57%. In the circulatory system, 

the proportions of edema, chest tightness, and chest pain symptoms decreased from 

3.03%, 1.89%, and 1.77% to 1.15%, 0.25%, and 0.58%, respectively. These reductions 

indicate that the impact of the Omicron variant strain on multiple body systems has 

been reduced. 

 



Notably, certain symptoms such as cold sweats increased in prevalence from 1.74% in 

the wild-type variant to 3.11% in the Omicron variant. Additionally, symptoms of the 

upper respiratory system such as cough, sore throat, nasal bleeding, itchy throat, and 

nasal congestion also showed varying degrees of increase, rising from 6.17%, 0.15%, 

1.22%, 0.76%, and 1.48% to 8.23%, 3.46%, 3.13%, 3.03%, and 1.70%, respectively. 

This may reflect a more pronounced impact of the Omicron variant strain on the upper 

respiratory tract. 

Changes in symptom prevalence risk among different variants 

 

Figure 4. Changes in the prevalence risk of different physiological systems among the 

self-report COVID-19-positive cohort. (Note: The shaded area represents the 95% confidence 

interval, and the dashed line indicates the normal level of symptom prevalence risk.) 



Figure 4 depicts the changing pattern of symptom prevalence risk over time in the 

COVID-19-positive population. As time progresses from the point of self-reported 

infection, the daily Odds Ratio (OR) shows a gradual declining trend, eventually 

stabilizing near the baseline level. This trend suggests that, over time, the risk of 

symptom prevalence in the population will gradually return to normal levels. However, 

there are differences in the rate of decline and the time to return to normal levels 

(hereinafter referred to as 'risk resolution period') for different physiological systems. 

The risk resolution period for the immune system is shown to be 6 days (Q1-Q3, 5–7 

days), for the endocrine system 8 days (Q1-Q3, 8–10 days), while the risk resolution 

period for the lower respiratory system is 32 days (Q1-Q3, 32–33 days), and for the 

nervous system, it extends up to 38 days (Q1-Q3, 35–38 days). 

  

Among different variants, the risk resolution period for the same physiological system 

varies (Figure 5). Specifically, in the lower respiratory system, the risk resolution period 

for the Delta variant group is 34 days (Q1-Q3, 30–38 days), significantly longer than 

the 20 days (Q1-Q3, 17–20 days) for the wild-type strain group and 24 days (Q1-Q3, 

23–24 days) for the Omicron variant group (P<0.001). In the integumentary system, 

the risk resolution period for the Delta variant group is 11 days (Q1-Q3, 11–14 days), 

compared to 8 days (Q1-Q3, 6–8 days) for the wild-type strain group and 8 days (Q1-

Q3, 8–8 days) for the Omicron variant group (P<0.001). In the endocrine system, the 

risk resolution period for the Omicron variant group is 8 days (Q1-Q3, 7–8 days), 

whereas it is 2 days (Q1-Q3, 2–4 days) for the wild-type strain group and 5 days (Q1-

Q3, 3–6 days) for the Delta variant group (P<0.001). For other physiological systems, 

the differences in risk resolution period are less pronounced. 



 

Figure 5. Comparative distribution of risk resolution period across physiological 

systems with different variants. (Note: Significance levels are marked as: *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001.) 

  



Symptom Co-occurrence of SARS-CoV-2 Strains among different variants 

In the wild-type strain, there is a relatively strong co-occurrence between the nervous 

system and the lower respiratory system with other systems. The strongest co-

occurrence is between the nervous system and general and others, with a Dice 

coefficient of 0.16. Additionally, the co-occurrence between the lower respiratory 

system and the nervous system, as well as between the lower respiratory system and 

the upper respiratory system, also show a higher degree of closeness, with Dice 

coefficients of 0.15 each. In the Delta variant, although the overall co-occurrence 

pattern is similar to the wild-type strain, the co-occurrence between the nervous system 

and general and others has increased from a Dice coefficient of 0.16 to 0.19. 

Furthermore, the Dice coefficients for the co-occurrence between the lower respiratory 

system and the nervous system, as well as between the lower respiratory system and 

the upper respiratory system, have increased from 0.15 to 0.19 and 0.18, respectively. 

In the Omicron variant, compared to the wild-type and Delta variant strains, the 

strongest co-occurrence is concentrated in the upper respiratory system. Specifically, 

the Dice coefficient between the upper respiratory system and the musculoskeletal 

system is 0.18, followed by the co-occurrence between the upper respiratory system 

and the nervous system, with a Dice coefficient of 0.15 (Figure 6). 



 

Fig 6. Symptom co-occurrence intensity among different variants. (Note: From top to 

bottom are the Wild-type, Delta variant, and Omicron variant, respectively.) 



Discussion 

In this study, we developed a pipeline for denoising longitudinal social media data to 

monitor dynamic changes in disease symptom patterns, with COVID-19 as a use case. 

The pipeline begins with a rule-based NLP technique to identify self-reported symptom 

cases from large social media datasets and track their historical data over time. An NER 

model then extracts symptom information from this extensive text data. A USM 

classification model to identify the symptom mentions that reflects user’s health status. 

Our pipeline enables public health researchers to leverage vast amounts of noisy data 

from social media platforms to uncover the variability of disease symptom 

epidemiology.   

 

There existing several studies[27,55,56] that have delved into identifying whether a 

user’s related symptom or disease is mentioned in a tweet, categorizing them into 

distinct classification tasks. For example, Luo et al [27] and Karisani et al [55] have 

annotated the symptom tweets with four labels: self-mention, other-mention, awareness 

and non-health, while Biddle et al [56] classified symptom tweets into three labels: 

figurative mentions, other mentions and health mentions. However, in the context of 

health monitoring tailored for a particular population, the primary objective is to extract 

information solely pertaining to the user's own health status and does not require further 

segmentation of non-user-related-symptom. Consequently, only two labels were 

selected for our symptom tweets labeling: user-related-symptom and non-user-related-

symptom. After denoising symptom tweets, we found that although a large number of 

tweets discussed symptoms, only about 39% of tweets containing symptom information 

reflected the individual's personal experience. When analyzing symptom patterns in 

patients, it is critical to accurately identify the individual symptom experiences. This 

study shows that the frequency of mentions of symptoms such as headache, fatigue, and 

skin lesions increased after denoising with the USM model, while the frequency of 

mentions of chills and muscle cramps decreased. This suggests that the rate of user-



related symptom of symptoms is related to the nature of the symptoms. One study [57] 

showed that about 44% of tweets containing health issue keywords disclosed user-

related health status, but disclosure rates varied by health issue. For example, more than 

80% of tweets about migraines and allergies were related to user themselves, whereas 

only 12% of tweets about abortion disclosed user-related information. Therefore, in the 

comprehensive prevalence analysis of different symptoms, denoising processing is 

extremely critical, otherwise the analysis results of some symptoms may be seriously 

biased and cannot truly reflect the actual prevalence trend. 

  

The longitudinal analysis of symptom patterns showed that symptom prevalence across 

most physiological systems declined except upper respiratory tract systems during 

periods when different COVID-19 strains were predominant. During the pandemic 

dominated by different SARS-CoV-2 strains, the dynamic changes in symptom 

prevalence risk differ. This difference may be a result of different levels of immunity 

developed by natural infection or vaccination [58,59], the mutation of the viral spike 

protein leads to changes in the transmission ability, pathogenicity, and immune escape 

ability of the virus [60]. Specifically, we noticed that the Delta strain variant has a more 

persistent effect on the lower respiratory tract. This is in accordance with a previous 

study that shows that the Delta strain variant causes more severe and longer-lasting 

lower respiratory symptoms [61]. In addition, our finding that the Delta strain variant 

had a longer risk resolution period in the integumentary system is consistent with an 

online U.K. cohort study [62], which announced that cutaneous symptoms were more 

common and lasted longer in the Delta strain variant than in the Omicron strain variant.  

  

We explored the symptom co-occurrence patterns caused by different SARS-CoV-2 

strains and found that Delta variant and wild-type SARS-CoV-2 strains were highly 

similar in most symptoms co-occurrence, but the association between lower respiratory 

tract and nervous system symptoms was enhanced. Another study also used symptom 



co-occurrence network analysis to reveal similar symptom manifestations between 

gamma variant and wild-type strains [63]. In addition, previous studies have used co-

occurrence network analysis of long-term COVID-19 patients to reveal complex 

relationships between symptoms, revealing that abnormal breathing, chest pain, and 

fatigue are related [53], which also suggests that respiratory dysfunction-related 

symptoms and neurological symptoms are more likely to co-occur. SARS-CoV-2 can 

invade host cells by binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor 

[64]. ACE2 receptors not only widely exist in the respiratory system, also distributed in 

the nervous system, they constitute the respiratory and nervous system symptoms 

concurrent biological basis. Furthermore, current scientific consensus believes that 

olfactory mucosa may be an important route for SARS-CoV-2 to enter the brain. The 

virus can use sensory nerve endings in this region to enter the brain through retrograde 

transport mechanisms, affecting multiple parts of the skull including the olfactory, 

trigeminal, and autonomic nervous systems [65]. This mechanism provides a possible 

explanation for the onset of neurologic symptoms, including loss of smell and taste, in 

patients with COVID-19. At the same time, the virus directly causes respiratory 

symptoms when it enters the respiratory tract and damages epithelial cells. Therefore, 

the dual involvement of the respiratory system and nervous system can also be regarded 

as a direct reflection of the unique biological characteristics of SARS-CoV-2 and its 

pathophysiological effects. 

   

Our integrated pipeline shows promising results in monitoring the COVID-19 

pandemic. This capability enables its application to the surveillance and analysis of 

other infectious diseases. By incorporating social media data, our pipeline enhances the 

monitoring of shifts in symptom patterns, thereby informing public health strategies. 

This approach not only keeps both the public and healthcare professionals informed 

about prevalent symptoms but also aids in anticipating the impacts of emergent viral 

variants of concern. 



Limitations  

We acknowledge the limitations of our study. First, our analysis relied on self-reported 

positive cases of COVID-19 rather than confirmation by laboratory testing. Although 

we have adopted strict regular screening to ensure the accuracy of self-reported data as 

much as possible, it still cannot completely rule out the existence of false positive cases. 

Second, our strain groupings were based on SARS-CoV-2 strain prevalence data 

published by the CDC rather than on laboratory-tested strain genotyping, which may 

have included a small number of cases with other variants. Genotyping of laboratory-

tested strains would help to distinguish the differences between different variants more 

precisely. Third, due to the privacy and security issues of social media data, it is difficult 

to cover variables such as age, gender, vaccination, and underlying diseases, and it is 

difficult to fully control confounding factors when analyzing the symptom patterns of 

different SARS-CoV-2 strains in this study. Nevertheless, the results of this study are 

generally consistent with the conclusions of several clinical case studies. Finally, as 

with other social media-based public health studies, this study suffers from potential 

sample bias problems because the demographic characteristics of the social media user 

group do not fully reflect the distribution of the overall population. This limitation may 

have affected our assessment of the representativity of reporting COVID-19 cases and 

their symptoms. 

Conclusion 

We developed an integrated pipeline for denoising longitudinal social media data to 

monitor the evolution of symptom patterns during the pandemic over time. By applying 

this pipeline to up to two years of COVID-19 related social media data, we enabled 

retrospective tracking and analysis of the health status of a substantial cohort of self-

reported COVID-19-positive patients. Our analysis revealed notable variations in 

symptom patterns across different SARS-CoV-2 strains. This pipeline not only provides 

valuable insights into COVID-19 symptomatology but also establishes a robust 



framework for epidemic monitoring, crucial for addressing current and future public 

health challenges. 
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