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Abstract 

Patient recruitment is a key desideratum for the success of a clinical trial that entails identifying eligible patients that 

match the selection criteria for the trial. However, the complexity of criteria information and heterogeneity of patient 

data render manual analysis a burdensome and time-consuming task. In an attempt to automate patient recruitment, 

this work proposes a Siamese Neural Network-based model, namely Siamese-PTM. Siamese-PTM employs the 

pretrained LLaMA 2 model to derive contextual representations of the EHR and criteria inputs and jointly encodes 

them using two weight-sharing identical subnetworks. We evaluate Siamese-PTM on structured and unstructured EHR 

to analyze their predictive informativeness as standalone and collective feature sets. We explore a variety of deep 

models for Siamese-PTM’s encoders and compare their performance against the Single-encoder counterparts. We 

develop a baseline rule-based classifier, compared to which Siamese-PTM improved performance by 40%. 

Furthermore, visualization of Siamese-PTM’s learned embedding space reinforces its predictive robustness.      

 

Introduction 

Randomized clinical trials (RCT) play vital role in clinical research as they are conducted to assess the efficacy of  

new treatments or interventions. Marked by their high failure rates, however, clinical trials remain the primary 

bottleneck in the drug development pipeline, with more than two third of Phase II compounds failing to advance to 

Phase III1. One of the main drivers of an unsuccessful clinical trial pertains to the problem of patient recruitment 

whereby enough eligible participants cannot be accrued for the study in time. It is estimated that 86% of clinical trials 

fail to meet the patient recruitment goals2, resulting in 19% of trials being terminated3. The foremost challenge 

underlying the recruitment process is the difficulty in matching study-specific inclusion and exclusion criteria to  

patient records. Given the magnitude and diversity of the electronic health records (EHRs) data with a mix of 

structured and unstructured patient information, manually reviewing and analyzing them based on predefined selection 

criteria can be a laborious task. In addition, for more extensive and complex eligibility criteria, filtering patient records 

based on simple keyword match is unproductive. Therefore, there exists a critical need to develop computational 

models that can automatically process EHR and criteria data to accurately gauge patients’ eligibility for cohort 

selection, toward achieving optimized clinical trial design.  

         

Previous works in patient-trial matching encompass rule-based4-6, machine/deep learning-based7,8 and hybrid 

methods9,10. Rule-based methods rely on carefully crafted heuristics to describe the selection criteria. Machine/deep 

learning methods, by contrast, are capable of automatically learning criteria-related patterns from the data. While 

hybrid methods employ rule-based method as an auxiliary step to either perform manual feature extraction or post-

processing for a machine learning-based method. The major limitations of rule-based methods are the taxing rule 

engineering process and the lack of generalizability to new datasets. Traditional machine learning methods are capable 

of automatic data modeling, albeit human expertise is usually required for selecting the trial-specific feature set. Deep 

learning methods, on the other hand, are data-driven and can learn the optimal feature set automatically from the raw 

data, allowing it to select the most eligible patients for any clinical trial with minimal human intervention. 

 

Application of deep learning for patient-trial matching is faced with challenge in the limited data availability. Clinical 

trials test the safety and effectiveness of new treatment, so it is plausible that a limited patient population is generally 

exposed to it. Taking into account the data-hungry nature of deep learning techniques and given the resource-scarce 

setting of the patient-trial matching task, this work proposes a patient-trial matching framework based on the Siamese 

Neural Network architecture, namely Siamese-PTM. Siamese-PTM employs two subnetworks with the same 

configuration and weights to encode the patient EHR vector and the selection criteria vector in parallel. The pairwise 

feature learning generates distributed representations of the EHR and criteria data that more precisely capture the 

semantic interactions between them to facilitate accurate predictions of patient eligibility. As a result of the paired 

inputs ingested by Siamese-PTM, the number of training samples are implicitly increased, allowing it to overcome  
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Figure 1. Overview of the Single Neural Network model with one encoder and Siamese Neural Network with two 

encoders. 

 

the deficiency of training data and consequently generalize well on new patient-criteria inputs. We further enrich 

Siamese-PTM’s encoding capability by utilizing the pretrained LLaMA 211 model to initialize the embeddings of the 

EHR and criteria inputs.    

 

We evaluate Siamese-PTM’s performance on structured and unstructured EHR data to investigate their individual and 

collective predictive value in the patient-trial matching task. We analyze the effect of fine-grained (token-level) and 

coarse-grained (document-level) pretrained LLaMA 2 embeddings on Siamese-PTM’s generalization. We perform 

comparative quantitative analysis that explored a variety of neural network architectures for Siamese-PTM’s encoders 

and compared their performance against the Single-encoder counterparts. We develop a baseline rule-based classifier, 

compared to which Siamese-PTM significantly improved performance by 40% (p-value=0.006). To further 

demonstrate the representation strength of the embedding vectors learned by Siamese-PTM, a qualitative evaluation 

is carried out in the form of cluster analysis12.   

 

Methods 

 

Study design and data 

We use five clinical trials (NCT02008357, NCT04468659, NCT02669433, NCT01767909, NCT02565511) from 

ClinicalTrials.gov focused on cognitive disorders, such as Alzheimer’s disease and Dementia with Lewey Bodies. For 

each trial, the selection criteria data consist of inclusion and exclusion statements extracted from the “Eligibility 

Criteria” section of that trial. Cohort definition per trial was formed by applying the structured query language (SQL) 

on the EHR data according to the respective selection criteria, resulting in total 180 patients. Out of the 180 patients, 

50 were eligible (“success”) and the remaining 130 did not satisfy the trial’s criteria (“fail”). The EHR data was 

collected from Mayo Clinic’s United Data Platform (UDP) and include structured, unstructured and demographics 

patient data. The structured EHR covers six types of clinical events (diagnosis, medication, allergy, family history of 

medical condition, lab tests and admission (e.g., reason for visit)), the unstructured EHR comprises radiology reports 

and demographics includes patient’s age and gender. We consider five criteria-EHR pairwise input combinations for 

evaluation: (1) criteria + unstructured EHR, (2) criteria + structured EHR, (3) criteria + unstructured and 

demographics EHR, (4) criteria + structured and demographics EHR and (5) criteria + unstructured, structured and 

demographics EHR.    

 

Problem formulation 

The patient-trial matching task in this work is considered as a binary classification problem, which can be formulated 

as follows: Given <EHR, Criteria> pairs I = {<E1, C>,….,<Ei, C>,….,<EP, C>} across P patients, where Ei = {ei1, 

ei2,….,eid} is the  EHR data of the i-th patient composed of d tokens and C = {c1,….,cj,….,cm} is the sequence of m 

criteria statements in our study, with criterion cj containing n tokens {cj1,….,cjn}, the goal is to predict whether the i-

th patient meets the criteria (“success”) or not (“fail”).    

 

Overview of Siamese-PTM 

Provided that each training instance in the patient-trial matching task is a <EHR, Criteria> pair, the canonical approach 

to integrate the two types of information is by performing early fusion13. As depicted in Figure 1 (a), the early fusion 
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approach performs the integration on the input side by combining the <EHR, Criteria> vectors to a unified input vector 

and trains a single encoder to perform the prediction. Note that the merging of the pairwise vectors can take place 

using any fusion operation (e.g., concatenation). However, owing to the fact that the semantic similarity between the 

EHR and criteria could exist beyond the surface level, early fusion fails to capture the interactions between the two 

data as a single encoder operates on the integrated data. To address this shortcoming, this work adopts the intermediate 

fusion13 approach that performs the integration of the data during the training phase by adopting the Siamese Neural 

Network architecture, namely Siamese-PTM. As depicted in Figure 1 (b), Siamese-PTM first employs two identical 

encoders to learn feature representations of the EHR and criteria data separately, which are subsequently integrated  

and passed through the classification layer. By sharing weights between the two encoder modules and training them 

jointly, Siamese-PTM is able to learn correlations between the two types of information. In doing so, the semantic 

relevance between the <EHR, Criteria> pair can be accurately modeled and patients matching the eligibility criteria 

can be effectively identified.  

 

The encoded representations of the <EHR, Criteria> pair learned by the dual encoders in Siamese-PTM are then fed 

into an output layer, which is implemented as a linear layer with one hidden unit followed by sigmoid activation. In 

order to fuse the two encoded representations into a single vector to perform classification, we experiment with the 

following techniques: concatenation and element-wise addition, multiplication and mean.  

 

LLaMA 2 pretrained embeddings 

Large language models constitute Transformer-based models delineated by their considerable scale and pretraining 

on large corpora of unlabeled data. LLaMA 2 is an emerging autoregressive model that has substantial world 

knowledge ingrained in its 7 billion trainable parameters by learning language representation in a self-supervised way. 

This capability allows it to capture complex contextual relationships and improve performance of various downstream 

tasks. We utilize the pretrained LLaMA 214 model to derive the contextualized representations of the  <EHR, Criteria> 

pair as input features for Siamese-PTM. To capture the semantic nuances at different granularity, we evaluate Siamese-

PTM on fine-grained and coarse-grained LLaMA 2 embeddings. In the fine-grained analysis, each token in the EHR 

Ei and criteria C sequences is represented with its token-level embedding extracted from LLaMA 2. As a result, fine-

grained analysis enables Siamese-PTM to model the sequential relation between the token representations within 

<EHR, Criteria>. In Coarse-grained analysis, on the other hand, the aggregated contextual representations outputted 

by LLaMA 2 for the EHR and criteria are inputted directly into Siamese-PTM. Note that in this case we consider the 

whole EHR sequence Ei as a single text corresponding to the document, while each criterion statement cj in C is 

considered as independent text and mapped to its LLaMA 2 embedding, which are then mean-pooled to represent C 

at the document-level. So, coarse-grained analysis summarizes the overall semantics of the EHR and criteria data into 

single contextual representations, which are then used to initialize Siamese-PTM’s learning.     

 

Encoder 

The siamese encoder architecture used in coarse-grained analysis is a multilayer layer perceptron (MLP)15 and for fine-

grained analysis we experiment with a wide range of neural networks which include the long short-term memory 

network (LSTM)16, gated recurrent unit (GRU)17 network, their bidirectional variants (i.e., Bi-LSTM18, Bi-GRU19), 

their attention variants20,21 (i.e., LSTM-ATT, GRU-ATT, Bi-LSTM-ATT, Bi-GRU-ATT), convolutional neural 

network (CNN)22 and CNN-LSTM23.    

 

MLP: Also referred to as a feed forward neural network, MLP consists of one or more hidden layers of neurons (hidden 

units) with non-linear activation (ReLU24) and full connectivity between them. We apply batch normalization25 and 

dropout26 layers as regularization techniques after each hidden layer. We vary the number of hidden layers, number of 

hidden units and dropout rate and analyze their effect on Siamese-PTM’s performance.     

 

LSTM: It contains special memory cells and uses gating mechanism featuring three gates (input, forget, output) to 

control the information flow within the cells, allowing LSTM to tackle the vanishing gradient problem inherent in 
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recurrent neural networks (RNN)27 and capture long-term dependencies. We use LSTM with one hidden layer of 50 

hidden units and a dropout layer with dropout rate of 0.5 based on preliminary hyperparameter tuning.  

 

GRU: Similar to LSTM, but GRU has a simplified architecture with two gates (update and reset) to control the 

information flow and as a result fewer parameters. We use same hyperparameter settings as LSTM.    

 

Bidirectional variants: The Bi-LSTM and Bi-GRU models are composed of the forward LSTM/GRU and backward 

LSTM/GRU to capture dependencies from both directions. We use same hyperparameter settings as the vanilla 

variants.     

 

Attention variants: We apply self-attention mechanism to the hidden states of the LSTM/GRU variants and compute 

the output as the attention-weighted sum of the hidden states.    

 

CNN: We apply 1-d convolving filter across the embedding dimension to extract feature vectors and perform mean-

pooling to aggregate them to a single vector.   

 

CNN-LSTM: This is a hybrid model that first extracts feature vectors leveraging a CNN and passes them through an 

LSTM for sequential modeling.  

  

Loss function 

To train Siamese-PTM for the patient-trial matching task, we experiment with three loss objectives as below. For BCE 

and WBCE, Siamese-PTM’s learned representations are fused and passed through the output layer to get the predicted 

probability. While for CL, we compute the cosine similarity between the learned representations.   

 

Binary cross-entropy (BCE): Quantifies Siamese-PTM’s performance with predicted probability ranging from 0 to 1. 

The loss tends to increase if the output probability ŷ is different from the ground truth label y (i.e., fail or success). 

Mathematically, it is defined as below. 

 

Loss = - ∑ 𝑦(𝑖) log  ŷ(𝑖)  +  (1 − 𝑦(𝑖)) log (1 − ŷ(𝑖))𝑃
𝑖=0    (Equation 1) 

 

Weighted binary cross-entropy (WBCE): It is based on BCE but addresses the class imbalance in the dataset by 

introducing the weight β to penalize misclassifications of the minority class more.  

 

Loss = - ∑ 𝛽𝑦(𝑖) log  ŷ(𝑖)  +  (1 − 𝑦(𝑖)) log (1 − ŷ(𝑖))𝑃
𝑖=0       (Equation 2) 

 

Contrastive loss (CL): It penalizes the encoder based on the eligibility label y of the i-th <EHR, Criteria> pair such 

that similar feature embeddings are learned for the EHR and criteria inputs with the “success” label and dissimilar 

feature embeddings are learned for pairs with the “fail” label. Here, dw is the cosine similarity between the learned 

feature embeddings of the EHR and criteria inputs and margin is a hyperparameter which is maximized for positive 

samples.   

 

Loss = ∑ (1 − 𝑦(𝑖)) ∗ 𝑑𝑤
(𝑖)2

 +  (𝑦(𝑖)) ∗ {max (0, 𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑𝑤
(𝑖)

)𝑃
𝑖=0 }2 (Equation 3) 

 

Results 

 

Model evaluation 

Models were trained, validated and tested in a five-fold cross-validation. We report performance in terms of the mean 

F1 score averaged across the five-fold results. We used Adam optimizer to train each model for 50 epochs with a 

learning rate of 0.005.  

 

Baseline rule-based results 

For comparison, we develop a baseline rule-based patient-trial matching classifier where criteria-based rules crafted 

in the form of SQL query are utilized to retrieve specific clinical features from EHR, guided by expert clinician 

knowledge. The retrieved features are subsequently fed as input into a standard machine learning model to perform 

binary classification. We experiment with three different models for evaluation as shown in Figure 2 (a). The results 
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suggest that the best performing baseline classifier is Random Forest, followed by SVM, while Logistic Regression 

performs the worst. On inspecting the per class generalization, however, SVM outperforms Random Forest in 

accurately predicting the eligible patients that match the criteria (F1-Pos).   

 

 
Figure 2. (a) Baseline rule-based performance evaluated with traditional machine learning models. (b) Effect of 

different input combinations on Siamese-PTM’s performance.  

 

Importance of EHR data type 

Figure 2 (b) examines the individual and collective influence of the structured and unstructured EHR data on Siamese-

PTM’s performance in the coarse-grained setting. We observe that the most informative data source is the unstructured 

narrative data (i.e., radiology reports), both as a standalone feature set (criteria + unstr) as well as coupled with the 

demographics feature (criteria + unstr & dem), leading to F1 scores of 0.79 and 0.84 respectively. The counterpart 

structured input combinations (criteria + str, criteria + str & dem), however, underperform with performance gaps of 

3% and 11%, respectively, in comparison to the corresponding unstructured input combinations. As a result, the 

performance on integrating both unstructured and structured EHR into the input (criteria + unstr & str & dem) is 

balanced by the informativeness of each data type (F1 of 0.76).  

 

Coarse-grained analysis 

To gain a deeper understanding of Siamese-PTM’s predictive capabilities in the coarse-grained analysis, we change 

the MLP encoder’s hyperparameter settings with respect to the projection dimension, number of hidden layers, dropout 

rate and fusion approach and analyze the effect of each on the model’s performance. The projection dimension 

corresponds to the output dimension of the encoded representation learned by Siamese-PTM and is varied as {5, 10, 

30, 50, 64, 100}. The results shown in Figure 3 (a) suggest that projecting to a higher dimension generally leads to a 

better performance. Specifically, the best performance was achieved with dimension 64 and worst performance with 

dimension 5. However, increasing the dimension further (100) degrades performance, possibly due to overfitting 

caused by the small dataset vs. large feature dimensionality ratio (the curse of dimensionality). Then, to inspect the 

learning ability of an increasingly deeper model, we stack the MLP with 1, 2, 3 or 4 hidden layers. The declining 

performance in Figure 3 (b) alludes that Siamese-PTM overfits more as we increase the model complexity with an 

additional hidden layer every time. The overfitting could potentially be caused by trying to fit a complex model on a 

rather small sized dataset. Dropout is performed to prevent overfitting by randomly dropping neurons from the hidden 

layer, as specified by the dropout rate. We experiment with the following dropout rates {0.1, 03, 0.5, 0.8, 0.9} as 

shown in Figure 3 (c), among which 10% dropout is optimum. Generally, a high dropout rate is known to hurt the 

performance of models trained on small datasets26 and our results align with this finding to some extent, although it is 

not conclusive. Lastly, Figure 3 (d) presents Siamese-PTM’s performance with different fusion approach that merge 
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the learned representations outputted by the dual encoders into a single vector. Among them, concatenation performs 

the best, followed by addition obtaining competitive result, while mean and multiplication perform relatively worse.        

 

 

 
 

Figure 3. Coarse-grained analysis of Siamese-PTM evaluated on (a) projection dimension, (b) number of hidden 

layers, (c) dropout rate and (d) fusion approach. 

 

Fine-grained analysis 

Figure 4 (a) reports the fine-grained performance of Siamese-PTM on the unstructured EHR data having the encoder 

replaced with different neural network models. Among the encoders, LSTM ranks best with an F1 score of 0.92. This 

deep learning performance is much above the rule-based Random Forest model’s performance (0.66 F1), in particular 

by a statistically significant 40% performance gain (p-value = 0.006). Other LSTM variants, namely GRU and Bi-

LSTM, perform comparably to each other (0.86 F1), while Bi-GRU performs relatively worse (0.81 F1). In general, 

the attention-augmented variants improve performance, with the Bi-LSTM-ATT (0.88 F1) and GRU-ATT (0.91 F1) 

models achieving 2% and 6% respective boosts in performance compared to their vanilla variants. While CNN (0.88 

F1) performs comparably to the LSTM-based attention variants and CNN-LSTM’s result (0.86 F1) is comparable to 

that of Bi-LSTM and GRU.  

 

To justify the adoption of a Siamese Neural Network-based architecture for the patient-trial matching task, in Figure 

4 (b) we compare the proposed Siamese-PTM’s performance with the corresponding Single-encoder models. The 

results strongly assert Siamese-PTM’s superiority as it is able to outperform seven out of the ten counterpart Single-

encoder models, while performing comparably with the remaining three.  

 

In Figure 4 (c), we analyze Siamese-PTM’s performance evaluated with different loss objectives. As there exists an 

imbalance in our class distribution, employing the weighted variant of the binary cross-entropy loss (i.e., WBCE) 

helps to improve generalization of six out of the ten encoders compared to the standard BCE loss. This is attributed to 

WBCE assigning higher penalty to the misclassifications of the minority class (“success”), while improving Siamese-
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PTM’s sensitivity and thus its overall performance. Contrastive loss (CL), on the other hand, relatively underperforms 

for this task. Hypothesizing, in this study we reduce a patient-trial matching task to a binary classification problem; 

however, CL being a metric-based loss, is designed to model the similarity between inputs by learning similar feature 

embeddings for inputs belonging to the same class and dissimilar embeddings for inputs belonging to different class. 

As a result of this difference in task objectives and because the patient-trial inputs do not directly map to similar 

semantics, CL is not able to perform at par with the alternative loss functions BCE and WBCE.    

 

 
 

Figure 4. Fine-grained analysis of Siamese-PTM (a) evaluated with different encoders, (b) compared against Single-

encoder models and (c) evaluated with different loss functions.  

 

Cluster analysis 

We perform cluster analysis of the patient-trial representations learned by Siamese-PTM (i.e., fused representations 

right before passing to the output layer) after dimensionality reduction with principal component analysis (PCA)28 and 

t-distributed stochastic neighbor embedding (tSNE)12 techniques. We visualize the results derived from different 

training epochs in Figure 5. The visualization shows that similar patients are grouped together matching the label of 

their trial eligibility (“success” or “fail”). The distinct clusters demonstrate that Siamese-PTM is able to capture 

semantics that align with the domain knowledge and further solidifies its robust representation learning capability for 

the patient-trial matching task.     

 

 
 

Figure 5. Cluster analysis of Siamese-PTM’s learned representations across different epochs. Each dot corresponds 

to a patient-criteria pair in our dataset and the color of the dot denotes its ground truth label (fail/success).  
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Discussion and Conclusions 

Clinical trials are a vital aspect in drug development but suffer from the time-intensive and expensive patient 

recruitment process. This work proposes a deep learning-based patient-trial matching framework, Siamese-PTM, that 

automatically predicts patient’s eligibility for a clinical trial based on the criteria information. It involves training two 

identical encoders in tandem to effectively capture the complex semantics in the EHR and criteria data, while learning 

the correlations between them via the sharing of weights. The paired training samples in Siamese-PTM facilitate 

implicit data augmentation, allowing it to perform well even under a limited labeled data environment.  

 

To reconcile the complication of matching complex criteria to the heterogeneous EHR, we inspect the informativeness 

of structured and unstructured EHR data on Siamese-PTM’s performance as independent and integrated feature sets 

through five input combinations. Unstructured EHR in the form the free-text radiology reports perform better than the 

structured EHR composed of clinical events. This finding emphasizes that unstructured narrative data contain more 

nuanced information that could provide discriminative cues for Siamese-PTM to accurately differentiate between the 

eligible and non-eligible patients. The elaborate details of patient’s health trajectory present in the unstructured EHR 

provide sufficient context for LLaMA 2 pretrained model to learn semantically-rich EHR representations. Structured 

EHR, on the other hand, usually lacks this context as the clinical events represent data in a more concise format. 

 

We develop a baseline rule-based classifier that relies on SQL-based feature engineering to perform the patient-trial 

matching task. Compared to the baseline results, Siamese-PTM achieved substantial performance improvement 

(40%). This highlights the feasibility of deep learning as a more convenient and effective alternative for data modeling, 

that can automatically learn the relevant features in the patient-trial data without manual labor and yield better 

performance. We evaluate Siamese-PTM in the coarse-grained and fine-grained settings, which result in the best F1 

performance of 0.79 for the former and 0.92 for latter. This indicates a 16% improvement achieved with token-level 

LLaMA 2 embeddings and promotes the importance of sequential modeling to enrich the feature learning of patient-

trial data. Overall, Siamese-PTM consistently outperformed the Single-encoder models with performance gains 

ranging between 1%-20%. The early data fusion approach employed in Single-encoder models integrates features 

from the EHR and criteria data to a single input before the training phase that fails to efficiently capture their 

complementary semantics. Incorporating the data fusion in the training pipeline (intermediate data fusion) instead 

helps Siamese-PTM to successfully consolidate the correlating features from both EHR and criteria to learn a more 

meaningful representation. Comparisons of different loss functions to train Siamese-PTM revealed that the weighted 

variant of the standard binary cross-entropy loss (WBCE) helps to tackle the class imbalance in the patient-trial data, 

leading to better performance across most encoders.  

 

This work has some limitations that we would like to address as future directions. The clinical trials used in this study 

mainly cover cognitive conditions, which limits Siamese-PTM’s generalizability to more diverse trials. Along similar 

lines, we evaluate Siamese-PTM on EHR data sourced from a single institution. Adapting Siamese-PTM for cross-

institutional patient-trial matching is, however, a more challenging setting owing to the inherent domain shift in EHR 

data across different institutions.  
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