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Abstract
Background: Epilepsy is a highly heterogeneous disorder thought to have strong genetic
components. However, identifying these risk factors using whole-exome sequencing studies
requires very large sample sizes and good signal-to-noise ratio in order to assess the
association between rare variants in any given gene and disease.

Methods:We present a novel approach for predicting constraint in the human genome –
sections of the genome where any mutation can cause a severe disorder. Through application
of a Hidden Markov Model (HMM) to the Regeneron Genetics Center Million Exome dataset and
the AllofUs whole genome sequencing data, we predict the probability of observing no variants
across the population for each position in the genome. Next, we aggregate the constraint
predictions by gene and assess its association to epilepsy. Finally, we extend our analysis
model to incorporate pathogenicity predictions from AlphaMissense (AM) and pLoFs, and
compare against published results.

Results:We identified a set of (p < 1x10-4) genes with stronger signals than previously
published studies including KDM5B, KCNQ2, CACNA1A, CACNA1B, RYR2, and ATP2B2. Our
models allow us to evaluate the contribution of constraint, protein structure based pathogenicity
prediction from AM, and pLoFs jointly.

Conclusion:We showed that relatively simple sequence-dependent constraint prediction
models can complement structure-based missense variant pathogenicity predictions and pLoFs
for population cohort studies which require additional statistical power in the identification of
gene-based signals for neurogenetic and psychiatric disorders.
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Introduction
Epilepsy affects individuals of all ages and is one of the most prevalent neurological disorders,
exhibiting a wide range of phenotypes, often leading to significant functional disability. It is
characterized by a predisposition to epileptic seizures, which can have cognitive, psychological,
and social consequences [1].

While the lifetime risk of experiencing an epileptic seizure is 10%, only 1-2% of the population
will go on to develop epilepsy. Globally, approximately 70 million people live with epilepsy, with a
bimodal distribution favoring those under one year of age and those over 50. Notably, 80% of
these individuals reside in developing countries, where 75% do not receive adequate treatment
[2].

While epilepsy can result from various causes such as infection, trauma, and stroke, advances
in genomics have demonstrated that genetic factors are likely implicated in over two-thirds of
cases where the cause is unknown [3]. In recent years, the recognition of genetic etiologies in
epilepsy has increased. Genetic inheritance can be polygenic, as seen in idiopathic generalized
epilepsy, where pathogenic variants are usually not detected in standard gene panels.
Alternatively, the inheritance can be monogenic, as observed in early-onset developmental
epileptic encephalopathies, with pathogenic variants identified through epilepsy gene panels or
whole-exome sequencing.

A molecular diagnosis can offer significant benefits, including personalized therapeutic
interventions, detailed prognostic information, and precise genetic counseling. Consequently,
genetic testing is increasingly being provided to patients with epilepsy of unknown origin [4].

It's important to recognize that there's no universally accepted definition of what an epilepsy
gene is. However, we can consider a perspective on which genetic etiologies might be
categorized as epilepsy genes in a narrow sense. The term "epilepsy per se" is used to
differentiate genes associated with genetic conditions that include epilepsy from those that are
purely genetic epilepsies. For example, many mitochondrial or metabolic conditions present with
epilepsy, but these wouldn't typically be listed as epilepsy genes. This distinction is mainly
because these conditions often have specific treatment pathways and care teams, making them
more closely related to other non-neurological conditions within their respective fields [5].

While the role of genetic contributions to epilepsy has long been acknowledged, the
comprehensive understanding of the complete spectrum of genetic causes remains a
formidable challenge.

Whole-exome sequencing (WES) has emerged as a powerful tool for investigating the genetic
basis of epilepsy, enabling the identification of rare variants associated with various diseases.
Recent efforts in this domain include an unprecedented study by the Epi25 Collaborative [6] with
a sample size of over 54,000 individuals, including 20,979 epilepsy cases and 33,444 controls
across diverse genetic ancestries. While this study marks a crucial step forward in unraveling
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the rare variant risk underlying a spectrum of epilepsy syndromes, it also underscores the
ongoing challenges and limitations inherent in current genetic analyses of complex disorders.
The need for larger sample sizes, the incorporation of diverse genetic ancestries, and the
exploration of alternative analytical approaches are crucial to advancing our understanding of
the genetic architecture of epilepsy, as well as related neurogenetic and psychiatric disorders.

Recent advancements in the field of structure-based missense variant pathogenicity predictions
have significantly contributed to unraveling the complexities of genetic factors associated with
epilepsy. A groundbreaking development in this domain comes from Google DeepMind's
AlphaMissense [7], a deep learning model which leverages AlphaFold2 to predict the
pathogenicity of single amino acid changes in proteins. Missense variants, which alter the amino
acid sequence of proteins, play a crucial role in disrupting protein function and, consequently,
have implications for organismal fitness. AlphaMissense's predictions for the entire human
proteome are provided as a community resource which holds promise for uncovering previously
unknown disease-causing genes, enhancing the diagnostic yield of rare genetic diseases, and
advancing our understanding of the genetic basis of epilepsy.

Adding to this landscape is the Regeneron Genetics Center Million Exome (RGC-ME) dataset
[8], representing the largest catalog of human protein-coding variation to date, derived from
exome sequencing of 985,830 individuals with diverse ancestry. This comprehensive resource
includes approximately 10.5 million missense variants (54% novel) and 1.1 million predicted
loss-of-function (pLOF) variants (65% novel, 53% observed only once). Understanding the
constraints in coding regions and genes is vital for assessing their role in diseases. The
RGC-ME dataset, with its unprecedented sample size, enhances the precision of constraint
scores, enabling the identification of highly constrained genes even among those lacking known
disease associations.
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Results

Study overview
In this study, we implement a novel approach to predict genomic constraint using a Hidden
Markov Model (HMM) applied to the RGC-ME dataset. Our model estimates the probability of
observing no variants across the population for each position in the genome, providing insight
into regions where mutations are likely to cause severe disorders. We applied this constraint
inference model to investigate the genetic basis of epilepsy. Leveraging the predictions
generated, we integrate pathogenicity predictions from AlphaMissense (AM) and information on
predicted Loss-of-Function (pLoF) variants into a meta-regression model with the target of
estimating the effect size of empirical cases for each gene/group. Through weighted least
squares regression, we evaluate the contribution of HMM constraint probabilities, pathogenicity
predictions from AM, and pLoFs to the identification of new genes associated with epilepsy.

Constraint per gene vs gnomAD
In order to validate the HMM predictions as a measure of constraint, we compare it to another
measure called the Missense Tolerance Ratio (MTR), calculated as the observed proportion of
missense variants divided by the expected proportion relative to the number of all possible
variants in a given window [9]. Specifically, we compute the proportion of each gene with
predicted probability of 0 above a certain threshold and evaluate it against the z-score of the
observed count of missense variants relative to the expected count as obtained from gnomAD.
The joint distribution of z-scores versus constraint proportion with thresholds 0.6 and 0.8 are
shown below. The r-squared value is obtained by fitting a GLM between the two measures using
ordinary least-squares regression. Decreasing the threshold from 0.8 to 0.6 increases the
correlation from 0.186 to 0.207 and yields a more normal joint distribution.
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Figure 1: Joint distribution of z-score of observed vs expected missense variants per gene (left)
and missense tolerance ratio (right) versus proportion of gene with constraint probability > 0.6

Validation on AllofUs whole exome sequence data
We further validate our methodology of constraint inference via HMM using an independent
dataset of 250k individuals from AllofUs (AoU). We use the HMM trained on chromosome 2 of
RGC-ME to generate separate predictions for all chromosomes (except chromosome 2) of
RGC-ME and AoU. Figure 2 shows the joint distribution of constraint probabilities across both
datasets. Although most of the frequency mass is concentrated in the low probability regions of
the marginal distributions (prob < 0.1), there is an overlap in the positions where both datasets
assign high probability of constraint (top right). In addition, we compare this observed joint
distribution to the expected joint distribution if constraint predictions were independent across
both datasets. See the Methods section for the full analysis. Overall, the most significant overlap
occurs in the high and low probability regions, suggesting that useful constraint information is
recovered by the model independent of the dataset.

Figure 2: Joint distribution of WES constraint predictions from AoU and RGC.

Application to epilepsy
Having validated the utility of the HMM as a relatively simple sequence-dependent constraint
prediction model, we further incorporate structure-based missense variant pathogenicity
predictions from AlphaMissense and existing information on pLoF variants. The HMM constraint
predictions, AM pathogenicity predictions, and indicators for pLoF are combined into a
meta-regression model in order to estimate the effect size of empirical cases. The result is a
unified model for the identification of gene-based signals for epilepsy.
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We apply this analysis to the Epi25 Collaborative [6] dataset of 54k individuals with and without
epilepsy. The table below shows the p-value from each component of the unified model for a
subset of the genes with overall p-value < 0.0001. For each of these genes, we observe that the
meta-regression model detects a signal (p < 0.0001) where the original analysis from the
population cohort study does not have sufficient statistical power. In addition, we can identify
how each component of the model contributes to this signal.
Gene Name Group Constraint

p-value
Pathogenicity
p-value

pLoF p-value Constant
p-value

Unified model
p-value

KCNQ2 DEE 0.002238 0.003110 NaN 3.763469e-48 8.382517e-08

CACNA1A GGE 0.000005 0.067895 0.000245 9.986918e-32 3.718246e-09

CACNA1B GGE 0.062667 0.071230 0.000451 1.589863e-40 0.000033

ATP2B2 DEE 0.000271 0.561085 0.000079 1.873766e-57 2.308754e-07

KDM5B DEE 0.900668 0.005757 0.000068 8.676487e-93 0.000073

RYR2 GGE 0.818109 0.408430 4.728223e-10 1.742691e-77 2.647377e-09

Table 1: P-values from each component of the unified constraint, pathogenicity, and
pLOF model for a subset of the genes with final p-value < 0.00001.

Of the set of significant genes with stronger signals than previously published studies, many
have a well established relationship with epilepsy. Mutations in the KCNQ2 gene are associated
with a spectrum of neonatal-onset epilepsy syndromes, including benign familial neonatal
seizures (BFNS) and developmental and epileptic encephalopathy (DEE) [10]. Similarly, the
CACNA1A gene is associated with various types of epilepsy including DEE [11], and mutations
in the CACNA1B gene are linked to various forms of epilepsy ranging from rare episodic ataxia
syndromes to genetic generalized epilepsy (GGE) [12]. KCNQ2 and CACNA1A/CACNA1B play
important roles in neuronal functions by providing instructions for making potassium and calcium
channels, respectively. Within the unified model, information on constraint, pathogenicity, and
pLoF each play different roles in the signal for each gene. For KCNQ2, constraint prediction
from the HMM and pathogenicity predictions from AM each contribute to the overall model
p-value of 8.38x10-8. While pLoF variant information contributes to both CACNA1A and
CACNA1B, our constraint predictions provide much larger value to the model for CACNA1A
(p-value of 3.72x10-9) over the model for CACNA1B (p-value of 3.3x10-5).

Many other genes identified in our analysis have been linked to epilepsy, but do not have causal
mechanisms which are well understood in the existing literature. De novo variants in ATP2B2,
for instance, have been associated with variable neurodevelopmental disorders, including
seizures [13]. Another study found an association in expression of ATP2B2 and epilepsy
(p=0.049), along with a high correlation between ATP2B2 and its related long non-coding RNA
(lnc-MTR-1) in patients with epilepsy [14]. Mutations in KDM5B have likewise been associated
with variable neurodevelopmental disorders including intellectual disability (ID), and has been
shown to regulate memory consolidation in the hippocampus of mice [15]. However, the link
between genes in the KDM5 family and epilepsy in humans is limited to case reports of an
individual with a de nuovo frameshift variant in KDM5B [16] and a Korean family with a deleted
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region of genes including KDM5A [17]. Finally, there is an emerging relationship between certain
types of epilepsy and mutations in RYR2, another gene with a crucial role in calcium
homeostasis and signaling. Two recent studies have identified novel RYR2 mutations in five
children with benign epilepsy of childhood with centrotemporal spikes (BECTS) [18] and a child
with focal epilepsy [19]. The unified models for ATP2B2, KDM5B, and RYR2 each receive
significant signals from pLoFs, with overall p-values of 2.31x10-7, 7.3x10-5, and 2.65x10-9

respectively.

Figure 3: Joint distribution of (log-scaled) p-values from our unified model vs published
(log-scaled) p-values for various types of epilepsy. Of the published results, we use the
minimum p-value from damaging missense variants and pLOF variants for comparison (x-axis).
Shaded areas indicate the (log-scaled) frequency of joint p-values. Significant (p < 0.0001)
genes where results differ by over two orders of magnitude are annotated.
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Discussion
Our study presents a novel approach to understanding the genetic underpinnings of epilepsy
through a unified model incorporating genome constraint, pathogenicity predictions, and
predicted Loss-of-Function (pLoF) variants. The integration of Hidden Markov Model
(HMM)-based constraint predictions with AlphaMissense (AM) pathogenicity predictions and
pLoF data provided a robust framework for identifying new candidate genes.

Our findings underscore the complementary roles of constraint, pathogenicity, and pLoF in
elucidating the genetic basis of epilepsy. For instance, the KCNQ2 gene, associated with
neonatal-onset epilepsy syndromes, demonstrated significant contributions from both constraint
predictions and AM pathogenicity predictions. Similarly, while pLoF information was pivotal for
genes like CACNA1A and CACNA1B, the constraint predictions provided additional value,
particularly for CACNA1A. Moreover, our study revealed novel insights into genes with
previously underexplored associations with epilepsy. For example, ATP2B2, KDM5B, and
RYR2 showed significant signals in our unified model, despite limited existing literature on their
causal mechanisms in epilepsy. These findings suggest potential new avenues for research into
the genetic basis of epilepsy and other neurogenetic disorders.

The utility of each component of the model is limited by the quality of the data. The
pathogenicity predictions from AlphaMissense, for instance, contribute most to genes with better
understanding of the proteins they encode. Future work will focus on expanding our unified
approach to incorporate additional features and datasets. A larger constraint inference model,
such as an LSTM or LLM, could incorporate other information in addition to the binary sequence
of observed mutations. Similarly, nonlinear models with more features can take advantage of the
large number of samples for each gene to better estimate effect size. Finally, our methodology
can be applied to other neurodevelopmental disorders such as autism, schizophrenia, and
bipolar disorder.

In conclusion, our unified model provides a powerful tool for the identification of genes
associated with epilepsy. By integrating genome constraint, pathogenicity predictions, and pLoF
data, we offer a comprehensive framework that can enhance the detection of gene-disease
associations and provide new insights into the genetic architecture of these complex disorders.
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Methods

Hidden Markov Model for whole exome sequence constraint
inference

The Hidden Markov Model (HMM) takes as input a binary sequence for each
chromosome. Positions encoded “1” indicate that at least one variant has been observed within
the cohort. When no mutation exists in the population for that position, it is encoded with a “0”.
As output, the HMM estimates the probability of observing a zero at that position. In other
words, the HMM predicts the likelihood that the genome is “constrained” at that position in the
sequence. The HMM is trained using an expectation-maximization (Baum-Welch) algorithm,
which iteratively updates the transition probability matrix and the emission probability matrix for
the model’s hidden states. We used the hmmlearn library in Python to train a model with two
hidden states.

Figure 4: Example of an observed binary sequence vs the predictions made by the HMM

Using the Regeneron Genetic Center Million Exome (RGC-ME) dataset, we trained an
HMM using the mutation patterns of chromosome 2 and generated constraint predictions for
chromosomes 1 through 22. Before training/predicting on any chromosome, we filtered for
positions with over 20% coverage for at least 90% of individuals as a form of quality control. In
addition, we restricted our analysis to the protein-coding regions of the exome. The resulting
predictions were used as a constraint signal for the identification of genes linked to epilepsy.

Validation on AllofUs whole exome sequence data
In order to validate our constraint model, we extend its application to the whole exome
sequence data from AllofUs (AoU), an independent dataset of 245,388 individuals of mixed
ancestry [20]. After applying the same coverage and protein-coding filters to the AoU WES data,
we use the model trained on RGC-ME to generate predictions for chromosomes 1 through 22.
Next, we evaluate the joint distribution of the constraint predictions across both datasets
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(excluding chromosome 2) in order to gauge the consistency of our model. The frequencies of
the resulting observed joint distribution is compared in Figure 5 to the expected frequencies
under the assumption of independence between the two marginal distributions. The plot of 𝛘2

statistics between the observed and expected distributions shows that the shared constraint
information is concentrated in the high and low probability regions. This observation, along with
the R2 of 0.153 between the constraint probabilities for AoU and RGC, indicates that useful
constraint information is recovered by the HMM independent of the given dataset.

Figure 5: Observed joint distribution (left) of WES constraint predictions (excluding
chromosome 2) from AoU and RGC, and distribution of corresponding 𝛘2 statistics (right)

Unified constraint, pathogenicity, and pLoF model
In order to integrate information from Alpha Missense (AM) and pLoF variants into a

unified model, we build a meta regression model to estimate the effect size of empirical cases
for each gene/group. For each gene, we only consider positions in the exome with at least one
allele number in the study population’s cases and controls and at most 5 allele counts in the full
cohort. For every position in the sequence for that gene, we take the maximum pathogenicity
prediction from AM across all variants, the constraint probability from our model and an indicator
of whether or not the variant is a pLoF. The effect size and its variance are computed from the
observed cases/controls in the cohort population using the allele frequencies and counts.
Finally, we use a weighted least squares regression model with constraint probability, max
pathogenicity, pLoF indicator, and constant term as predictors for effect size weighted by
variance. The p values for each predictor variable were recorded along with the overall p value
of the model. Together, these provide for a comprehensive look into the various signals we use
in our identification of new genes associated with epilepsy.

We further examine the relationship between protein structure based pathogenicity
prediction from AM and constraint data. A binomial regression analysis was performed to
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evaluate correlation between the binary sequence of mutation observations and the maximum
predicted pathogenicity. The resulting McFadden pseudo-R2 value of 0.0081 indicates limited
information overlap between AM predictions and mutation observations, especially when
compared to the McFadden pseudo-R2 of 0.3834 when using HMM predictions.

Supplementary Information: The code for our model development and data analysis is hosted
on a GitHub repository at https://github.com/healthcare-medicine-ai/wgs-constraint-llm.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.06.27.24309590doi: medRxiv preprint 

https://github.com/healthcare-medicine-ai/wgs-constraint-llm
https://doi.org/10.1101/2024.06.27.24309590


Bibliography
1. Asadi-Pooya AA, Brigo F, Lattanzi S, Blumcke I. Adult epilepsy. Lancet. 2023;402:

412–424.

2. Mauritz M, Hirsch LJ, Camfield P, Chin R, Nardone R, Lattanzi S, et al. Acute symptomatic
seizures: an educational, evidence-based review. Epileptic Disord. 2022;24: 26–49.

3. Shorvon SD, Andermann F, Guerrini R. The Causes of Epilepsy: Common and Uncommon
Causes in Adults and Children. Cambridge University Press; 2011.

4. Wu AC, McMahon P, Lu C. Ending the Diagnostic Odyssey-Is Whole-Genome Sequencing
the Answer? JAMA Pediatr. 2020;174: 821–822.

5. Ruggiero SM, Xian J, Helbig I. The current landscape of epilepsy genetics: where are we,
and where are we going? Curr Opin Neurol. 2023;36: 86–94.

6. Epi25 Collaborative, Chen S, Neale BM, Berkovic SF. Shared and distinct ultra-rare genetic
risk for diverse epilepsies: A whole-exome sequencing study of 54,423 individuals across
multiple genetic ancestries. medRxiv. 2023. doi:10.1101/2023.02.22.23286310

7. Cheng J, Novati G, Pan J, Bycroft C, Žemgulytė A, Applebaum T, et al. Accurate
proteome-wide missense variant effect prediction with AlphaMissense. Science. 2023;381:
eadg7492.

8. Sun KY, Bai X, Chen S, Bao S, Kapoor M, Zhang C, et al. A deep catalog of protein-coding
variation in 985,830 individuals. bioRxivorg. 2023. doi:10.1101/2023.05.09.539329

9. Traynelis J, Silk M, Wang Q, Berkovic SF, Liu L, Ascher DB, et al. Optimizing genomic
medicine in epilepsy through a gene-customized approach to missense variant
interpretation. Genome Res. 2017;27: 1715–1729.

10. KCNQ2. In: Epilepsy Foundation [Internet]. [cited 29 Apr 2024]. Available:
https://www.epilepsy.com/causes/genetic/kcnq2

11. What Is CACNA1A. In: Epilepsy Foundation [Internet]. [cited 29 Apr 2024]. Available:
https://www.epilepsy.com/causes/genetic/cacna1a-related-epilepsy

12. Epi4K consortium, Epilepsy Phenome/Genome Project. Ultra-rare genetic variation in
common epilepsies: a case-control sequencing study. Lancet Neurol. 2017;16: 135–143.

13. Poggio E, Barazzuol L, Salmaso A, Milani C, Deligiannopoulou A, Cazorla ÁG, et al.
ATP2B2 de novo variants as a cause of variable neurodevelopmental disorders that feature
dystonia, ataxia, intellectual disability, behavioral symptoms, and seizures. Genet Med.
2023;25: 100971.

14. Taheri M, Pourtavakoli A, Eslami S, Ghafouri-Fard S, Sayad A. Assessment of expression
of calcium signaling related lncRNAs in epilepsy. Sci Rep. 2023;13: 17993.

15. Perez-Sisques L, Bhatt S, Matuleviciute R, Gileadi T, Kramar E, Graham A, et al. The
intellectual disability risk gene regulates long term memory consolidation in the
hippocampus. J Neurosci. 2024. doi:10.1523/JNEUROSCI.1544-23.2024

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.06.27.24309590doi: medRxiv preprint 

http://paperpile.com/b/nJsy3n/lGeZ
http://paperpile.com/b/nJsy3n/lGeZ
http://paperpile.com/b/nJsy3n/JFi5
http://paperpile.com/b/nJsy3n/JFi5
http://paperpile.com/b/nJsy3n/5yV3
http://paperpile.com/b/nJsy3n/5yV3
http://paperpile.com/b/nJsy3n/7rRu
http://paperpile.com/b/nJsy3n/7rRu
http://paperpile.com/b/nJsy3n/1APK
http://paperpile.com/b/nJsy3n/1APK
http://paperpile.com/b/nJsy3n/HRea
http://paperpile.com/b/nJsy3n/HRea
http://paperpile.com/b/nJsy3n/HRea
http://dx.doi.org/10.1101/2023.02.22.23286310
http://paperpile.com/b/nJsy3n/6o3g
http://paperpile.com/b/nJsy3n/6o3g
http://paperpile.com/b/nJsy3n/6o3g
http://paperpile.com/b/nJsy3n/YazD
http://paperpile.com/b/nJsy3n/YazD
http://dx.doi.org/10.1101/2023.05.09.539329
http://paperpile.com/b/nJsy3n/FdkD
http://paperpile.com/b/nJsy3n/FdkD
http://paperpile.com/b/nJsy3n/FdkD
http://paperpile.com/b/nJsy3n/4Ffw
https://www.epilepsy.com/causes/genetic/kcnq2
http://paperpile.com/b/nJsy3n/h7ZY
https://www.epilepsy.com/causes/genetic/cacna1a-related-epilepsy
http://paperpile.com/b/nJsy3n/SEBy
http://paperpile.com/b/nJsy3n/SEBy
http://paperpile.com/b/nJsy3n/cWQA
http://paperpile.com/b/nJsy3n/cWQA
http://paperpile.com/b/nJsy3n/cWQA
http://paperpile.com/b/nJsy3n/cWQA
http://paperpile.com/b/nJsy3n/9OGE
http://paperpile.com/b/nJsy3n/9OGE
http://paperpile.com/b/nJsy3n/CbfA
http://paperpile.com/b/nJsy3n/CbfA
http://paperpile.com/b/nJsy3n/CbfA
http://dx.doi.org/10.1523/JNEUROSCI.1544-23.2024
https://doi.org/10.1101/2024.06.27.24309590


16. Mangano GD, Antona V, Calì E, Fontana A, Salpietro V, Houlden H, et al. A complex
epileptic and dysmorphic phenotype associated with a novel frameshift KDM5B variant and
deletion of SCN gene cluster. Seizure. 2022;97: 20–22.

17. Han JY, Park J. Variable Phenotypes of Epilepsy, Intellectual Disability, and Schizophrenia
Caused by 12p13.33-p13.32 Terminal Microdeletion in a Korean Family: A Case Report and
Literature Review. Genes . 2021;12. doi:10.3390/genes12071001

18. Ma M-G, Liu X-R, Wu Y, Wang J, Li B-M, Shi Y-W, et al. Mutations Are Associated With
Benign Epilepsy of Childhood With Centrotemporal Spikes With or Without Arrhythmia.
Front Neurosci. 2021;15: 629610.

19. Hu J, Gao X, Chen L, Zhou T, Du Z, Jiang J, et al. A novel mutation in ryanodine receptor 2
() genes at c.12670G>T associated with focal epilepsy in a 3-year-old child. Front Pediatr.
2022;10: 1022268.

20. All of Us Research Program Genomics Investigators. Genomic data in the All of Us
Research Program. Nature. 2024;627: 340–346.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.06.27.24309590doi: medRxiv preprint 

http://paperpile.com/b/nJsy3n/zeba
http://paperpile.com/b/nJsy3n/zeba
http://paperpile.com/b/nJsy3n/zeba
http://paperpile.com/b/nJsy3n/3RmB
http://paperpile.com/b/nJsy3n/3RmB
http://paperpile.com/b/nJsy3n/3RmB
http://dx.doi.org/10.3390/genes12071001
http://paperpile.com/b/nJsy3n/ZUUs
http://paperpile.com/b/nJsy3n/ZUUs
http://paperpile.com/b/nJsy3n/ZUUs
http://paperpile.com/b/nJsy3n/g5fp
http://paperpile.com/b/nJsy3n/g5fp
http://paperpile.com/b/nJsy3n/g5fp
http://paperpile.com/b/nJsy3n/bUrA
http://paperpile.com/b/nJsy3n/bUrA
https://doi.org/10.1101/2024.06.27.24309590

