
Predicting response to cisplatin-based neoadjuvant 
chemotherapy for muscle-invasive bladder cancer: 

transcriptomic features outrank genomic 
biomarkers

Ariadna Acedo-Terrades1, Alejo Rodriguez-Vida1,2, Oscar Buisan3, Marta Bódalo-Torruella1, 
Maria Gabarrós1, Miquel Clarós1, Nuria Juanpere4,  Marta Lorenzo4, Sergio Vázquez Montes 
de Oca1, Alejandro Rios-Hoyo2, Cristina Carrato Moñino5, Tamara Sanhueza5,  Eduardo 
Eyras1,6, Eulàlia Puigdecanet7, Gottfrid Sjödahl8, Júlia Perera-Bel1#, Lara Nonell9# & Joaquim 
Bellmunt1,10#

1Hospital del Mar Research Institute (HMRI), Barcelona, Spain.
2Medical Oncology Department, Hospital del Mar, Barcelona, Spain.
3Urology Department, Hospital de Bellvitge, Barcelona, Spain.
4Department of Pathology, Hospital del Mar, Barcelona, Spain.
5Urology Department, University Hospital Germans Trias i Pujol, Badalona, Spain.
6EMBL Australia Partner Laboratory Network at the Australian National University,

Canberra Australian Capital Territory, Australia.
7IRIS-CC & MoD Lab Research Group. Faculty of Medicine, UVic-UCC, Vic, Spain.
8Division of Urological Research, Department of Translational Medicine, Lund

University and Department of Urology, Malmö, Sweden.
9Bioinformatics Unit,  Vall d'Hebron Institute of Oncology, Barcelona, Spain.
10Dana Farber Cancer Institute, Harvard Medical School Boston Massachusetts, 

USA.

#co-corresponding authors

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.28.24309634doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.06.28.24309634
http://creativecommons.org/licenses/by/4.0/


ABSTRACT
Muscle-invasive bladder cancer (MIBC) is associated with poor predictability of response to 
cisplatin-based neoadjuvant chemotherapy (NAC). Consequently, the benefit of NAC 
remains unclear for many patients due to the lack of reliable biomarkers predicting treatment 
response. In order to identify biomarkers and build an integrated and highly accurate model 
to predict NAC response, we performed a comprehensive transcriptomic and genomic 
profiling on tumors from 100 MIBC patients. Our results showed that the expression of the 
top genes associated with response, as well as the expression of growth factor genes and 
cell cycle regulators are highly correlated with NAC response. Most importantly, we found a 
novel signature related to the WNT signaling pathway that alone was highly correlated with 
NAC response and showed high accuracy in predicting NAC response (AUC=0.76). 
Additionally, mutations in the DNAH family genes (DNAH8, DNAH6 and DNAH10) and 
deletion in KDM6A were also highly correlated with NAC response. Using our 
comprehensive molecular analysis as a backbone, we developed two machine learning (ML) 
models, one incorporating both transcriptomic and genomic features (RF-RW), and the other 
using only transcriptomic data (RF-R). Both models demonstrated promising performance 
(AUC=0.82) as predictive models of response to NAC in MIBC. RF-RW and RF-R, after 
external validation, could potentially change the management of MIBC patients by selecting 
ideal candidates for NAC.  
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INTRODUCTION
Bladder cancer (BC) is a complex disease with a huge impact in society being the 10th most 

common cancer worldwide and the 6th most common cancer in men1. The pathologic tumor 

stage in localized BC could be separated in two main groups according to the depth of 

invasion into the muscularis propria layer: non-muscle invasive bladder cancer (NMIBC), 

which includes Tis, Ta and T1, and muscle-invasive bladder cancer (MIBC) tumors, which 

includes T2, T3 and T4a.

Approximately 20% of new BC patients are diagnosed with MIBC, a clinical setting which is 

more aggressive than NMIBC and is associated with a poor 5-year survival rate2-4.

Over the last two decades, the standard-of-care for MIBC has been to administer 

cisplatin-based neoadjuvant chemotherapy (NAC) followed by radical cystectomy (RC). 

Despite NAC having demonstrated a benefit in overall survival (OS), less than 50% of 

patients are actually eligible due to comorbidities of frailty, and many of them proceed to 

RC5-7. Moreover, among patients who are treated with NAC, the percentage of 

non-responders (NR) is around 40%, with these patients having high recurrence rate and 

poor 5-year survival rates of around 60%2,3. Furthermore, despite the great efforts made in 

recent years, there is still an absolute lack of reliable biomarkers to predict benefit from 

NAC3,8. Consequently, the inability to predict NAC response is a significant barrier to 

adequately identify those patients who might benefit from it. In turn, this prevents 

non-responders from avoiding unnecessary toxicity and allows for the provision of alternative 

treatment options. Identifying and validating integrated and accurate predictive models of 

NAC is therefore a highly unmet need in MIBC.

BC is associated with a high molecular diversity, and several transcriptomic subtypes have 

been described9-16. The most accepted molecular subtypes were described in the TCGA BC 

study, in which Robertson et al. proposed five MIBC transcriptomic subtypes (TCGAclas): 

basal-squamous, luminal papillary, luminal infiltrated, luminal and neuronal12. In a parallel 

study, the Lund taxonomy (LundTax) has been described as an alternative subtype 

classification: Urothelial-like (Uro), which includes UroA, UroB and UroC, Genomically 

Unstable (GU), Basal/Squamous (BaSq), Mesenchymal-like (MES-like) and 
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Small-cell/Neuroendocrine (ScNE)13. Despite differing in the quantity, proportion and 

characteristics of the subtypes, both subtype classifications show high overlap14.

Some studies suggest that MIBC molecular subtypes predict NAC response, and can be 

useful for treatment selection and improving outcomes17. However, these findings have been 

demonstrated to be inconsistent over time. First, Choi et al. reported that both basal and 

luminal were the subtypes showing the greatest benefit from NAC, whereas p53-like tumors 

are less likely to respond to NAC10. On the other hand, Seiler et al. confirmed that basal 

tumors had the highest benefit of NAC, but conversely indicated that luminal papillary 

subtype was associated with a low likelihood of benefit from NAC18. Additionally, Kamoun et 

al. highlighted that the luminal infiltrated subtype appeared to be resistant to cisplatin-based 

therapy but instead particularly sensitive to immune checkpoint inhibitors (ICI)14. Moreover, 

Lotan et al. indicated that non-luminal tumors received the greatest benefit from NAC, while 

luminal tumors experienced only a minimal survival benefit19. Using a different classification 

system, the opposite finding was reported by Sjödahl et al. demonstrating that luminal-like 

subtypes are the ones that more frequently respond to NAC treatment20. This lack of 

consistent results therefore requires uniform validation studies to establish the clinical 

relevance of molecular subtyping in MIBC as predictive biomarkers of NAC21.

At the genomic level, MIBC is characterized by genomic instability and a high mutation 

rate12,14,22. The most commonly mutated genes in MIBC are TP53 (48%), KMT2D (28%) and 

KDM6A (26%). The most common somatic copy number alterations (SCNAs) include the 

amplification of E2F3, PPARG and MDM2 and deletions in CDKN2A and RB1. Importantly, 

tumor mutational burden (TMB) and APOBEC-mediated mutagenesis have been associated 

with OS12. However, none of these genomic alterations have been validated as potential 

predictive biomarkers of NAC in MIBC.

In our present study, we have conducted a comprehensive molecular profiling using RNA 

sequencing (RNA-Seq) and whole exome sequencing (WES) obtained from a cohort of 100 

MIBC patients treated with NAC across different hospitals in Catalonia, Spain. Our primary 

objective was to characterize the transcriptomic and genomic landscape of MIBC in relation 

to NAC response. Our secondary objective was to develop a machine learning (ML) model 

capable of predicting the response to NAC treatment. The ultimate aim of our study was to 

create a predictive tool which could be potentially translated into daily practice for selecting 

ideal candidates for NAC and consequently change the management of MIBC.
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RESULTS

Patient characteristics and genomic analysis

The cohort of this study, included a total of 100 patients with MIBC retrospectively collected 

from four Catalan hospitals from 2010 until 2019. All patients received cisplatin-based 

neoadjuvant chemotherapy (NAC), and were divided into responders (R; n=53)  and 

non-responders (NR; n=47). Response was defined as postsurgical downstaging to 

non-MIBC (<=ypT1) with no pathological lymph-node involvement (ypN0) observed at 

cystectomy (Fig. 1A). A detailed summary of clinical and histopathological information is 

provided in Table1 (and Supplementary Table 1).

The median age of the 100 patients (10 females and 90 males) at diagnosis was 69  years 

(64;75) (Table 1). No differences were observed in the demographic variables between R 

and NR (Table 1, Supplementary Table 1). Since these patients were treated before the 

approval of adjuvant nivolumab in Spain23, none of them received adjuvant immune 

checkpoint blockade. There was no difference in the use of additional treatments (prior 

intravesical therapy, adjuvant chemotherapy) between R and NR (Table 1). The similarity 

between the administration of complementary treatments to NAC suggests a consistent 

approach in the treatment management for R and NR, which is crucial for ensuring unbiased 

results in further analyses. 

The median follow-up was 27 months (IQR 13;112 months); during this time, 1 R and 10 NR 

patients had local pelvic recurrence, 5 R and 23 NR distant metastatic recurrence and 8 R 

and 30 NR died. Response groups showed significant differences on 5-year OS (Fig. 1B).

Previously reported classic prognostic pathological features such as urethral involvement, 

lymphovascular invasion and surgical margins showed significant overrepresentation in NR 

(p=7.16e-04, p=9.87e-09, p=0.004, respectively) (Table 1). Local and metastatic recurrence 

were also significantly more common among NR, indicating response to NAC is associated 

with a lower likelihood of recurrence (p=0.006, p=3.07e-05). On the other hand, leukocytes, 

neutrophils and lymphocytes counts did not show significant differences between R and NR 

(Table 1), suggesting similar immune cell profiles among MIBC patients. Additionally, the 

ratio between neutrophils and lymphocytes , previously reported as an indicator of good 

NAC response24, was not significantly different between groups (Table 1).
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Table 1. Overview of the clinical characteristics of the MIBC cohort. (Significancy: 
p<0.05 = * , p<0.01 = **, p<0.001 = ***, p<0.0001 = ****, p<0.00001 = *****) 
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Figure 1. Overview of the MIBC cohort and analysis workflow. A. Response and tumor stage 
distribution across the cohort of 100 MIBC patients. Response was defined as dowstaging to 
non-MIBC status with no pathological lymph-node involvement (<=T1N0) observed at cystectomy.  B. 
Kaplan-Meier survival curve for 5-year overall survival (OS) in MIBC patients stratified by response 
(p<0.00001; HR=5.20). C. Design of the study. A total number of 100 MIBC patients were 
retrospectively included in the study: 53 responders (R) and 47 non-responders (NR). All patients 
received cisplatin-based neoadjuvant chemotherapy. We generated RNA sequencing (RNA-Seq) 
(n=71; R=40, NR=31) and whole-exome sequencing (WES) (n=97; R=51, NR=46) data from tumor 
samples at transurethral resection of bladder tumor (TURB). Both analyses followed a first quality 
control (QC) and were subsequently subjected to a preprocessing step. RNA-Seq data was used to 
perform different analyses: differential expression analysis (DEA), where two signatures were 
obtained (Top10up, Top10dn), weighted gene correlation network analysis (WGCNA) followed by an 
over-representation analysis (ORA) of the module which showed significant correlation with response. 
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WNT signaling pathway was over-represented in the ORA results and by intersecting DE results with 
WNT-related genes we obtained a WNT signature associated with NAC response. Finally, we 
performed molecular subtype classification using two classifiers (LundTax and TCGAclas). Two of the 
signatures used to classify MIBC samples in LundTax were significantly associated with NAC 
response (GROWTH FACTOR and CELL CYCLE REG). WES data was used to perform a variant 
calling (VC) and somatic copy number variation (SCNV). Following the VC, tumor mutational burden 
(TMB) and APOBEC scores were obtained but they were not significantly associated with response. 
However, comparison between R and NR showed that mutations in some DNAH family genes 
(DNAH8, DNAH6 and DNAH10) were significantly correlated with response. Additionally, SCNV 
showed that deletion in KMD6A was strongly associated with response. Features obtained from 
RNA-Seq and WES analyses were used to construct a machine learning (ML) model to predict NAC 
response  using data from 68 patients with both data types. 

We generated high-quality RNA sequencing (RNA-Seq) data from 71 patients (R=40; 

NR=31) and whole-exome sequencing (WES) data from 97 (R=51; NR=46) from tumor 

samples collected at transurethral resection of bladder tumor (TURB) before starting NAC. 

High-quality sequencing data was obtained for all samples. To ensure the differences in the 

analyses were not due to initial tumor quality, we confirmed that tumoral percentage and 

quantity were not statistically different between R and NR. (Supplementary Table 1).  

Importantly, no differences in tumoral percentage and quantity were found between R and 

NR. RNA-Seq data provided insights into gene expression patterns, molecular subtypes and 

gene signatures associated with NAC response. The WES data was used to investigate the 

impact of specific mutations, tumor mutational burden (TMB) and mutational signatures on 

NAC response. We also studied the role of somatic copy number variations (SCNVs). 

Finally, we integrated the information extracted from RNA-Seq and WES data to create a ML 

model to predict NAC response in MIBC patients (Fig. 1C).

WNT gene expression signature is associated to lack of response 
to NAC

The differential expression analysis between R (n=40) and NR (n=31) from our cohort of 

MIBC pre-treatment samples identified 602 differentially expressed (DE) genes. Among 

these, a higher number were associated with NR (n=588) compared to a minority that were 

associated with R (n=14) (Fig. 2A, Supplementary Table 2). To better understand the 

possible implications for the prediction of response to NAC, and to overcome the lack of 

adjusted p-values in the previous analysis, we applied the weighted correlation network 

analysis (WGCNA) method, an unsupervised approach to identify clusters of correlated 

genes. We identified 14 gene clusters, one of which showed a statistically significant 

negative association with NAC response (p=0.008, cor=-0.32) (Supplementary Fig. 1A).  

Genes from this cluster were enriched in several gene sets related to the WNT signaling 

pathway, cell signaling, angiogenesis and proliferation (Fig. 2B). Interestingly, we found 17 
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WNT signaling pathway genes among the list of DE genes (SFRP2, FGF10, MIR145, SOX7, 

ATP6V0C, FOLR1, KREMEN2, TRABD2B, WNT9A, WNT2, AXIN2, PPM1N, SOX2, DLX5, 

LGR6, LBX2, HESX1) (Fig. 2B). 

Analyzing the expression patterns of combinations of genes instead of individual genes can 

sometimes provide a clearer signal. We created signature scores for the top 10 up 

(Top10up) and down (Top10dn) regulated genes from the DE analysis. As expected, these 

signature scores showed significant differences between R and NR (p=0.0012,p=0.0002; 

respectively) (Fig. 2C). Importantly, the gene signature score derived from the 17 WNT 

signaling pathway genes also showed a significant difference between R and NR 

(p=6.2e-07) (Fig. 2C). Beyond the association with NAC response, all three signatures were 

also capable of stratifying survival outcomes; high expression of the Top10up was 

associated with better OS (HR=0.38[0.15-0.92]), whereas high expression of Top10dn and 

WNT signatures were significantly associated with worse OS (HR=3.24[1.42-7.69] and 

HR=4.53[1.92-11.1], respectively)(Fig. 2C). 

Molecular subtype signatures provide further insights into 
response to NAC

We applied the molecular subtype classification from Robertson et al., 2017. TCGAclas 

classified the samples as Basal squamous (n=18; R=11, NR=7), Luminal (n=12; R=4, 

NR=8), Luminal infiltrated (n=13; R=6, NR=7) and Luminal papillary (n=28; R=19, NR=9). 

Although no significant differences were found between R and NR patients, we observed a 

trend towards a better response to NAC in luminal papillary and basal squamous subtype 

(68% and 61% of responders, respectively), compared to luminal (33% responders) and 

luminal infiltrated (46% responders) (Supplementary Fig. 2A, Supplementary Table 3).

We also applied the molecular subtype classification from LundTax and identified the largest 

group of samples belonging to the Uro group (n=44, 62%); including the different subgroups 

of: UroA (n=28), UroB (n=7) and UroC (n=9). 13 samples  (18.3%) were classified as BaSq, 

12 (16.9%) as GU and 2 as ScNE (2.8%) (Supplementary Fig. 2B). These proportions are in 

line with the original classification. 

Unfortunately, none of Lundtax subtypes showed a significant association with response 

(Supplementary Table 3), but proportions were in line with what has been described in the 

literature: patients classified as UroB (3 R vs 4 NR) and BaSq (5 R vs 8 NR) showed a low 

proportion of responders (approximately 40%), indicating a lower likelihood of responding to 

NAC. On the contrary, GU (8 R vs 4 NR) and UroA (17 R vs 11 NR) patients showed an 
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opposite trend, with more than 60% of responders being the 2 subtypes most likely to benefit 

from NAC (Supplementary Fig. 2B). In addition, whereas luminal papillary in TCGAclas is 

consistent with the findings in the UroA LundTax subtype, BaSq results contradict our 

previous findings. Probably, the BaSq TCGAclas subtype includes patients classified as GU 

in LundTax, which may increase the proportion of responders in this TCGAclas subtype. 

Figure 2. Gene expression signatures are strongly associated with response and 5-year overall 
survival. A. Volcano plot showing the top 10 up-regulated (Top10up) and the top 10 down-regulated 
(Top10dn) genes obtained after differential expression analysis between responders (R) and 
non-responders (NR). B. Top significantly enriched pathways (p.adj<0.05) in the over-representation 
analysis (ORA) and 17 genes (WNT signature) rehesulting from the intersection between DE genes 
(602) and WNT-related genes (462). C. First row: Boxplot of the Top10up (p=0.0012), Top10dn 
(p=0.0002), WNT (p=6.2e-07), GROWTH FACTOR (p=0.0067) and CELL CYCLE REG (p=0.0056) 
signatures score and its significant correlation with NAC response. Second row: Kaplan-Meier curves 
showing the significant association between Top10up (p=0.0267, HR=0.38[0.15-0.92]), Top10dn 
(p=0.003, HR=3.24[1.42-7.69]), WNT (p=2e-04, HR=4.53[1.92-11.1]), GROWTH FACTOR ( p>0.05, 
HR=1.98[0.81-4.80]) and CELL CYCLE REG (p=0.0217, HR=2.58[1.14-5.96]) signatures score and 
5-year overall survival (OS).
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In order to understand the response mechanisms within the molecular subtypes, we derived 

single sample scores of the individual signatures used by the LundTax classifier 

(Supplementary Figure 1B). Interestingly, signatures of cell cycle regulation and growth 

factor (CELL CYCLE REG including FGFR3, CCND1, E2F3, RB1 and CDKN2A genes25
, and 

GROWTH FACTOR including EGFR, ERBB2 and ERBB316 showed the most highly 

significant differences between R and NR, being positively associated with response and 

OS. However, the association between GROWTH  FACTOR and OS is not significant (Fig. 

2C).

The combination of gene expression signatures stratifies response 
and overall survival 

To assess the potential of these signatures as biomarkers for a predictive model, we studied 

the correlation between the genes from all the identified signatures. Correlation analysis 

revealed only three genes from the Top10dn signature with high correlation coefficients 

(KRT6A-KRT5=0.95, KRT6A-DSG3=0.94, KRT5-DSG3=0.89, Fig. 3A). Both KRT6A and 

KRT5 belong to the keratin family of proteins, which are essential markers for basal epithelial 

cells. Additionally, while DSG3 is not a keratin family protein per se, it collaborates with other 

keratin family proteins to maintain the epithelial cells’ structure. Besides that, there was an 

overall weak association among the genes from the identified signatures (|cor| < 0.60, Fig. 

3A, Supplementary Table 4), suggesting a need to further explore their potential as 

combined biomarkers. 

Figure 3. Gene expression signatures can distinguish between R and NR. A. Correlation plot of 

the expression of genes constituting the RNA-Seq signatures. B. Heatmap showing the scores of 
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RNA-Seq signatures across samples and their impact in response. C. Kaplan-Meier showing the 

significant association between clusters obtained in heatmap and 5-year overall survival (OS) 

(p=0.049, HR=2.38[0.97-5.82]). 

The combination of the five signatures by unsupervised hierarchical clustering identified two 

main clusters of patients (Fig. 3B). The left cluster, which mainly contained R, was 

characterized by low expression of WNT and Top10dn signatures and overexpression of 

GROWTH FACTOR, CELL CYCLE REG and Top10up signatures. The right cluster 

contained the majority of NR and was characterized by an overexpression of WNT and 

Top10dn signatures. Within the later cluster, we could further distinguish a subcluster with 

high CELL CYCLE REG and GROWTH FACTOR signatures that could discriminate against 

the few responders with high WNT signature values. In line with the gene-wise correlation 

results, we observed that the signatures captured distinct relevant aspects associated with 

NAC response, harboring strong potential features for a predictive model. Similarly to the 

individual signatures, the combination of the five signatures led to the differentiation of two 

groups with significantly different 5-year OS (p=0.049, HR=2.3848[0.97-5.82]) (Fig. 3C).

Analysis of mutational landscape

Analysis of WES data identified a total of 27.404 somatic non-synonymous mutations in our 

cohort. The most frequently mutated genes were KIR2DL3 (54%) and LILRB3 (54%), 

followed by TP53 (51%), TTN (48%), RAMEF18 (46%), CYP2D6 (44%), MUC3A (41%), 

MUC5AC (41%), GTPBP6 (38%) and ZBED3 (38%) (Supplementary Fig. 3A). 

The most frequent somatic mutations in 121 previously reported BC associated genes 

(Supplementary Table 5) were TP53, with 49 mutations (51%), followed by KMT2D (24%), 

ERCC2 (18%), EP300 (16%) and ATM (15%) (Fig. 4A). This frequency is consistent with 

previously reported in other MIBC cohorts12,26,27, highlighting their role as BC drivers. 

Cancer pathways that have been associated with BC tumorigenesis (e.g. DDR, CM, CRG, 

TP53) (Supplementary Table 6) were mutated in the majority of patients in our cohort. In 

contrast, the signatures obtained from RNA-Seq analysis (WNT, GROWTH FACTOR, CELL 

CYCLE REG, top10up, top10dn) were mutated in a small proportion (10-20%) of patients, 

being the GROWTH FACTOR and CELL CYCLE REG signatures the most frequently 

mutated. Overall, the mutational landscape at the pathway level remained similar across the 

entire cohort and it was independent of response (Fig.  4A).

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.28.24309634doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.28.24309634
http://creativecommons.org/licenses/by/4.0/


Figure 4: Mutations in DNAH family genes (DNAH8, DNAH6 and DNAH10) and deletions in 
CDK2NA and KDM6A are significantly correlated with NAC response.  A. Mutational landscape 

for MIBC patients with clinical information. Bladder cancer genes mutated in more than 10% of 

samples. Mutations in important pathways such as DDR, CM, CRG and TP53CellCycle as well as 

RNA-Seq signatures were also included. Somatic copy number variations (SCNVs) previously 

identified as important features were also visualized in the oncoplot. B. Boxplots of significantly 

different mutated genes associated with NAC response: MGAM2 (p=0.0086), DNAH8 (p=0.0086), 

DNAH6 (p=0.0163, DNAH10 (p=0.0301), RNF213 (p=0.0349) and deletions in CDK2NA (p=0.006) 

and KDM6A (p=0.014) and its significant association with NAC response. C. Kaplan-Meier curve 
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showing the correlation of: mutations in any of the DNAH family genes (DNAH8, DNAH6 and 

DNAH10) (p>0.05) and deletions in CDKN2A (p>0.05) and KDM6A (p>0.05) with 5-year 

overall-survival. 

Somatic mutations in DNAH8, DNAH6 and DNAH10 genes are 
correlated with response to NAC and OS

We tested whether any association between the mutational profile and response to NAC (R 

n=51, NR n=46) could be seen. However, none of the frequently mutated genes nor 

pathways showed significantly different proportions between R and NR. Conversely, we 

found significant differences in five genes not previously reported to be related to response 

to NAC in MIBC (Fig. 3B, Supplementary Table 7, Supplementary Fig. 3B,4A): MGAM2 

(R=10, NR=1; p=0.0086), DNAH8 (R=12, NR=2; p=0.0086), DNAH6 (R=11, NR=2; 

p=0.0163, DNAH10(R=10, NR=2; p=0.0301), RNF213 (R=13, NR=4; p=0.0349) 

(Supplementary Fig. 2B). As expected, mutations in DNAH genes (DNAH8, DNAH6 and  

DNAH10) tend to co-occur, while mutations in RNF213 and DNAH genes are mutually 

exclusive. Moreover, mutations in MGAM2 and RNF213 have a high co-occurrence 

(Supplementary Fig. 4B). Survival analysis of these 5 genes did not yield statistically 

significant results (Supplementary Fig. 5A), probably due to the low frequency of these 

events. Grouping patients with mutations in any of the DNAH family genes (DNAH8, DNAH6 

and DNAH10) did not reach statistical significance in our cohort either (p=0.369; 

HR=1.41[0.60-3.00], Fig. 4C). To overcome the limitation due to the low frequency of the 

events and further investigate the potential prognostic value of these genes, we used 

different publicly available BC datasets from cBioPortal. With that regard, combined 

mutations in DNAH8, DNAH6 and DNAH10 genes showed a positive association with better 

5-year OS (p=3.89e-04; HR=1.62[:1.29-2.02]) (Supplementary Fig. 5B). Those results 

suggest that somatic mutations in any of DNAH family genes might predict not only NAC 

sensitivity, but also better OS. 

Biomarkers of response to platinum-based chemotherapy reported in other clinical contexts, 

such as in the metastatic settings like tumor mutational burden (TMB, total mutations per 

Mb) and APOBEC mediated-mutation scores (APOBECscore) could not effectively 

distinguish between R and NR in our cohort. APOBECscore did not show a significant 

correlation with 5-year OS either, whereas TMB was significantly associated with 5-year OS 

(p=0.0231, HR=2.1636[1.09-4.28], suggesting that TMB has rather a prognostic than 

predictive value (Supplementary Fig. 5C). 
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Deletions in CDKN2A and KDM6A are correlated with response

SCNVs play a crucial role in cancer development, progression and treatment 

resistance/sensitivity. Amplifications and deletions in genes frequently implicated in BC 

(E2F3amp, PPARGamp, MDM2amp, ERBB2amp, CDKN2Adel and RB1del)12,27 occurred 

across the whole cohort. ERCC1amp and KDM6Adel have previously been identified for 

their significant role in response to platinum-based chemotherapy28,29. Among the SCNVs 

studied, only CDKN2Adel and KDM6Adel had a statistically significant correlation with NR 

(p=0.014) (Fig. 4B, Supplementary Table 8). However, survival analysis did not show any 

significant association between these SCNVs and 5-year OS (Fig. 4C). These findings 

suggest that these deletions may be more useful for predicting NAC response rather than 

acting as prognostic markers.

Molecular features can predict NAC response in MIBC

Gene expression signatures from RNA-Seq analysis (WNT, Top10dn, Top10up, GROWTH 

FACTOR, CELL CYCLE REG) and genomic events from WES (mutations in DNAH8, 

DNAH6 or DNAH10 and deletions in KDM6A) were used to construct a machine learning 

(ML) algorithm to predict response to NAC in MIBC patients (Supplementary Table 9). The 

random forest (RF) model trained with both RNA and WES features (RF-RW) achieved an 

area under the curve (AUC) of 0.82 (Fig. 5A, Supplementary Table 10). Importantly, random 

forest (RF) models offer insights into feature importance, which indicates how much every 

feature contributes to predicting the target variable. The most important features were WNT 

(0.24) and Top10dn (0.197) signatures, followed by Top10up (0.186), CELL CYCLE REG 

(0.156) and GROWTH FACTOR (0.145) signatures (Fig. 5B, Supplementary Table 10). The 

variables that contributed less to the model were KDM6Adel (0.041) and DNAHalt (0.035) 

(Fig. 5B, Supplementary Table 10).  

To test the impact of transcriptomic and genomic features to the model performance, we 

constructed two separate models. The model considering only WES features (mutations and 

SCNVs) (RF-W) had an AUC of 0.72 (Fig. 5A), while the model including only RNA-Seq 

variables (RF-R) had an AUC of 0.82 (Fig. 5A), being the AUC and feature importance of the 

latter equivalent to the complete model (Fig. 5B, Supplementary Table 10). These findings 

suggest that transcriptomic data plays a crucial role in predicting response to NAC. 

We interrogated the correlation among the model variables to better understand the feature 

importance and to assess whether we were dealing with redundant features. We observed 

an overall weak association among the features (Fig. 5C), which would support the inclusion 
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of all features in the model as they capture distinct phenotypes. However, a model with only 

WNT signature achieved similar performance as the one combining all transcriptomic 

signatures (AUC=0.76, Supplementary Fig. 5D, Supplementary Table 10).

Figure 5: Machine learning models with RNA-Seq and WES data to predict response to NAC. A. 
Receiver Operating Curves (ROC) of three Random Forest (RF) models combining RNA-Seq (R) and 
WES (W) data (RF-RW, RF-R and RF-W). The respective AUCs are: 0.82, 0.82, 0.72. B. RF-RW, 
RF-R and RF-W features ordered by decreasing feature importance. C. Correlation analysis of 
features from RNA-Seq and WES data included in the RF models.  

While some studies have shown that molecular subtypes could be potentially used to 

personalize BC treatment17,21, we achieved poor AUCs for RF models using the LundTax and 

TCGAclas subtypes (0.41 and 0.51, respectively; Supplementary Fig. 5D, Supplementary 

Table 10). Hence, our study suggests that molecular subtypes alone were unable to 

accurately predict response to NAC in MIBC patients. 
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DISCUSSION
Identifying robust and accurate predictive biomarkers of NAC is a highly unmet need in 

MIBC. In our study, we have analyzed the transcriptomic and genomic profiles of a cohort of 

100 MIBC patients treated with cisplatin-based NAC and its correlation with response to 

treatment (<=pT1N0). This is one the largest studies analyzing transcriptomic and genomic 

markers of benefit to NAC in a real-world cohort of MIBC patients. Importantly, we identified 

a novel gene signature comprising genes from the WNT signaling pathway strongly 

associated with non-response to NAC. Some previous studies have shown that the 

dysfunction of WNT/β-catenin signaling pathway is strongly related to the initiation and 

progression of different cancer types30-34. Furthermore, several studies have suggested a 

high correlation between altered expression levels of its components with sensitivity or 

resistance to chemotherapy35,36. Here we demonstrated the promising potential of this 

signature as a biomarker for predicting response to NAC in MIBC, being the most important 

feature in all the trained models while also showing high performance on its own. 

Differential gene expression analysis between R and NR identified 602 DE genes, most of 

them associated with NR. Many of the top up-regulated genes in R, such as XIST, 

ENSG00000212939 (LINC01354) and ENSG00000197813 (LINC01420) are long non 

coding genes (lncRNAs) involved in cell proliferation, increasing the initial sensitivity to 

cisplatin due to the higher replication rates37-41. Additionally, LIPG and RNASE2 genes have 

also been correlated with proliferation and cancer growth42,43 and FTCD is a novel candidate 

to be a tumor suppressor in hepatocellular carcinoma44.

Despite the molecular subtype distribution in our cohort being in agreement with previous 

studies12,14,20, no significant association with response was found, which could be a 

consequence of our limited cohort size.

On the other hand, several of the top 10 down-regulated genes in R have been highly 

associated with bad prognosis in BC. For instance, LPGR6, involved in WNT/beta-catenin 

signaling, has been associated with bad prognosis and chemoresistance45,46
. KRT6A, KRT5 

and DSG3 are markers for basal and squamous-differentiation. Basal-squamous tumors are 

aggressive and confer a poor survival12,47. Some studies have suggested that a basal 

subgroup may show benefit from NAC18,19,48. However, they were not the same subgroups as 

Basal-squamous in TCGA or LundTax and the finding was based on a survival difference 

between two cohorts. Notably, several other studies have suggested that high expression of 

basal markers are correlated with cancer recurrence and chemotherapy resistance20,49-52. 
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We identify two signatures of cell cycle regulation (FGFR3, CCND1, E2F3, RB1 and 

CDKN2A) and growth factor (EGFR, ERBB2 and ERBB3), previously used for molecular 

subtype classification by Aramendía-Cotillas E. et al., that could discriminate between R and 

NR16
, Genes from both signatures play a critical role in regulating cell growth and 

proliferation53,54. Moreover, growth factor genes are associated with luminal subtype and its 

high expression can sensitize cancer cells improving the response to NAC50,55. Our findings 

suggest that cells which are actively dividing are more susceptible to NAC treatment as 

chemotherapy can effectively target and destroy cancer cells which proliferate rapidly, 

inhibiting tumor growth and progression.

The mutational landscape of our cohort was consistent with those found in other MIBC 

cohorts12,26,27,56. While mutations in genes such as TP53, ERCC2, RB1, ATM and FGFR3 are 

known to correlate with response to cisplatin-based NAC57-63, in our study, more SNVs in 

ERCC2, RB1 and ATM were found in R compared to NR, but no statistically significant 

differentiation was found59,60,64-67. These results may be due to the limited number of samples 

and the influence of other factors to NAC sensitivity61.

However, we identified significant differences in five genes (MGAM2, DNAH8, DNAH6, 

DNAH10 and RNF213) not previously linked to NAC response in MIBC. Notably, somatic 

mutations in the DNAH family genes, involved in cell motility, have been associated with 

chemotherapy sensitivity in gastric cancer68. We showed that mutations in DNAH genes 

(DNAH8, DNAH6 and DNAH10) were also significantly correlated with 5-year OS in the 

cBioPortal across several BC datasets. Correlation between RNF213 and MGAM2 genes 

with NAC response still remains unknown. However, previous studies have suggested that 

MGAM2 expression is related to immune response with a potential role for predicting 

response to ICI69, improving the ongoing research focused on studying the response 

mechanism to develop algorithms to predict ICI response70,71.

Regarding somatic copy number variations (SCNVs), our results reveal a significant 

correlation between deletion in the KDM6A gene and NR, revealing its crucial role in 

acquiring resistance to chemotherapy. These findings are consistent with some studies 

which suggest that the loss of KDM6A is correlated with chemotherapy resistance, since it 

compromises DNA damage repair29,72.

The main limitation of our study is the limited number of samples in our dataset, which may 

increase the risk of overfitting and may result in biased models that do not perform equally 

well in larger, more diverse populations. For instance, some signatures like Top10up and 

Top10dn may be specific to our MIBC cohort, as they were identified through DE analysis 
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and play a significant role in distinguishing between R and NR. In contrast, the WNT 

signature is more likely to be applied in different datasets since it was identified using an 

unsupervised approach, making it less likely to be cohort-specific, and it has a strong 

support in the literature.  Therefore, despite the high AUC scores, these results should be 

interpreted cautiously and be validated in future research when new cohorts are available. 

Yet, we employed robust internal validation that showed our results to be sound. Additionally, 

the retrospective nature of the cohort and the use of FFPE samples can introduce some 

biases in the data. 

In our study, we developed three ML models (RF-RW, RF-R and RF-WNT) using RNA-Seq 

and WES data. All of them showed promising performance with high AUC scores (RF-RW 

0.82, RF-R 0.82 and RF-WNT 0.76). Feature importance revealed the Top10dn and WNT 

signatures are the most important ones, suggesting the critical role of transcriptomic data in 

distinguishing between R and NR. Most of the prior studies in MIBC have been focused on 

finding potential biomarkers, molecular subtypes or signatures which can be associated with 

response to cisplatin-based NAC in MIBC12,14,18,20,59,60,64,73-75. However, only few models are 

publicly available to predict cisplatin-based NAC response using transcriptomics. We 

identified novel transcriptomic signatures with better performance than previously reported 

ones76-78, being the WNT signature the most promising one having the highest feature 

importance and adaptability for several datasets. 

Additionally, the combination of any of these models with other diagnostic tools and clinical 

biomarkers could in the future help to enhance their predictive capabilities in order to provide 

a more comprehensive approach to patient care and personalized therapy. This will be 

paramount for transitioning these models from research settings into practical tools that can 

support clinical decision-making. 

In conclusion, our analysis shows that RF-R, with its simpler and more cost-effective data 

requirements, could be the one selected as a promising candidate for being translated into 

clinical practice. Future work should aim to validate these models on larger, more diverse 

datasets to ensure robustness, accuracy, and applicability in varied clinical scenarios. With 

this purpose, we have made the ML models available via our GitHub repository to promote 

future external validation.
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MATERIALS AND METHODS

Patients and samples

A total of 130 patients with MIBC were retrospectively collected from four Catalan hospitals 

in Spain. Samples and data from patients included in this study were provided by the 

Hospital del Mar Biobank (MARBiobanc) and IGTP‐HUGTP Biobank, both integrated in the 

Spanish National Biobanks and Biomodels Network of Instituto de Salud Carlos III 

(PT20/00023 and PT20/00050) and Tumor Bank Network of Catalonia. They were 

processed following standard operating procedures with the appropriate approval of the 

Ethical and Scientific Committees.

All patients received neoadjuvant chemotherapy (NAC) with either cisplatin-gemcitabine or 

dose dense MVAC (Methotrexate, Vinblastine, Adriamycin and Cisplatin). Patients achieving 

a dowstaging to non-MIBC status with no pathological lymph-node involvement (<=pT1N0) 

observed  at cystectomy were defined as responders. For each patient, formalin-fixed 

paraffin-embedded (FFPE) pre-treatment samples were obtained after transurethral removal 

of bladder tumor (TURB). Out of the total 130 patients, 100 were eligible for molecular 

profiling. Among these, 100 pre-treatment samples were available to perform RNA-seq 

analysis (n=71) and WES analysis (n=97). A flow chart with details about samples and 

patients included is shown in Figure 1.

Statistical analyses

Descriptive statistics of several clinical variables within a cohort of 100 patients, comparing 

between responders and non-responders, was performed using CompareGroups R package 

v.4.8.0. Kaplan–Meier survival curves were generated with survival v.3.4.0 and survminer 

v.0.4.9 R packages and p.values were obtained using a log-rank test. 

RNA and DNA sequencing

RNA extraction and library preparation was performed by the MARGenomics core facility at 

Hospital del Mar Institute for Medical Research. Samples were extracted using the AllPrep 

DNA/RNA FFPE kit from Qiagen following the manufacturer's instructions. RNA samples 

were degraded as expected due to the formalin and paraffin protocols to preserve tissue’s 

histology. For RNA libraries, a combination of two Illumina protocols was utilized: TruSeq 

RNA Exome for the amplification steps (steps 1-6 of the published protocol), followed by the 

RNA Prep with Enrichment protocol for pool exome enrichment (step 5 to 10, the last of the 
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published protocol). For highly degraded FFPE samples, the best results were obtained by 

combining these two protocols rather than exclusively using the RNA Prep with Enrichment 

protocol*. Sequencing of RNA libraries was conducted at the Centre de Regulació Genòmica 

(CRG) core facility using NextSeq 2000, with 2x50 read length and an average of 25 million 

reads per sample. qPCR was performed in order to properly quantify the libraries.

RNA bioinformatics analyses

Raw fastq files were quality controlled using fastQC and fastqscreen. Subsequently, 

alignment was performed using STAR v.2.7.8 using GRCh38 genome as a reference and 

version 41 of hg38 GTF from gencode as annotation. Additionally, Picard v.2.25.1 was used 

to check the quality of the alignment. Quantification was performed using featureCounts from 

Subread package v.2.0.3 and version 41 of hg38 GTF from gencode as annotation.  

Minimum library size was 1.5 million counts. Lowly expressed genes 

(rowSums(counts.m>10) >= 42) were removed for further analyses. Principal Component 

Analysis (PCA) and Hierarchical Clustering (HC) were performed in order to check any 

outliers or groups due to either clinical or technical variables.

Differential expression analysis

Limma package v.3.54.2 was used to perform a differential expression analysis between 

responders and non-responders using TMM normalized counts obtained by edgeR v.3.40.2. 

Age, sex and batch were used to adjust the model as a fixed effect, while hospital variable 

was added to the model as a random effect. Voom function was used to model the 

mean-variance relationship. False discovery rate was used to correct for multiple testing. 

Due to the lack of significant adjusted p-values, genes were considered differentially 

expressed with p-value < 0.05 and |logFC| >1. 

Molecular subtype classification

LundTax molecular subtype classification was performed using LundTax2023Classifier R 

package v.1.1.1 and TPM normalized counts. TCGAclas molecular subtype classification 

was also performed using BLCAsubtyping R package v.2.1.1 using logTPMs. Differences in 

molecular subtype proportions between responders and non-responders were calculated 

using Fisher's exact test. Singscore R package v.1.18.0 was employed to perform a 

single-sample gene signature scoring of the different LundTax and TCGAclas classifiers’ 

signatures and results were compared between R and NR using Wilcoxon test. In order to 

facilitate understanding the functionality of the two most significantly different signatures 

between R and NR, we changed the names of ERBB by GROWTH FACTOR and Circuit by 
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CELL CYCLE REG. Survival analysis for LundTax signatures which are different between R 

and NR was also performed using survival v.3.4.0 and survminer v.0.4.9 R packages. 

Optimal cut-off point to separate high and low expression for the signatures scores was 

calculated using surv_cutpoint from survminer v.0.4.9 R package. 

Weighted gene correlation network analysis (WGCNA)

Weighted gene correlation network analysis (WGCNA) using the R WGCNA package 

v1.72-5 was used to find clusters (modules) of highly correlated genes using the table of 

counts in TMM and setting the split number to 3 with a minimum cluster size of 25 genes. 

Pearson correlation was performed to calculate correlation between the first principal 

component of cluster genes and clinical variables. Over-representation analysis (ORA) was 

conducted on genes within the cluster that showed significant correlation with the response 

variable (green cluster, n=77), using the enricher function from clusterProfiler R package 

v.4.6.2 using an adjusted p-value <0.05 and Hallmark, C2 and C5 GO BP MSigDB 

collections v7.5.1. Genes related to WNT signaling pathway from C5 collection 

(GOBP_CANONICAL_WNT_SIGNALING_PATHWAY, 

GOBP_CELL_CELL_SIGNALING_BY_WNT, 

GOBP_REGULATION_OF_CANONICAL_WNT_SIGNALING_PATHWAY, 

GOBP_REGULATION_OF_WNT_SIGNALING_PATHWAY,GOBP_NEGATIVE_REGULATIO

N_OF_CANONICAL_WNT_SIGNALING_PATHWAY, 

GOBP_NEGATIVE_REGULATION_OF_WNT_SIGNALING_PATHWAY) were put together 

and intersected with DE genes resulting into 17 genes.

Top10up, Top10dn, GROWTH FACTOR, CELL CYCLE REG and WNT gene expression 
signatures

Singscore R package v.1.18.0 was employed to perform a single-sample gene signature 

scoring of the Top10up, Top10dn, GROWTH FACTOR, CELL CYCLE REG and WNT gene 

expression signatures (Supplementary Table 9). Signature scores were compared between 

R and NR using the Wilcoxon rank sum test. Optimal cut-off point to separate high and low 

expression for the signature scores was calculated using surv_cutpoint from survminer 

v.0.4.9 R package. Survival analysis was also performed as previously described. 

A heatmap was performed with the expression of the five signature genes (Top10up, 

Top10dn, GROWTH FACTOR, CELL CYCLE REG and WNT) using the score obtained by 

Singscore R package v.1.18.0 to detect any cluster based on the variable response. 

Additionally, correlation among genes from all identified signatures in the RNA-Seq data was 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.28.24309634doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.28.24309634
http://creativecommons.org/licenses/by/4.0/


performed to avoid the multicollinearity, enhancing the robustness and stability of the future 

ML algorithm. 

Whole exome sequencing (WES) bioinformatics analyses

Fastq files were processed with the nf-core/sarek pipeline v.3.4.0 with default parameters 

and reference genome for GRCh38. Raw fastq files were quality controlled using fastQC 

v.0.12.1 and fastp v.0.23.4. Subsequently, an alignment step was performed using BWA 

0.7.17 and its quality was checked using Picard v.2.25.1. Variant calling (VC) was performed 

using mutect2 from GATK4 v.4.4.0.0 in tumor-only mode. Additionally, the quality of the 

identified variants was assessed using the FilterMutectCalls function. VCF files were 

annotated using VEP v.10.2.0 and transformed to MAF objects using vcf2maf v.1.6.21. Only 

variants with quality filter “PASS” were included in downstream analyses. Additionally, we 

removed variants annotated in gnomAD v.2.1.1 or exhibiting a gnomAD allele frequency (AF) 

> 0.01. We also filtered out variants with low sequencing depth (DP < 20) and those with AF 

> 0.95 or AF < 0.05.

Somatic mutation landscape

MAFtools R package v.2.18.1 was used to analyze somatic mutations from MAF files. The 

top 15 bladder cancer mutated genes (Supplementary Table 5) were plotted using oncoplot 

function. Additionally, TMB was calculated using the tmb function. TMB from our cohort was 

compared to the TCGAclas-BLCA cohort using the TCGAclasCompare function. The 

APOBEC score was calculated using the trinucleotideMatrix function. Moreover, the function 

mafCompare was used to detect significantly different mutated genes between R and NR. 

Differences in TMB and APOBEC score across the groups were assessed using the 

Wilcoxon rank sum test. Survival analysis was also performed using survival v.3.4.0 and 

survminer v.0.4.9 R packages separating patients by mutated and non-mutated genes. 

Moreover, in order to validate the importance of DNAH alterations, a survival analysis was 

performed using  cBioPortal for Cancer Genomics (https://www.cbioportal.org/). We selected 

those patients in any of the following datasets: MSK Eur Urol 2014, MSK J Clin Oncol 2013, 

MSK Nat Genet 2016, MSK/TCGA 2020, TCGA Cell 2017, BGI Nat Genet 2013, DFCI/MSK 

Cancer Discov 2014, TCGA PanCancer Atlas, BCAN/HCRN Nat Commun 2022, and 

Cornell/Trento Nat Genet 2016. Patients with mutations in DNAH8, DNAH6 and DNAH10 

were compared against patients without mutations in those genes.
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SCNV 

Somatic copy number variation (SCNVs) analysis was conducted using CNVkit v.0.09.10 in 

tumor-only mode. For each sample, .cns files obtained by CNVKit were merged in a 

GenomicRanges object splitted by sample using GenomicRanges R package v.1.50.2. 

Segmented log2 copy number ratios were transformed into the following states: 0, 2-copy 

loss; 1, 1-copy loss; 2: normal; 3, 1-copy gain; 4, >= 2-copy gain. Genes related to bladder 

cancer were selected and plotted using cnvOncoPrint function from CNVRanger R package 

v.1.14.0 to get the landscape of amplifications and deletions. Important genes previously 

reported in the literature were also chosen to perform a statistical analysis to detect 

differences between R and NR in indels and amplifications using CompareGroups R 

package v.4.8.0.  Survival analysis was also performed using survival v.3.4.0 and survminer 

v.0.4.9 R packages separating patients by the presence of deletions or amplifications. 

Predictive models of response to NAC

The machine learning framework developed for this project consists of two different steps. 

The first one encompasses all preprocessing steps, including scaling and splitting data. 

During the training phase, optimal hyperparameters for the ML algorithm are determined 

through 15-fold cross-validation, repeating the process multiple times to ensure the 

robustness and avoid overfitting for a specific seed. Subsequently, the model is evaluated 

using the traditional train/test split method, where 70% of our data is used for training and 

the remaining 30% is reserved for testing. Moreover, bootstrapping was also used to reduce 

overfitting and improve the accuracy. 

We selected a set of variables significantly associated with R, ensuring low correlation 

among themselves and avoiding the overlap in case of gene signatures. The final model 

(RF-RW) includes the following variables: WNT, Top10up, Top10dn, GROWTH FACTOR and 

CELL CYCLE REG signatures (signscore), alterations in DNAH8, DNAH6 or DNAH10 

(0=non-altered, 1 altered), deletions in KDM6A (2=no deletion, 1=deletion).

Finally, a random forest (RF) model was used for the final model. RF was chosen because it 

is very robust with overfitting. Additionally, to mitigate the consequences of our limited 

sample size, we tested the model using 1000 different seeds to achieve more reliable and 

consistent scores. Moreover, the Bootstrap .632+ method was applied as an internal 

validation strategy, providing information about how the model might perform on datasets not 

included in the training phase. We have also run the model using different features in order 
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to know whether the AUC is stable or not. We tested models using only RNA-Seq features 

(RF-R),only WES features (RF-W) and using only the WNT score.

Data availability

We have made available three independent L models (RF-RW , RF-R and RF-WNT), 

accessible via our GitHub repository (ongoing). WES and RNA-Seq data are available in 

EGA (ongoing). 
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