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Abstract  
 
Background: Criteria to identify patients who are ready to be liberated from mechanical ventilation are imprecise, often 

resulting in prolonged mechanical ventilation or reintubation, both of which are associated with adverse outcomes. Daily 

protocol-driven assessment of the need for mechanical ventilation leads to earlier extubation but requires dedicated 

personnel. We sought to determine whether machine learning applied to the electronic health record could predict 

successful extubation. 

Methods: We examined 37 clinical features from patients from a single-center prospective cohort study of patients in our 

quaternary care medical ICU who required mechanical ventilation and underwent a bronchoalveolar lavage for known or 

suspected pneumonia. We also tested our models on an external test set from a community hospital ICU in our health care 

system. We curated electronic health record data aggregated from midnight to 8AM and labeled extubation status. We 

deployed three data encoding/imputation strategies and built XGBoost, LightGBM, logistic regression, LSTM, and RNN 

models to predict successful next-day extubation. We evaluated each model's performance using Area Under the Receiver 

Operating Characteristic (AUROC), Area Under the Precision Recall Curve (AUPRC), Sensitivity (Recall), Specificity, PPV 

(Precision), Accuracy, and F1-Score. 

Results: Our internal cohort included 696 patients and 9,828 ICU days, and our external cohort had 333 patients and 2,835 

ICU days. The best model (LSTM) predicted successful extubation on a given ICU day with an AUROC 0.87 (95% CI 0.834-

0.902) and the internal test set and 0.87 (95% CI 0.848-0.885) on the external test set. A Logistic Regression model 

performed similarly (AUROC 0.86 internal test, 0.83 external test). Across multiple model types, measures previously 

demonstrated to be important in determining readiness for extubation were found to be most informative, including plateau 

pressure and Richmond Agitation Sedation Scale (RASS) score. Our model often predicted patients to be stable for 

extubation in the days preceding their actual extubation, with 63.8% of predicted extubations occurring within three days of 

true extubation. We also tested the best model on cases of failed extubations (requiring reintubation within two days) not 

seen by the model during training. Our best model would have identified 35.4% (17/48) of these cases in the internal test 

set and 48.1% (13/27) cases in the external test set as unlikely to be successfully extubated. 

Conclusions: Machine learning models can accurately predict the likelihood of extubation on a given ICU day from data 

available in the electronic health record. Predictions from these models are driven by clinical features that have been 

associated with successful extubation in clinical trials.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2024. ; https://doi.org/10.1101/2024.06.28.24309547doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.28.24309547
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

3 

Introduction 
 

Mechanical ventilation is a life-saving intervention to support patients with respiratory failure. However, mechanical 

ventilation is also an invasive therapy with substantial risks.1 Hence, ICU physicians seek to extubate patients at the earliest 

point in their hospital course when they can sustain spontaneous breathing without an artificial airway.  

Premature extubation can lead to reintubation, which is associated with a prolonged ICU stay and greater hospital 

mortality.2 As a result, physicians often delay weaning, prolonging the duration of mechanical ventilation and its associated 

complications.3 Implementation of protocolized daily screening by nurses or respiratory therapists followed by spontaneous 

breathing trials (SBTs) in the absence of physician input reduces the duration of mechanical ventilation and ICU stay.4 

Despite this, compliance with these protocols is highly variable and SBTs alone have poor operating characteristics in 

predicting successful extubation.5–8 Furthermore, these protocols distract from other processes of care, increase costs, and 

are difficult to continue when ICU resources become limited.9 

The success of protocol-driven weaning highlights the value of objective and data-driven approaches to assist 

healthcare providers identify candidates for liberation from mechanical ventilation. Electronic Health Records (EHRs) ingest 

continuous clinical data that report on patient physiology, including vital signs, laboratory results, medications, and ventilator 

parameters.10 Machine learning uses computational techniques that identify complex non-linear relationships within 

disparate data, including those in the EHR to improve the accuracy of clinical decisions.11,12 We sought to determine whether 

machine learning approaches applied to EHR data could predict successful next-day extubation. We trained our model 

using data from a relatively small cohort of well-phenotyped patients enrolled in an observational clinical cohort study. After 

careful annotation and labeling by clinicians, several models were found to perform well, accurately predicting successful 

extubation. Predictions from our models were driven by clinical features validated in clinical trials of protocol driven weaning. 

Our best performing model correctly predicted next-day extubation status in 84.6% of cases and could potentially have 

identified 35.4% (17/48) of failed extubation cases as unlikely to be successfully extubated. 
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Methods 

Study participants and setting: Patients were enrolled in the Successful Clinical Response In Pneumonia Therapy 

(SCRIPT) Systems Biology Center, a single-site prospective cohort study of patients requiring mechanical ventilation, who 

underwent bronchoalveolar lavage for known or suspected pneumonia in a quaternary care hospital from 2018 to 2023 (NU 

IRB # STU00204868). Patients or their legal authorized representative consented to participate in this study. External testing 

was done using EHR data collected from patients in a mixed medical surgical ICU from a community hospital, Central 

DuPage Hospital (CDH) from 2018 to 2022 (NU IRB # STU00216678); this was a retrospective data-only protocol and 

received a waiver of informed consent. We included patients who required mechanical ventilation, with ICD-9 or ICD-10 

codes for pneumonia or from the top 10 ICD codes of SCRIPT patient admissions (Supplemental Table 1); we excluded 

patients admitted from an operating room to minimize surgical ICU patients.  

Data: EHR data from both hospitals were extracted from the Northwestern University Enterprise Data Warehouse,13 and 

were manually reviewed and validated by ICU physicians who focused specifically on ventilation features and markers of 

intubation and extubation. Over two hundred charts were manually reviewed by physicians to ensure the accuracy of the 

extracted data. When the reviewing clinician was uncertain, a study adjudication committee meeting comprised of five critical 

care physicians made a consensus decision that was considered final. Our group is experienced in the annotation of clinical 

data and has adjudicated over 800 pneumonia episodes in a rigorous, predefined process.14 Each patient chart was further 

systematically reviewed by the research study team to gather information including transition to comfort measures only 

(CMO). For patients who had multiple sequences of intubation and extubation, we used only the first intubation/extubation 

sequence. We excluded patients with tracheostomy and failed extubation (requiring reintubation within two days) and 

excluded ICU days with palliative extubation and extubation while on extracorporeal membrane oxygenation (ECMO) from 

our training data.  

 

Features: Our features were inspired by the practice of daily multidisciplinary rounds in the ICU and built off a previously 

described dataset from our group.15,16 As almost all extubations occurred after 8AM (Supplemental Figure 1), we used only 

data from midnight to 8AM. This strategy is consistent with the protocol-driven weaning shown to reduce the duration of 

mechanical ventilation4 and can facilitate future deployment by presenting model predictions to the clinical team during 

morning rounds. For a given timestep, the model was fed with a dataset of 37 features pertaining to a specific patient, 
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aggregated from the hours of 12AM-8AM from a single day.  Features included in the dataset span ventilator parameters, 

laboratory values, mental status assessments, and organ failure assessments (Supplemental Table 2). 

Missing data: Missing data is common in real-world EHR data.  Some missing data in the EHR are not random, instead 

reflecting a change in clinical status that results in different patterns of monitoring and documentation. We report the percent 

missing for each feature in Supplemental Table 2. Some machine learning models (such as XGBoost and LightGBM, 

detailed below and in Supplemental Methods) are designed to incorporate missing data.  For other models, including RNN 

and LSTM, we tested several imputation strategies, including mean imputation and a binning strategy inspired by FIDDLE.17 

For binning, features are coded into a flag indicating missing/present, and flags indicating the quartile range into which the 

data point falls. For example, a day with a respiratory rate of 24 breaths per minute would have a 0 for the missing flag 

(indicating the data are present), a 0 for the first bin that encompasses range <18 breaths per minute, a 0 for the second 

bin that encompasses range [18,22), a 1 for the third bin that encompasses range [22,27.4), and a 0 for the fourth bin that 

encompasses the highest range of ≥ 27.4. Details of each strategy are outlined in Supplemental Methods and in our code 

repository.  

Labels: We labeled the patient’s intubation status on each day as intubated, extubated, failed extubation, comfort measures 

palliative extuation, or pre-intubation. After removing pre-intubation days, and sequences where there was failed extuation 

or palliative extubation, our dataset contained only intubated days for training. The label of interest that our models predicted 

was the next day’s intubation/extubation status.  Additional details on labeling and filtering are available in Supplemental 

Methods. 

Split: Our training dataset contains patients with hospital admission dates ranging from June 2018 to August 2023 (Figure 

1). We split patients into train and test sets based on a cutoff date of August 20, 2021. This split put 80% of patient ecounters 

before that date into the train set, and the 20% after into the test set. We further split the train data into smaller train and 

validation subsets based on an 80/20% random split. 

Modeling: Both traditional machine learning models and deep learning architectures were employed. We used traditional 

models, including logistic regression,18 random forest,19 LightGBM,20 and XGBoost,21 to make daily predictions. In contrast, 

deep learning models, specifically Recurrent Neural Networks (RNNs)22 and Long Short-Term Memory networks (LSTMs),23 

used the entire patient sequence to make predictions. Detailed explanations and comparisons of the models are available 

in Supplemental Methods.  
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Performance metrics: The primary metric for model evaluation was the Area Under the Receiver Operating Characteristic 

curve (AUROC). Additional metrics included Area Under the Precision-Recall Curve (AUPRC), Accuracy, F1-Score, 

Precision (PPV), Recall (Sensitivity), and Specificity.  

Feature importance: To understand and interpret the effect of the various features on the predictions made by our deep 

learning models, we used ablation techniques by masking individual features for 37 iterations (total features) and observing 

the decrease in AUC without that feature available. We also used XGBoost’s SHAP (Shapley Additive exPlanations) 

values.24 For our logistic regression model, we plotted the top feature coefficients. More detailed explanations are available 

in Supplemental Methods.  

Predicting failed extubations and missed opportunities for extubation: We defined a correct prediction of failed 

extubation as a patient who required reintubation within two days and a model prediction of a low probability of successful 

extubation on the day of extubation. We defined a possible missed opportunity for extubation as a patient with a high 

probability of successful extubation in the days before successful extubation.   

Statistics: Descriptive statistics are reported for the train/validate/test cohorts using % and median [Q1,Q3]. Comparisons 

between nonparametric data were done using Mann-Whitney U tests.  

Code and data availability: A detailed description of data extraction, processing, and modeling are available in our code 

repository at https://github.com/NUPulmonary/2024_Fenske_Peltekian. Programming was done in Python version 3.10. A 

deidentified version of the SCRIPT cohort data are available on PhysioNet, and the exact data needed to replicate this study 

will be posted in a future update.16  

Reporting checklist: We followed the TRIPOD Checklist for predictive model development, which is available in 

Supplemental Materials.  
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Figure 1. (A) Data Split for Model Development: Schematic describing the data split used in our clinical machine learning 
study. The dataset was divided into three distinct subsets: the training set, validation set, and test set. The training set was 
used to train the machine learning models, the validation set for tuning and model selection, and the test set to assess the 
final model's performance and generalization to unseen data. (B) Data processing pipeline; full details are available in 
Supplemental Methods. Individual days are labeled as intubated or extubated, with 12AM-8AM aggregated features used 
to predict next-day intubation/extubation status. Data are cleaned, detailed in Methods and Supplemental Methods, before 
machine learning models are trained and evaluated.  
 
 
Results: 
Cohort description: There were 712 enrollments in SCRIPT during the study period, with 940 separate ICU stays totaling 

16,402 ICU days. After filtering days and stays for our next-day successful extubation task, we trained and evaluated using 

696 unique patients, 781 ICU stays, and 9,828 ICU days. Our CDH dataset consisted of 459 unique patients, 518 ICU stays, 

and 5,814 ICU days. This was filtered down to 333 unique patients, 349 ICU stays, and 2,835 ICU days. The failed 

extubation rate, defined as requiring reintubation within two days was 23.1% and 15.8% in the SCRIPT and CDH cohorts, 
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respectively. Patient demographics and outcomes are reported in Table 1 between the train/validate/test and external sets. 

In the SCRIPT cohort, the median [Q1,Q3] patient age was 63 [51, 72], and 44% of the patients were female. The percent 

of patients with unfavorable outcomes (death, discharge to hospice, or lung transplantation) for the SCRIPT cohort was 

45%. While the demographics and overall outcomes were similar among the different datasets, the features were markedly 

different (Table 2, Supplemental Table 2), likely reflecting changes in the cohort of patients requiring mechanical ventilation 

during the COVID-19 pandemic. A summary of the different types of intubation/extubation sequences and how often they 

occurred are presented in Supplemental Figure 2. 

 
Table 1. Demographics and outcomes: Patient demographics and clinical outcomes of patients used for model training 
and testing, stratified across the training, validation, test, and external datasets.  Continuous variables are presented as 
median [Q1,Q3]. Categorical variables are presented as number (percentages). Unfavorable outcome indicates a discharge 
to hospice or death. Except for four values of missing BMI, there were no other missing data.  
 

 Train Validate Test External 

Number of patients 288 71 81 337 

Age, median [Q1,Q3] 65.0 [52.0,73.0] 59.0 [48.0,67.0] 62.0 [49.0,71.0] 64.0 [55.0,73.0] 

Female, n (%) 127 (44.1) 31 (43.7) 36 (44.4) 130 (38.6) 

Race, n (%)     

Asian 7 (2.4) 1 (1.4) 2 (2.5) 16 (4.7) 

Black or African American 57 (19.8) 14 (19.7) 15 (18.5) 22 (6.5) 

Unknown or Not Reported 50 (17.4) 8 (11.3) 15 (18.5) 21 (6.2) 

White 174 (60.4) 48 (67.6) 49 (60.5) 278 (82.5) 

Ethnicity, n (%)     

Hispanic or Latino 62 (21.5) 9 (12.7) 13 (16.0) 60 (17.8) 

Not Hispanic or Latino 216 (75.0) 57 (80.3) 63 (77.8) 276 (81.9) 

Unknown or Not Reported 10 (3.5) 5 (7.0) 5 (6.2) 1 (0.3) 

BMI, median [Q1,Q3] 28.5 [24.5,34.3] 30.6 [24.6,36.0] 27.3 [22.3,32.6] 29.1 [24.1,35.9] 
First intubation duration, median 
[Q1,Q3] 5.0 [3.0,10.0] 4.0 [3.0,10.0] 6.0 [4.0,12.0] 5.0 [2.0,11.0] 

Unfavorable outcome, n (%) 118 (41.0) 38 (53.5) 42 (51.9) 143 (42.4) 
 
Table 2. Subset of feature descriptions across patient-ICU-days from the train, validate, test, and external 
datasets. Continuous variables are presented as median [Q1,Q3]. Categorical variables are presented as number 
(percentages). Full features are in Supplemental Table 2. 
 

 Train  Validation  Test  External  

Number of days  2264  594  831  2835  

ECMO flag, n (%)  89 (3.9)  34 (5.7)  32 (3.9)  168 (5.9)  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2024. ; https://doi.org/10.1101/2024.06.28.24309547doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.28.24309547
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

9 

CRRT flag, n (%)  278 (12.3)  58 (9.8)  131 (15.8)  226 (8.0)  

PEEP, median [Q1,Q3]  8.0 [5.0,12.0]  7.5 [5.0,12.0]  5.0 [5.0,10.0]  8.0 [5.0,10.0]  

FiO2, median [Q1,Q3]  40.0 [30.0,50.0]  40.0 [34.7,55.0]  40.0 [30.0,55.0]  45.0 [35.0,64.0]  

Plateau Pressure, median [Q1,Q3]  23.0 [18.0,28.0]  26.0 [20.0,31.0]  23.0 [18.0,29.0]  23.0 [19.0,29.0] 

 
 
Model results: The performances of the predictive models using different imputation strategies are summarized in Figure 

2. The performance of all the models in predicting extubation was similar. An LSTM classifier using binned data achieved 

the best performance with a an area under the Receiver Operating Characteristic curve (AUROC) of 0.87 (95% CI 0.834-

0.902) and an area under the Precision-Recall curve (AUPRC) of 0.382 (95% CI 0.269-0.492) on the test set (baseline rate 

of extubation/total days of 0.09, which would be the AUPRC for a no-skill model). Full metrics for all models before 

hyperparameter optimization are available in Supplemental Table 3 and full metrics for optimized models are available in 

Supplemental Table 4. In addition to the temporally split SCRIPT test set, we evaluated our top-performing model on data 

from an external hospital and found consistent performance across the two datasets (Figure 3). 

 

 
Figure 2. Performance Metrics of Different Machine Learning Models. The Receiver Operating Characteristic Curve 
(ROC), Precision-Recall Curve (PRC) plots of different machine learning models on same test set along with values of 
respective area under the curves, using each model’s best-performing imputation method, including Extreme Gradient 
Boosting (XGBoost), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM), on the test set, using 
different imputation strategies (raw and binning, detailed in Methods). Curves displayed are for a single pass through the 
test set. Full metrics and confidence intervals for the top optimized models shown are in Supplemental Table 4. 
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Figure 3 Model performance on external test cohort. We applied our top-performing binned LSTM model (based on 
AUROC) to a patient cohort from a different hospital system as an external test. (A) ROC and (B) PRC curves show similar 
performance to the SCRIPT test set in Figure 2. Performance on this external dataset (0.87 AUROC [95% CI 0.848-0.885], 
0.274 AUPRC [95% CI 0.222-0.332]) is consistent with performance on the internal test set (0.87 AUROC [95% CI 0.834-
0.902], 0.3782AUPRC [95% CI 0.269-0.492]). 
 
 
Imputation/encoding strategies affect model performance: We compared the performance of different imputation 

strategies across models as well. The best encoding strategy was binning, which encodes data presence or missingness, 

and then bins continuous variables into quartiles. The next was using raw data without any imputation, in models that could 

accommodate this such as XGBoost and LightGBM. Simpler but commonly employed strategies such as mean imputation 

performed consistently the worst across models all models (Supplemental Table 3).  

Feature importance: The top ten features contributing to the predictive performance of the XGBoost model were identified 

using SHAP (SHapley Additive exPlanations) values (Figure 4). They include markers of the patient’s mental status, as 

documented by Glascow Coma Scale (GCS), as well as markers of the patient’s lung physiology, as documented by 

presence of ventilator measurements such as plateau pressure. Similar features were present on LSTM ablation feature 

importance analysis, with top feature importance including RASS score, respiratory rate, plateau pressure, and GCS motor 

response. RASS score, plateau pressure, and GCS motor response are also represented by different binned features in 

the top ten feature coefficients for Logistic Regression. 
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Figure 4. Feature importance plots. (A) Feature importance ablation plots for an LSTM model predicting next-day 
successful extubation provide insights in the significance of each feature. In these plots, each feature is a row, and the x 
axis represents how important that feature is. This feature importance is calculated by doing 37 iterations (number of 
features) while masking an individual feature each time and seeing the decline in AUC on the test set without that feature 
available. (B) Logistic regression coefficients for each feature when applied to binned data. Bins for Rass score, GCS 
motor response, and plateau pressure show concordance with feature importance in (A) and (C). C) SHAP (Shapley 
Additive Explanations) plots for an XGBoost model predicting next-day successful extubation. In these plots, each feature 
is a row, with the color indicating the feature's value (e.g., red for higher values and blue for lower values). The position of 
the bar on the plot represents the feature's Shapley value, with features on the right side contributing positively to the 
prediction of staying intubated and those on the left side contributing to getting extubated. Thus, the length and direction of 
the bars illustrate the strength and direction of influence that each feature has on the model's decisions. For example, a 
high plateau pressure (red) is associated with increased likelihood of remaining intubated (right-ward of zero). 
 
Missed opportunities and preventing failed extubations: Our model often predicted patients could be considered for 

extubation in the days preceding their actual extubation, suggesting opportunities to consider earlier extubation (Figure 5A). 

This is a stringent way of evaluating the model as only the earliest extubation prediction is used for analysis (Supplemental 

Methods). We also tested on failed extubations (requiring reintubation within two days) not seen by the model during training. 

Our best model predicted extubation failure in 35.4% (17/48) of these cases.  
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Figure 5. Examining discrepancies between model prediction and time of extubation. (A) For each intubation 
sequence preceding a successful extubation in the SCRIPT test set, we examined the first instance predicting next-day 
extubation (Supplemental Methods). Many model predictions, if not exactly one day before extubation as intended (29.3%), 
were within two days (50%) or three days (63.8%). (B) The same analysis as (A) performed on the external test set, where 
we report 37.3% of first next-day extubation predictions occurring within one day of successful extubation, 62.1% within two 
days, and 74.5% within three days. (C) These early extubation predictions may be missed opportunities where a clinical 
team could have potentially extubated the patient earlier. In the example, the model first predicted extubation 3 days prior 
to the true successful extubation. 
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Discussion 
 

Identifying patients who are ready for extubation remains a challenging clinical problem in the ICU.  Although 

ventilator-weaning protocols have been shown to outperform routine physician-driven care,4,25 the adoption and 

standardization of these practices varies.5,26,27 Barriers to the adoption of some protocols include their requirement for 

trained personnel28 and in some cases specialized equipment.29 We built several machine learning models that incorporated 

features included in the electronic health record in most ICU settings. Several of these models performed well with the best 

model providing an AUROC above 0.85. These analyses also suggest that HER-based classifiers would have identified 

some patients who might have been considered for earlier SBTs and extubation. We found 63.8% of predicted extubations 

in cases of successful extubation occurred within three days of actual extubation, suggesting potential earlier extubation 

could have been possible if the team were following model-driven care. We also found, when looking at sequences where 

a patient had an unsuccessful extubation, our model would have recommended against extubation in 35.4% of cases.   

The models we used allow us to identify clinical features that drive their predictions. Protocol driven weaning which 

has been rigorously shown to shorten the duration of mechanical ventilation usually includes an assessment of mental 

status, oxygenation, hemodynamic stability, an absence of ongoing infection, and physiologic measures of lung 

mechanics.7,30 Our models were informed by clinical features that reflect these assessments, lending clinical plausibility to 

their predictions. Furthermore, models that treated each day independently performed similarly or just slightly inferior to 

sequential models that used information from multiple days, consistent with efficacy of protocols that assess readiness for 

spontaneous breathing on a daily basis irrespective of clinical context.3 

We also examined the effect of different imputation strategies on model performance. Commonly used strategies, 

such as filling in missing values with the data’s mean value, performed significantly worse than maintaining missingness 

using either encoding strategies such as binning or working with models such as XGBoost that can inherently handle missing 

data. This strategy can be particularly useful for complex models like deep learning algorithms where data in a medical 

context can have such extreme variance. 

SCRIPT is a highly curated dataset, with a panel of five critical care physicians meeting weekly to review each 

admitted patient and their outcomes.14 A full-time research team collects enrollment and end of study data, including if a 

patient was transitioned to comfort-focused care. Since this is not possible for larger scale datasets, we compiled a set of 

pragmatic rules based on our experience (Supplemental Methods). We performed significant manual curation of our dataset 

of over 200 patient charts, confirming manually on the front end EHR unusual cases of intubation, which can be difficult to 
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parse out using only flowsheet data.31 We believe that our careful data cleaning and manual adjudication processes were 

key in developing a clinically important model using features previously known to be clinically important to inform model 

development.32  Compared with other machine learning models to predict extubation33 or shift off full ventilatory support,34 

our work obtains good predictive performance when applied to a population of critically ill patients in both an internal test 

dataset and when applied to a distinct medical ICU setting. Ensuring a sufficient time gap between data gathering and the 

prediction of interest is a crucial step in mitigating the risk of data leakage in a machine learning model. In contrast to studies 

that make predictions on the next time period without any gap for intervention,35 we specifically use only information from 

midnight to 8AM rather than the entire day so the model can offer this information to the multidisciplinary team on morning 

rounds to inform clinical decision-making.  

Limitations  

First, our model was trained using clinically adjudicated data from a quaternary care referral health system that 

cares for severely ill patients, reflected in the substantial mortality and long duration of mechanical ventilation, which might 

limit its relevance in other ICU settings.  Nevertheless, the model performed well in a medical ICU from a community-based 

hospital, suggesting carefully curated data from relatively small populations can be used to train models for generalized 

use. Importantly, however, the community-based hospital ICU we used for validation uses the same EHR as our academic 

medical center.  We do not know if different health record instances would affect performance and this remains to be 

evaluated in future work. Second, we limited the information used to train our models to physiologic factors that are 

measured in most ICUs. This necessarily excluded factors, such as continued intubation for a procedure, that might have 

influenced clinicians' decision on readiness for extubation. Our dataset is small compared with larger ICU cohorts such as 

MIMIC or eICU36,37 and future work validated on these datasets is needed. Our study focused on MICU patients with 

suspected pneumonia, so generalizing these findings to other ICU settings, for example surgical or cardiac ICUs, will require 

further work. While our model supports the feasibility of a machine learning model to identify patients who might be 

considered for extubation, we have not yet deployed it in a clinical setting. Nevertheless, we designed our predictor with an 

eye towards deployment, only using data from midnight to 8AM. In the future, we envision providing model output to a 

clinical team on rounds as a Bayesian pre-SBT probability of extubation success. Alternatively, the model could be 

incorporated into the EHR to automatically trigger a clinical decision support alert to bedside nurses or respiratory therapists 

suggesting initiation of a SBT to help optimize the timing of extubation, consistent with best evidence.4 We hope that this 

can help both shorten intubation duration and prevent failed extubations, to improve the care of critically ill patients. 
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Supplemental methods and materials for Developing and validating machine learning model to predict successful 
next-day extubation in the ICU 
 

Cohort information: Our study involved patients who had received mechanical ventilation and were admitted to an 

intensive care unit (ICU) as part of the Successful Clinical Response in Pneumonia Therapy (SCRIPT) study conducted at 

Northwestern Memorial Hospital (NMH) between June 2018 and April 2023. Patients who had multiple ICU stays during the 

same hospitalization had their stays numbered consecutively but did not contribute data between their ICU stays. Multiple 

hospitalizations of the same patient are reported as separate patients, as SCRIPT enrollments are unique to each 

hospitalization. For patients who had multiple sequences of intubation and extubation in a given ICU stay, we used only the 

first intubation/extubation sequence. 

 

EHR data: Electronic health record (EHR) data are compiled by the Northwestern Medicine Enterprise Data Warehouse 

(EDW), the primary data repository for clinical data at Northwestern Medicine. Approximately 150 data sources (including 

the main EHR system, Epic) are loaded into the EDW on a nightly basis. The data are primarily loaded using Microsoft 

technologies (Visual Studio, SSIS, etc.) and scheduled to load via the SQL Server Job Agent. Data engineers and architects 

on the EDW team then combine the data sources using custom SQL scripts, Visual Studio, SSIS, etc. to create datamarts. 

Analysts on the EDW team then work with the datamarts to create reports, dashboards, and extracts validated with clinician 

input. Over two hundred charts were manually reviewed by physicians to ensure data pull fidelity. Questions were brought 

to a committee meeting comprised of five critical care physicians and consensus was obtained before moving forward. Each 

patient chart was reviewed by the research study team on study close to gather information including transition to comfort 

measures only.  

 

Clinical parameters: We selected 37 clinical features considered representative of those that physicians would consider 

during daily ICU rounds. We compiled the status of intubation, extracorporeal membrane oxygenation (ECMO), renal 

replacement therapy (hemodialysis [HD], and continuous renal replacement therapy [CRRT]), sedation parameters 

(Glasgow Coma Scale [GCS] subscores of eye opening, motor response, verbal response, and Richmond Agitation 

Sedation Scale [RASS]), lung injury (arterial pH, PaO2, PaCO2, PEEP, FiO2, plateau pressure, lung compliance, minute 

ventilation, and oxygen saturation), hemodynamics (norepinephrine rate in mcg/kg/min, mean arterial pressure, systolic and 

diastolic blood pressure, lactic acid, hemoglobin, and bicarbonate), renal (creatinine,  and aforementioned HD and CRRT 
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flags), inflammatory markers (WBC count, neutrophil count, platelets, procalcitonin, C-reactive protein, D-dimer, lactate 

dehydrogenase, ferritin, bilirubin, albumin, and lymphocytes), vital signs (temperature, heart rate, respiratory rate). When 

multiple measurements were available for the same time block, they were aggregated by mean. Outliers were removed 

prior to aggregation by using predefined ranges for each measurement. Full details are available in our code at 

https://github.com/NUPulmonary/2024_Fenske_Peltekian. 

 

Time blocking: Since the majority of extubations occur after 8AM (Supplemental Figure 1), we aggregated our dataset 

using only information from midnight to 8AM. This strategy would be optimal for future deployment to allow information and 

model predictions to be presented to the clinical team during rounds.  

 

Annotating flags: ECMO_flag was labeled as 1 if that day lay on or in between the first and last days of recorded ECMO. 

Hemodialysis_flag was labeled as 1 if the patient was ever on Hemodialysis between midnight and 8AM that day. CRRT_flag 

was also labeled as 1 if the patient was ever on CRRT between midnight and 8AM that day. 

 

Continuous features: Features measured on a continuous numerical scale were aggregated by mean from all recordings 

between midnight and 8AM that day. 

 

Categorical features: RASS and GCS scores were the only ordinal features in the dataset. Because they are still a 

numerical scale, they were aggregated the same way continuous features were. 

 

Annotating extubation status: To label days as intubated or extubated, we parsed through the EDW reports of oxygen 

support devices (ranging from nasal cannula to invasive mechanical ventilation) and employ a series of rules to determine 

the extubation status of each day. Full details are present in our code repository at 

https://github.com/NUPulmonary/2024_Fenske_Peltekian. In most cases, a patient is maintained entirely as intubated or 

extubated between midnight to 8AM. Extubation status was labeled according to data from the oxygen device report for that 

day. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2024. ; https://doi.org/10.1101/2024.06.28.24309547doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.28.24309547
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

19 

When pulling data from the EDW, days were marked as intubated based on the presence of at least two instances of 

intubation or if one of the following was documented: PEEP, plateau pressure, static compliance, or minute ventilation. The 

cutoff of 8AM was purposely chosen to obtain the cleanest data such that transitions on/off the ventilator do not confound 

that extubation status of a patient day. There are two other broad classes: a patient being intubated/extubated before 8AM. 

If a patient is intubated before 8AM, this day is excluded from modeling due to a mix of intubated and extubated data, and 

the following day, assuming they remain intubated from midnight to 8AM, would mark the first ICU day presented to the 

model. If a patient is extubated before 8AM, the day is marked as extubated. Box 1 provides a summary of our inclusion 

criteria for training a model on successful next-day extubation. Box 2 outlines further manual checks that were performed 

to ensure proper labeling of extubation status between 12AM and 8AM on each day. 

 

Box 1. Preserving only successful extubation cases. 

 

• Exclude patient-days with tracheostomy, as ventilator liberation in this population is different and lower 

stakes than patients with endotracheal tubes.  

• Excluding cases where reintubation is required within two days of extubation.  

• Excluding cases of extubation while the patient remains on ECMO.  

• Excluding cases of palliative extubation. In our dataset, this was gathered by the research team and CAG 

performed additional manual review. A pragmatic way of labeling this in the absence of chart review would 

be to exclude cases where a patient died within 48 hours of extubation. 
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Box 2. Using O2 device report to assign extubation status. 

 

Multiple intubation sequences: Sequences including failed extubation are excluded from training. Cases of extubation 

while still on ECMO and preintubation days are also excluded from training. Cases with one ICU day are naturally excluded 

as there is no next-day extubation status to predict. We further consolidated our training dataset by excluding sequences of 

reintubation.  

 

All-inclusive model: We initially tried an all-inclusive model that included all days. This included pre-intubation, CMO, 

failed, and successful extubation days. This was easier to assess and presented a better general purpose model design, 

but the model failed to capture the differences between intubated and extubated days. This was due to the noise introduced 

by CMO, failed, and pre-intubation days that made it difficult for the model to learn when a patient was ready for extubation. 

Designing a model with the more focused goal of predicting successful extubation, we consolidated our time series 

1. If documented extubation event on an intubated day, assign as extubated. 

2. If extubated day has at least three or is entirely documentations of intubation, label as intubated. 

3. If patient is re-intubated within two days of an extubated day, label the extubated day(s) as failed extubation. 

4. If within the same day, a patient is intubated, then extubated, then has at least three documentations of 

intubation following the extubation event or the next day is intubated, label as failed extubation. Here we 

require a minimum of three documentations of intubation following the extubation event due to one-off 

ventilator reads that will show up during the extubation documentation. If the next day is intubated, it is safe 

to assume that the intubation documentation is correct. 

5. If patient was extubated on their last day in the ICU and we have documentation that it was a pallative 

extubation, then label the preceding extubated days as CMO. 

6. If patient was extubated on their last day in the ICU and die within 48 hours of the day of extubation, label 

the day(s) as CMO. 

7. Flag all days that have at least three documentations of trach collar. These patients will be withheld from 

analysis. 

8. Label all extubated days preceding intubation during a given ICU stay as preintubated. 
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sequences and were able to see the model learn the differences between patient-days on which a successful versus 

unsuccessful extubation would be predicted to occur. 

 

Imputation Strategies: 

• No imputation, called ‘raw’: as some models such as XGBoost can inherently handle missing values, no imputation 

was performed in ‘raw’ models.  

• Mean Imputation: The missing values were initially replaced with the mean of the respective feature derived from 

the training data. This mean value was then applied universally to any absent data points in both training and test 

sets. 

• Building upon the work of Fiddle,17 a modified version was employed as an encoding strategy. Continuous features 

were binned into quartiles derived from the training set, subsequently encoding each as either 1 or 0 based on its 

bin membership. All absent features were encoded using a fifth feature, represented by a 1, which signifies a 

missing value. Thus, for a given feature, only exactly one of the five derived features would be encoded as 1, and 

the other four encoded as 0. For example, if someone had a temperature of 97.1, the value would be encoded as 

a 1 in the lowest bin of temperature quartiles, with the rest of the bins being zero (Bin 1: 1, Bin 2: 0, Bin 3: 0, Bin 4: 

0, Mask Bin: 0). If their temperature value is missing for that day, it would be encoded in the mask bin. Quartiles, or 

the boundaries for each bin, were established based on the range of values in the train set, and the test set data is 

placed into these same bins. 

 

Deep learning and boosting models in sequential data prediction 

Deep Learning Architectures: RNN and LSTM 

In deep learning, Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs) are valuable for 

sequential data prediction. Our models consisted of an input layer designed to handle sequences of varying lengths, padded 

with zeros. We included a masking layer so that these padded values do not interfere with the model’s computations by 

skipping time steps with zero input. RNNs can handle data in a sequential manner, capturing time-step patterns and 

remembering historical data. However, they can experience issues with the vanishing gradient problem and can propagate 

errors across predictions. LSTMs address the vanishing gradient issue, handling long sequences with their advanced 
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memory capabilities. They do also share the problem of error propagation and are computationally more complex than 

standard RNNs. 

 

Padding Sequences: For the deep learning models, sequences of varying lengths were encountered. To make them 

consistent in length, they were padded with 0s. This ensures that the model receives input of a uniform shape, a requirement 

for efficient batch processing. 

 

Boosting Models: Boosting models, such as XGBoost and LightGBM, treat each data point independently. They are 

calibrated using isotonic regression for better alignment with the true data distribution, which is often used in imbalanced 

datasets. Boosting models are efficient against missing data and do not let incorrect predictions influence subsequent ones 

since they handle prediction problems non-sequentially. They often outperform other traditional machine learning algorithms 

but lack the sequential data understanding and may overfit if not properly tuned. Logistic regression also treats data points 

independently but cannot handle missing data. 

 

Hyperparameter Optimization: Hyperparameter tuning was performed on the top five best performing models, with details 

of specific hyperparameters tried in Supplemental Table 5.  

 

Key Metric Observations: 

AUROC (Area Under the Receiver Operating Characteristic Curve): Measures the ability of a model to distinguish between 

classes. It is represented as a curve plotting the true positive rate against the false positive rate at various threshold settings. 

AUPRC (Area Under the Precision-Recall Curve): Plots precision (the ratio of true positives to the sum of true and false 

positives) against recall (the ratio of true positives to the sum of true positives and false negatives). This curve provides a 

trade-off between precision and recall across different thresholds, making it useful for evaluating models where one class 

is significantly underrepresented. 

Accuracy: Ratio of correctly predicted observations to the total observations. It represents the proportion of true results (both 

true positives and true negatives) among the total number of cases examined. 
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F1 Score: Provides a balance between precision and recall. The F1 Score reaches its best value at 1 (perfect precision and 

recall) and worst at 0. 

Recall: Recall (sensitivity) measures the proportion of actual positives correctly identified by the model. It is calculated as 

the ratio of true positives to the sum of true positives and false negatives.  

Precision: Measures the proportion of positive predictions that are correct. It is calculated as the ratio of true positives to 

the sum of true positives and false positives.  

 

Confidence intervals: Confidence intervals for general performance metrics were generated by bootstrapping. 

Bootstrapping was done through 1000 passes through the dataset where each pass takes n days from the dataset with 

replacement, where n is the number of days in the test set. The inner 95th percentile of each metric is the reported 95% CI. 

 

Threshold for binary predictions: Set using the class imbalance in the train set. Specifically, the ratio of next-day intubated 

days to all days (0.91). 

 

Feature Importance:  

SHAP values: SHAP values are a useful tool for explaining the output of any machine learning model. They measure the 

impact of each feature on a particular prediction in comparison to the model’s baseline output. For our boosting models, 

SHAP (using the summary_plot method) values give us the marginal contribution of each feature towards the prediction for 

every individual instance. This explains importance features, and also how a specific feature can influence a particular 

prediction. 

LR coefficients: For Logistic Regression models, each feature contains a coefficient where greater coefficients imply greater 

effect on model output. 

Ablation: For RNN and LSTM models, an ablation procedure was performed to quantify a feature’s impact on model 

performance. For each feature in the test set, all values were converted to NA, and the change in AUROC from such data 

from the original data was reported as the feature importance score. For example, when assessing the feature importance 

of RASS score in a binned LSTM model, each RASS score value would shift from a 1 in whichever bin it fell in to a 1 in the 
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RASS_score_mask column. Based on Figure 4, we know this led to a decrease in AUROC, implying RASS score is an 

important feature to the model. 

 

Evaluating early model predictions: To investigate the timing of extubation predictions, we investigated where incorrect 

model predictions occurred in reference to true extubation events. To provide an unbiased quantification of this, we subset 

on all ICU stays containing a successful extubation, and examined where the model first predicted extubation during these 

ICU stays. We report that a significant amount of incorrect model predictions are within three days of the true extubation 

event (Figure 5). 
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Supplemental Figures and Tables 
 
Supplemental Figure 1: Histogram of extubation times. Most extubation events occur between 8am and 6pm, with just 
2.3% occurring before 8am. This informed our choice to create a model that provides a daily prediction at 8am based on 
the most recent data from that day. 
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Supplemental Figure 2: Types of Intubation/Extubation Sequences. This figure categorizes various sequences of 
intubation and extubation events encountered in clinical practice. It illustrates distinct patterns such as planned extubations 
following successful weaning without need for reintubation, failed extubation, and palliative extubation when moving to 
comfort care. Understanding and classifying these sequences is crucial for optimizing model training. (A) number of days 
for each type of intubation/extubation day. Tran/val/test represent patient days present in each split. Fail represents days 
held out as a separate test set due to a failed extubation event. Filtered represents all days excluded from model training 
and evaluation. (B) Inclusion criteria for modeling successful next-day extubation. Sequences of failed extubation, 
preintubated days, CMO and the days before, and reintubation sequences are excluded from the train/test set. 
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Supplemental Table 1. ICD diagnosis codes used for pulling patient data for the CDH cohort.  
ICD-10 codes for pneumonia J18.9, J15, J15.7, J15.1, J10, J11, J13, J14, J16, J17, J18, 

J09, J96, J96.0, J96.00, J96.01, J96.02, J96.1, J96.10, 
J96.11, J96.12, J96.2, J96.20, J96.21, J96.22, J96.9, 
J96.90, J96.91, J96.92 

Top 10 codes of SCRIPT patient admissions R06.02, U07.1, A41.9, J18.9, R50.9, R41.82, J96.01, 
R09.02, J98.8, R10.9 

ICD-9 codes for pneumonia 482.9, 485, 486, 480.0 
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Supplemental Table 2. Full list of features across patient-ICU-days from the train, validation, test, and external datasets.  
  

Missing Train Validation Test External 

Number of days 0 2264 594 831 2835 

ECMO_flag, n (%) 0 89 (3.9) 34 (5.7) 32 (3.9) 168 (5.9) 

Hemodialysis_flag, n (%) 0 3 (0.1) 1 (0.2) 1 (0.1) 12 (0.4) 

CRRT_flag, n (%) 0 278 (12.3) 58 (9.8) 131 (15.8) 226 (8.0) 

Temperature, median [Q1,Q3] 
(Fahrenheit) 

27 98.7 [97.9,99.5] 98.6 [97.8,99.4] 98.7 [97.9,99.5] 98.8 [98.2,99.5] 

Heart_rate, median [Q1,Q3] (beats 
per minute) 

4 81.0 [69.2,94.0] 84.2 [72.2,103.6] 83.3 [71.7,97.3] 80.9 [68.8,94.8] 

Systolic_blood_pressure, median 
[Q1,Q3] (mmHg) 

5 114.1 
[105.4,125.4] 

113.0 
[104.8,126.7] 

115.5 
[105.9,125.6] 

116.0 
[106.1,128.0] 

Diastolic_blood_pressure, median 
[Q1,Q3] (mmHg) 

5 56.4 [50.9,63.2] 57.5 [52.3,65.0] 55.8 [51.8,60.9] 58.0 [52.6,65.1] 

Norepinephrine_rate, median 
[Q1,Q3] (mcg/kg/min) 

0 0.0 [0.0,0.1] 0.0 [0.0,0.1] 0.0 [0.0,0.1] 0.0 [0.0,0.1] 

Respiratory_rate, median [Q1,Q3] 
(count per minute) 

240 21.9 [17.1,26.3] 24.0 [18.3,30.0] 22.0 [18.0,28.0] 22.2 [18.2,26.9] 

Oxygen_saturation, median 
[Q1,Q3] (%) 

6 97.0 [95.1,98.8] 96.9 [94.7,98.8] 97.0 [95.0,98.8] 94.8 [92.8,97.0] 

GCS_eye_opening, median 
[Q1,Q3] 

1381 2.0 [1.0,3.0] 2.0 [1.0,4.0] 2.0 [1.0,3.0] 2.0 [1.0,3.0] 

GCS_motor_response, median 
[Q1,Q3] 

1383 4.0 [1.0,6.0] 4.0 [1.0,6.0] 4.0 [1.0,6.0] 4.0 [1.0,6.0] 

GCS_verbal_response, median 
[Q1,Q3] 

1380 1.0 [1.0,1.0] 1.0 [1.0,1.0] 1.0 [1.0,1.0] 1.0 [1.0,1.0] 

RASS_score, median [Q1,Q3] 323 -3.0 [-4.0,-2.0] -3.0 [-4.0,-1.0] -3.0 [-4.0,-2.0] -4.0 [-5.0,-2.0] 

PEEP, median [Q1,Q3] (cm H2O) 127 8.0 [5.0,12.0] 7.5 [5.0,12.0] 5.0 [5.0,10.0] 8.0 [5.0,10.0] 

FiO2, median [Q1,Q3] (5) 6 40.0 [30.0,50.0] 40.0 [34.7,55.0] 40.0 [30.0,55.0] 45.0 [35.0,64.0] 

Plateau_Pressure, median [Q1,Q3] 
(cm H2O) 

1020 23.0 [18.0,28.0] 26.0 [20.0,31.0] 23.0 [18.0,29.0] 23.0 [19.0,29.0] 

Lung_Compliance, median [Q1,Q3] 
(L/ cm H2O) 

2291 32.0 [23.9,42.0] 26.2 [16.0,37.0] 28.0 [19.0,38.0] 27.0 [18.5,36.0] 

Minute_ventilation, median [Q1,Q3] 
(L/minute) 

115 9.5 [7.7,11.4] 9.8 [8.2,11.5] 9.1 [7.4,11.0] 9.6 [7.8,11.5] 

ABG_pH, median [Q1,Q3] 3385 7.4 [7.3,7.4] 7.4 [7.3,7.4] 7.4 [7.3,7.5] 7.4 [7.3,7.4] 

ABG_PaCO2, median [Q1,Q3] (mm 
Hg) 

3410 41.0 [35.3,48.0] 43.0 [37.0,50.8] 42.8 [34.0,52.0] 44.7 [37.4,52.0] 

ABG_PaO2, median [Q1,Q3] (mm 
Hg) 

3377 87.0 [74.0,105.4] 86.0 [72.0,102.5] 95.9 [81.0,118.5] 71.3 [61.9,87.7] 

WBC_count, median [Q1,Q3] 
(K/UL) 

213 10.6 [7.3,15.9] 13.3 [9.3,18.1] 10.8 [7.0,16.6] 11.2 [8.2,15.5] 

Lymphocytes, median [Q1,Q3] 
(K/UL) 

2294 0.9 [0.5,1.4] 0.9 [0.6,1.6] 0.9 [0.6,1.3] 0.8 [0.5,1.4] 

Neutrophils, median [Q1,Q3] (K/UL) 2215 8.2 [5.3,13.4] 10.1 [6.3,14.5] 8.7 [5.3,14.4] 9.0 [6.2,13.1] 

Hemoglobin, median [Q1,Q3] (g/dL) 168 8.8 [7.8,10.5] 8.5 [7.6,9.9] 8.3 [7.5,9.6] 9.7 [8.3,11.2] 

Platelets, median [Q1,Q3] (K/UL) 221 179.0 
[91.0,276.5] 

188.0 
[99.0,278.0] 

170.0 [95.0,254.0] 202.0 
[136.0,278.0] 

Bicarbonate, median [Q1,Q3] 
(mmol/L) 

214 25.0 [22.0,28.0] 25.0 [22.2,30.0] 25.0 [22.0,30.0] 25.0 [21.0,29.0] 
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Creatinine, median [Q1,Q3] (mg/dL) 230 1.1 [0.7,1.7] 1.0 [0.7,1.6] 0.9 [0.5,1.6] 0.9 [0.6,1.5] 

Albumin, median [Q1,Q3] (g/dL) 1836 2.7 [2.3,3.0] 2.7 [2.4,3.0] 2.7 [2.4,2.9] 2.7 [2.4,3.1] 

Bilirubin, median [Q1,Q3] (mg/dL) 1882 0.7 [0.4,1.4] 0.8 [0.4,1.9] 0.9 [0.5,2.3] 0.6 [0.4,0.9] 

CRP, median [Q1,Q3] (mg/L) 4002 147.0 
[74.8,256.0] 

196.1 
[84.7,326.7] 

158.8 [55.1,223.1] 79.3 
[30.7,148.9] 

D_dimer, median [Q1,Q3] (ng/ml D-
DU) 

3787 1732.5 
[808.2,3368.5] 

1424.0 
[693.5,3042.5] 

850.0 
[453.0,2084.0] 

855.0 
[444.0,2242.5] 

Ferritin, median [Q1,Q3] (ng/mL) 4727 734.3 
[417.2,1306.7] 

891.8 
[361.3,1334.4] 

426.9 
[310.9,647.8] 

855.0 
[582.0,1449.5] 

LDH, median [Q1,Q3] (units/L) 4129 344.5 
[266.8,498.5] 

416.0 
[301.0,538.0] 

307.0 
[260.0,442.0] 

366.0 
[297.0,491.0] 

Lactic_acid, median [Q1,Q3] 
(mmol/L) 

5105 1.6 [1.2,2.4] 1.7 [1.2,2.3] 1.5 [1.1,2.3] 1.2 [0.9,1.8] 

Procalcitonin, median [Q1,Q3] 
(ng/mL) 

4851 0.9 [0.2,3.1] 1.1 [0.3,4.1] 0.9 [0.4,2.0] 0.4 [0.1,1.3] 
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Supplemental Table 3.  Full table of all models and all imputation strategies. Extreme Gradient Boosting (XGBoost), 
Logistic Regression, Random Forest, LightGBM, Recurrent Neural Network (RNN), and Long Short-Term Memory 
(LSTM), performance on the test set, using different imputation strategies (raw, mean, and FIDDLET, detailed in 
Methods). Various evaluation metrics are reported to assess model performance comprehensively: AUROC (95% CI): 
The Area Under the Receiver Operating Characteristic Curve (AUROC), Area Under the Precision-Recall Curve (AUPRC) 
for intubation, Accuracy (the proportion of correctly predicted instances out of the total number of instances in the dataset 
and is often expressed as a percentage), F1 score (the harmonic mean of precision and recall). Class 1 indicates next-
day intubated, and class 0 next-day extubated. The top models were subjected to hyperparameter tuning (bolded). 
 

Model Type Imputation 
Method 

AUROC AUPRC Overall 
Accuracy 

F1 
Score 

Class 0 

F1 
Score 

Class 1 

Precision 
Class 0 

Precision 
Class 1 

Recall 
Class 0 

Recall 
Class 1 

RNN binning 0.868 
(0.834, 
0.900) 

0.372 
(0.257, 
0.480) 

0.714 
(0.681, 
0.745) 

0.323 
(0.260, 
0.385) 

0.818 
(0.795, 
0.842) 

0.198 
(0.154, 
0.246) 

0.985 
(0.975, 
0.995) 

0.877 
(0.789, 
0.951) 

0.700 
(0.667, 
0.733) 

RNN mean 0.613 
(0.543, 
0.688) 

0.113 
(0.079, 
0.157) 

0.251 
(0.223, 
0.280) 

0.161 
(0.126, 
0.196) 

0.324 
(0.285, 
0.362) 

0.088 
(0.068, 
0.109) 

0.968 
(0.938, 
0.993) 

0.923 
(0.852, 
0.984) 

0.194 
(0.167, 
0.222) 

LSTM binning 0.867 
(0.831, 
0.899) 

0.352 
(0.250, 
0.459) 

0.709 
(0.676, 
0.741) 

0.331 
(0.270, 
0.393) 

0.814 
(0.790, 
0.837) 

0.202 
(0.160, 
0.247) 

0.991 
(0.982, 
0.998) 

0.924 
(0.847, 
0.984) 

0.691 
(0.657, 
0.724) 

LSTM mean 0.666 
(0.597, 
0.728) 

0.125 
(0.088, 
0.166) 

0.541 
(0.508, 
0.578) 

0.200 
(0.150, 
0.251) 

0.678 
(0.647, 
0.709) 

0.116 
(0.085, 
0.148) 

0.959 
(0.940, 
0.976) 

0.738 
(0.627, 
0.836) 

0.525 
(0.489, 
0.560) 

LightGBM binning 0.838 
(0.802, 
0.873) 

0.242 
(0.173, 
0.314) 

0.614 
(0.581, 
0.649) 

0.278 
(0.224, 
0.330) 

0.736 
(0.707, 
0.764) 

0.163 
(0.127, 
0.199) 

0.993 
(0.985, 
1.000) 

0.953 
(0.892, 
1.000) 

0.585 
(0.549, 
0.621) 

LightGBM mean 0.835 
(0.797, 
0.869) 

0.239 
(0.173, 
0.305) 

0.752 
(0.722, 
0.783) 

0.317 
(0.247, 
0.382) 

0.849 
(0.827, 
0.870) 

0.202 
(0.152, 
0.253) 

0.972 
(0.958, 
0.985) 

0.739 
(0.630, 
0.845) 

0.753 
(0.722, 
0.785) 

LightGBM raw 0.839 
(0.802, 
0.872) 

0.239 
(0.171, 
0.310) 

0.655 
(0.621, 
0.691) 

0.294 
(0.235, 
0.351) 

0.771 
(0.744, 
0.798) 

0.175 
(0.135, 
0.215) 

0.990 
(0.980, 
0.998) 

0.924 
(0.857, 
0.984) 

0.632 
(0.596, 
0.668) 

Logistic 
Regression 

binning 0.853 
(0.808, 
0.893) 

0.305 
(0.213, 
0.406) 

0.707 
(0.676, 
0.739) 

0.310 
(0.246, 
0.371) 

0.814 
(0.790, 
0.837) 

0.190 
(0.146, 
0.234) 

0.982 
(0.970, 
0.993) 

0.847 
(0.746, 
0.929) 

0.695 
(0.663, 
0.729) 

Logistic 
Regression 

mean 0.797 
(0.753, 
0.839) 

0.209 
(0.152, 
0.284) 

0.652 
(0.621, 
0.685) 

0.278 
(0.222, 
0.337) 

0.771 
(0.745, 
0.796) 

0.166 
(0.128, 
0.206) 

0.982 
(0.969, 
0.992) 

0.862 
(0.769, 
0.941) 

0.635 
(0.601, 
0.668) 

XGBoost binning 0.828 
(0.786, 
0.866) 

0.266 
(0.184, 
0.354) 

0.616 
(0.581, 
0.650) 

0.276 
(0.221, 
0.330) 

0.739 
(0.709, 
0.766) 

0.162 
(0.126, 
0.199) 

0.991 
(0.981, 
0.998) 

0.938 
(0.870, 
0.987) 

0.589 
(0.552, 
0.625) 

XGBoost mean 0.819 
(0.771, 
0.862) 

0.230 
(0.166, 
0.302) 

0.629 
(0.594, 
0.664) 

0.259 
(0.204, 
0.314) 

0.753 
(0.724, 
0.780) 

0.153 
(0.118, 
0.192) 

0.977 
(0.962, 
0.990) 

0.831 
(0.732, 
0.921) 

0.612 
(0.576, 
0.648) 

XGBoost raw 0.798 
(0.755, 
0.835) 

0.212 
(0.151, 
0.278) 

0.680 
(0.649, 
0.711) 

0.288 
(0.228, 
0.348) 

0.793 
(0.769, 
0.817) 

0.174 
(0.133, 
0.218) 

0.979 
(0.965, 
0.990) 

0.831 
(0.733, 
0.916) 

0.667 
(0.633, 
0.701) 

Random 
Forest 

binning 0.835 
(0.792, 
0.873) 

0.251 
(0.181, 
0.332) 

0.666 
(0.633, 
0.700) 

0.283 
(0.223, 
0.341) 

0.782 
(0.757, 
0.809) 

0.170 
(0.130, 
0.211) 

0.980 
(0.966, 
0.992) 

0.847 
(0.747, 
0.937) 

0.650 
(0.617, 
0.686) 

Random 
Forest 

mean 0.785 
(0.725, 
0.836) 

0.202 
(0.143, 
0.266) 

0.731 
(0.702, 
0.759) 

0.312 
(0.245, 
0.375) 

0.833 
(0.810, 
0.853) 

0.195 
(0.148, 
0.244) 

0.975 
(0.961, 
0.988) 

0.784 
(0.672, 
0.883) 

0.726 
(0.695, 
0.757) 
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Supplemental Table 4.  Hyperparameter optimization of top 5 performing models. Top performing models from 
Supplemental Table 3 (bolded) were chosen for hyperparameter optimization. The same metrics and confidence intervals 
from bootstrapping are reported for each model’s optimal hyperparameter set. 
Model Type Imputation 

Method 
AUC AUPRC Overall 

Accuracy 
F1 

Score 
Class 

0 

F1 
Score 

Class 1 

Precision 
Class 0 

Precision 
Class 1 

Recall 
Class 0 

Recall 
Class 

1 

RNN binning 0.869 
(0.836, 
0.899) 

0.295 
(0.208, 
0.387) 

0.701 
(0.669, 
0.733) 

0.331 
(0.272, 
0.393) 

0.807 
(0.782, 
0.831) 

0.201 
(0.160, 
0.247) 

0.994 
(0.987, 
1.000) 

0.953 
(0.895, 
1.000) 

0.679 
(0.645, 
0.714) 

LSTM binning 0.870 
(0.834, 
0.902) 

0.382 
(0.269, 
0.492) 

0.750 
(0.721, 
0.779) 

0.345 
(0.277, 
0.411) 

0.846 
(0.824, 
0.866) 

0.217 
(0.168, 
0.268) 

0.983 
(0.972, 
0.993) 

0.846 
(0.750, 
0.929) 

0.742 
(0.711, 
0.775) 

LightGBM binning 0.834 
(0.785, 
0.874) 

0.275 
(0.191, 
0.363) 

0.624 
(0.593, 
0.656) 

0.283 
(0.228, 
0.337) 

0.745 
(0.718, 
0.773) 

0.166 
(0.130, 
0.204) 

0.994 
(0.985, 
1.000) 

0.954 
(0.897, 
1.000) 

0.596 
(0.563, 
0.632) 

LightGBM raw 0.833 
(0.791, 
0.871) 

0.261 
(0.184, 
0.343) 

0.689 
(0.656, 
0.721) 

0.301 
(0.240, 
0.364) 

0.800 
(0.775, 
0.824) 

0.183 
(0.141, 
0.228) 

0.983 
(0.970, 
0.994) 

0.861 
(0.769, 
0.945) 

0.675 
(0.640, 
0.709) 

Logistic 
Regression 

binning 0.859 
(0.820, 
0.897) 

0.292 
(0.208, 
0.395) 

0.722 
(0.691, 
0.755) 

0.329 
(0.265, 
0.394) 

0.825 
(0.802, 
0.848) 

0.203 
(0.157, 
0.252) 

0.986 
(0.975, 
0.995) 

0.877 
(0.793, 
0.954) 

0.709 
(0.676, 
0.742) 

 
 
Supplemental Table 5: Hyperparameter search space for fine-tuning RNN, LSTM, LightGBM and logistic regression 
models. Top hyperparameter combinations for each model was chosen by AUROC. 

Model Imputation Hyperparameters # of 
Models 

LSTM Binning learning_rate: {0.001, 0.01, 0.1} * unit_1: {32, 64, 128} * unit_2: {16, 32, 64} * 
batch_size: {32, 64, 128} 

81 

RNN Binning learning_rate: {0.001, 0.01, 0.1} * unit_1: {32, 64, 128} * unit_2: {16, 32, 64} * 
batch_size: {32, 64, 128} 

81 

Logistic 
Regression 

Binning C:{0.01, 0.1, 1} * penalty: {l1, l2} * solver: {liblinear} 6 

LightGBM Binning num_leaves:{31, 61, 127} * learning_rate:{0.01, .05, .1} * n_estimators: {100, 
200, 500} 

27 

LightGBM Raw num_leaves:{31, 61, 127} * learning_rate:{0.01, .05, .1} * n_estimators: {100, 
200, 500} 

27 

XGBoost Raw n_iterations: {1000} * max_depth: {30} 1 
XGBoost Binning n_iterations: {1000} * max_depth: {30} 1 
Random 
Forest 

Binning default 1 
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Supplemental Documents:  
 
NU SCRIPT Study Investigators 
 
TRIPOD Checklist [Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff 
DF, Collins GS. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): 
Explanation and Elaboration. Ann Intern Med. 2015;162(1):W1-W73. PMID: 25560730]  
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