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Abstract

Background:. Diabetic retinopathy (DR) is a frequent concomitant disease of diabetes, affecting millions worldwide. Screening
for this disease based on fundus images has been one of the first successful use cases for modern artificial intelligence in medicine.
Current state-of-the-art systems typically use black-box models to make referral decisions, requiring post-hoc methods for AI-
human interaction.

Methods:. In this retrospective reader study, we evaluated an inherently interpretable deep learning model, which explicitly models
the local evidence of DR as part of its network architecture, for early DR screening. We trained the network on 34,350 high-quality
fundus images from a publicly available dataset and validated its state-of-the-art performance on a large range of ten external
datasets. We obtained detailed lesion annotations from ophthalmologists on 65 images to study if the class evidence maps highlight
clinically relevant information. Finally, we tested the clinical usefulness of our model in a reader study, where we compared
screening for DR without AI support to screening with AI support with and without AI explanations.

Results:. The inherently interpretable deep learning model obtained an accuracy of .906 [.900-.913] (95%-confidence interval) and
an AUC of .904 [.894 – .913] on the internal test set and similar performance on external datasets. High evidence regions directly
extracted from the model contained clinically relevant lesions such as microaneurysms or hemorrhages with a high precision of
.960 [.941 - .976]. Decision support by the model highlighting high-evidence regions in the image improved screening accuracy for
difficult decisions and improved screening speed.

Interpretation:. Inherently interpretable deep learning models can reach state-of-the-art performance and support screening for
early DR by improving human-AI collaboration.
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Cluster 2064 “Machine Learning — New Perspectives for Science”, project number 390727645), the Carl Zeiss Foundation (“Cer-
tification and Foundations of Safe Machine Learning Systems in Healthcare”) and International Max Planck Research School for
Intelligent Systems.
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1. Introduction

The global prevalence of diabetes is believed to have reached
10% of the adult population in 2021 with more than 530 mil-
lion people affected [1] and will likely further increase. Of
these patients, more than 20% will develop diabetic retinopa-
thy (DR), a leading cause of blindness among the working-age
population [2] and the third leading cause of vision impairment
worldwide after age-related macular degeneration and cataract
[3, 4]. Although vision loss is one of the most feared compli-

cations of diabetes and yearly screening is recommended [5],
more than 20% of patients do not take part in regular eye ex-
ams, citing timely access and costs as a major hurdle [6]. For
these reasons, screening for diabetic retinopathy (DR) has been
one of the first successful use cases for artificial intelligence
(AI) in medicine [7], promising fast, cost-effective screening
even where insufficient clinical personnel is available. Today,
multiple AI systems have received regulatory clearance [8] and
have been found useful to triage patients not requiring special-
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ist attention and those with vision-threatening DR, potentially
contributing to increased screening adherence [9].

Current state-of-the-art models typically use black-box deep
learning approaches to make referral decisions. Model-based
referral decisions can be explained with heatmaps obtained
post-hoc using gradient-based approaches [10, 11, 12]. How-
ever, such explanations are not trustworthy, as the produced
heatmaps do not reflect the actual decision-making process of
the model, and are prone to spurious correlations [13]. There-
fore, their results cannot be easily integrated into the clinical
decision-making process, as the lack of trustworthy human-
interpretable explanation makes it difficult for clinical profes-
sionals to validate the AI system’s results [14, 15]. Alterna-
tively, inherently interpretable deep neural networks with spe-
cialized architectures designed for transparent reporting could
offer trustworthy explanations, potentially leading to improved
clinical decisions [14, 16].

We address this issue and validate an inherently interpretable
approach for screening for early DR in a retrospective reader
study. Our approach uses a deep learning architecture called
sparse BagNets [17, 18], which explicitly models the local ev-
idence for the presence of DR as part of its network architec-
ture (figure 1b). Most studies so far have considered the task
of screening for moderate non-proliferative DR or more ad-
vanced stages [7], although even mild non-proliferative diabetic
retinopathy (NPDR) is recommended for close monitoring and
careful control of hyperglycemia [5, 19]. We reasoned that the
benefit of AI-based explanations and decision support would
be most clearly visible for this challenging diagnostic task.
Trained on a large publicly available dataset, our model shows
high specificity and sufficient sensitivity in detecting mild DR
across a large array of datasets. We show that the obtained class
evidence maps highlight clinically relevant lesions such as mi-
croaneurysms or hemorrhages with high precision. In a clinical
user study, we show that the system can be effectively used to
guide clinical decision-making, leading to 17.5% improvement
in diagnostic accuracy for mild DR and overall about ≈ 25%
improvement in time.

Research in Context

Evidence before this study. We searched Pubmed up to
31/05/2024 using the terms “interpretable machine learning”
AND “clinical decision support”. We identified 17 articles, of
which almost all used features derived from clinical knowledge
together with classical machine learning techniques such as lo-
gistic regression, decision trees or support vector machines,
often combined with post-hoc explainability methods such as
Shapley values. One study used deep neural networks with a
transformer architecture. None of the studies evaluated the use-
fulness of their frameworks in a reader study. Searching for
“deep learning” and “diabetic retinopathy” resulted in 704 ar-
ticles. These studies mostly used different variants of black-
box deep neural network architectures for detecting diabetic
retinopathy. If the study discussed interpretability, it typically
referred to post-hoc methods such as Grad-Cam.

Added value of this study. We evaluated an inherently inter-
pretable deep neural network for early diabetic retinopathy de-
tection. We showed that the model can detect early diabetic
retinopathy with state-of-the-art accuracy. The class evidence
map extracted directly from the model pointed to clinically
meaningful lesions in the fundus image. Providing these for
clinical decision support reduced screening time and improved
grading accuracy for clinically difficult decisions.

Implications of all the available evidence. Our findings imply
that inherently interpretable deep learning models can perform
well in difficult clinically relevant screening tasks. These mod-
els provide direct explanations for their decisions as part of their
architecture, making them ideal candidates for use in collabo-
rative AI-human settings such as medicine, where trust in AI
models is an issue. While we showed their usefulness as part of
a retrospective reader study, future research will need to provide
additional evidence in prospective, real-world settings.

2. Methods

2.1. Dataset description and data preparation

We used eleven publicly available retinal image datasets,
consisting of color fundus images from various sources, to de-
velop and evaluate an inherently interpretable deep learning
model for early DR detection (table 1). For all datasets, fun-
dus images had assigned reference grades based on the Inter-
national Clinical Diabetic Retinopathy classification scale [31],
which provides a grading scheme ranging from 0 (no DR), 1
(mild NPDR), 2 (moderate NPDR), 3 (severe NPDR) to 4 (pro-
liferative DR) according to DR severity. As our goal was to de-
velop an AI system for early DR screening, we combined class
level {0} vs {1,2,3,4}. At stage 1, DR is in most cases asymp-
tomatic, and challenging to detect even for experienced oph-
thalmologists. As all fundus datasets were fully anonymous, no
approval from an Ethics Board was needed for this part of the
study.

Development dataset. The dataset used to develop the inher-
ently interpretable deep learning model was obtained from the
Kaggle Diabetic Retinopathy challenge [20] which initially
contained records of 44, 351 subjects with 88, 702 retinal fun-
dus images from both eyes (figure 1a). After an automated
quality filtering using an ensemble of EfficientNet models [32]
trained on the ISBI2020 1 challenge dataset, a total of 45, 923
images from 28, 984 subjects were used for training, with 73%
of images in the healthy class and 27% in the DR class. The
dataset was split into training, validation, and test folds with
75%, 10%, and 15% of images, respectively, making sure that
all images from the same subject were allocated to the same
fold. The training fold was used for model fitting, the valida-
tion fold for model selection and hyperparameter tuning, and
the test fold for internal evaluation.

1https://isbi.deepdr.org/challenge2.html
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Figure 1: Overview of the development data and proposed inherently interpretable deep learning framework sparse BagNet presented in this study
(a) Summary of the development dataset used to build the model, as well as the data used in the retrospective reader study. (b) Sparse BagNet architecture. (b1) As
a preliminary step, the retinal fundus image is implicitly split into many overlapping small patches of size 33 × 33. (b2) All patches are fed to the model backbone,
which processes them in parallel. (b3) The BagNet backbone generates a heatmap that depicts the local disease evidence of individual patches. (b4) The values of
the heatmap are averaged and used as the final logit for classification. (b5, b6) The logits are fed into a softmax function which provides the probability distribution
of the output, and then patches of suspect regions based on the heatmaps can be requested and viewed by a clinician to understand the classification results.

To evaluate the explanations provided by the explainable
sparse BagNet model, three ophthalmologists (authors AR,
LaK, and NS with 5, 9, and 14 years of experience respec-
tively) marked the location of DR-related lesions on 65 ran-
domly selected fundus images from the test set (20 grade 1 and
45 grade 2) using a custom-written annotation browser inter-
face (appendix figure A1) based on the Python web framework2

Django (version 4.2.1) with a secure PostgreSQL database (ver-
sion 15.3) and a Javascript front-end (appendix figure A1). An-
notators were asked to mark “Microaneurysms (MA)”, “Hem-
orrhages (HE)”, “Exudates (EX)”, “Soft Exudates (SE)” or
“Other” for lesions visible on the fundus image. We combined
the annotations of all graders into a consensus annotation for
each image (appendix table A3). We also assessed the consis-
tency between ophthalmologists’ annotations by calculating the
dice between their annotations, showing that identifying DR-
related lesions is a difficult task (appendix table A4).

External datasets. Additional fundus data sets were obtained
from various sources (table 1) and were used for external eval-
uation of the model to assess the generalization performance.
In addition to reference DR grades, some of these external
datasets [21, 22, 23, 24, 25] contained pixel-wise annotations
for disease-related lesions. We used these additional anno-
tations to evaluate the performance of the interpretable deep-
learning model at localizing DR-related lesions.

2available at https://github.com/berenslab/retimgtools/

releases/tag/v1.1.0

Preprocessing. Raw fundus images were preprocessed by
cropping them to a square size of 512 x 512 pixels using a circle
fitting method [33]. Then, image intensities were normalized by
the mean and standard deviation of the training set. We applied
this preprocessing procedure to all the fundus images from all
datasets with the same parameters.

2.2. Inherently interpretable deep learning model for Diabetic
Retinopathy detection

Architecture. We trained and evaluated an inherently inter-
pretable deep convolutional neural network (sparse BagNet
[17, 18]) for early DR detection. The sparse BagNet is an im-
plicitly patch-based model based on bag-of-local features and
aggregates local evidence from interpretable heatmaps to make
predictions (figure 1b). It takes a two-dimensional fundus im-
age as input (figure 1b.1) and outputs a binary prediction, which
indicates the absence or presence of DR, together with the con-
fidence as the probability score.

In contrast to other deep learning models, the sparse Bag-
Net architecture is designed to be inherently interpretable, as
the input image is implicitly split into many small, overlapping
patches (size q = 33x33 pixels corresponding to the size of the
model’s effective receptive field with stride s = 8; figure 1b.1),
which are independently processed in parallel (figure 1b.2) to
compute the local evidence for the presence of DR. The patch-
wise predicted local evidence values are combined into a single
class evidence map corresponding to a downsampled version of
the input image (figure 1b.3), which then is aggregated using
average pooling and passed through a softmax function (figure
1b.4) to output the probability distribution of DR (figure 1b.5).
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Dataset Origin Number of images LesionAll Healthy DR
Kaggle [20] USA 6, 956 5, 118 1, 838 65
IDRiD [21] India 512 168 348 81
E-Ophtha [22] France 434 260 174 174
FGA-DR [23] UAE 1, 841 101 1, 740 1, 740
DIARETDB1 [24] Finland 89 05 84 84
DDR [25] China 12, 513 6, 265 6, 248 755
DR2 [26] Brazil 445 300 145 -
APTOS [27] USA 3, 662 1, 805 1, 857 -
FCM-UNA [28] Paraguay 757 187 570 -
Messidor-1 [29] France 1, 200 546 654 -
Messidor-2 [29, 30] France 1, 744 1, 017 727 -

Table 1: Summary of the internal and external validation datasets used to evaluate the models
“Origin” refers to the country where the data was collected. “Lesion” refers to the number of images in the dataset with lesion annotations. The Kaggle dataset
(first row, shaded in gray) is the internal dataset used to evaluate the model, while the other datasets were used for external validation to assess the generalization
properties of the trained model.

Crucially, we employ a ℓ1-penalty on the local evidence predic-
tions to encourage a sparse class evidence map.

After inference, the model can support screening not only
with the final prediction but also with the class evidence map
(figure 1b.3) highlighting the contribution of small local regions
to the final prediction. To this end, the evidence map is upsam-
pled to the full image resolution and overlaid on the input im-
age. In contrast to post-hoc gradient-based methods [13], the
class evidence map provided by the sparse BagNet is a trans-
parent part of the actual decision-making process and faithfully
captures the local evidence. We supplement the class evidence
map by extracting patches from regions with high DR evidence
(figure 1b.5).

Training procedure. We trained the model on the training set
by minimising the following loss function including the ℓ1-
penalty:

L
(
(X, θ), y

)
= CE

(
f (X, θ), y

)
+ λ
∑
i, j,c

|Ai j
c |.

Here, X ∈ RH×W×C denotes the input image with H,W,C being
height, width, and the number of channels, CE is the cross-
entropy, y are the reference class labels, f is the model with
parameters θ, and Ac denotes the evidence map of class c. The
sparsity of the evidence maps depends on the hyperparameter
λ.

We initialized the model with weights pre-trained on Ima-
geNet and then retrained and optimized for accuracy on the
Kaggle DR dataset for 100 epochs (see Sec. 2.1). We used
the stochastic gradient descent optimizer with an initial learn-
ing rate of 10−3, and a clipped cosine learning rate scheduler
with a minimum value set to 10−4. We performed data augmen-
tation during training by applying random cropping, flipping,
color jitter, translation, and rotation following [34]. The spar-
sity hyperparameter λ was chosen based on the classification
accuracy on the validation set (appendix figure A2). For com-
parison, we trained a standard black-box ResNet-50 [35] using
the same settings.

2.3. Clinical user study for AI-based decision support
Study dataset. The user study was designed to evaluate the use-
fulness of the explanations provided by the inherently inter-
pretable deep learning model in clinical practice. The dataset
for each grading task (see below) consisted of 60 fundus images
from the internal test set, where 20 images were sampled from
grade 0, grade 1, and grade 2 respectively. For each grade, 15
images were correctly classified by the network and 5 falsely,
making this a challenging screening task for clinicians. Thus,
the fraction of images with DR in the user study was 66% and
the deep learning model achieved an accuracy of 75% by de-
sign. Image grading was based solely on the fundus image and
AI support, but no additional clinical data were provided.

Study design. Six trained ophthalmologists with a median clin-
ical experience of 9 years (4 − 17 years) participated in the
reader study (including authors LaK, AR, and NS). The study
consisted of three tasks: In task 1 (referred to as “H”), partic-
ipants were asked to grade fundus images without AI support
(appendix figure A3). In task 2 (“H+AI”), participants were ad-
ditionally provided with the class predicted by the deep learn-
ing model and its confidence (appendix A4). Finally, in task
3 (“H+XAI”), participants were additionally shown model ex-
planations in the form of up to 12 bounding boxes around the
regions from the class evidence map with the highest evidence,
with bounding boxes matching the effective receptive field size
and depicting the local image patches that contribute most to
the global class evidence (appendix A5).

For the three grading tasks, readers were instructed to clas-
sify each fundus image into two classes (“No DR” and “DR”).
They were told to classify an image as “DR” even if they
thought it only contained signs of mild non-proliferative DR
(grade 1). None of the readers had access to the true labels.
For task 3, readers were told that some bounding box explana-
tions may contain healthy regions, as the algorithm also gener-
ated bounding boxes for healthy images erroneously classified
as DR by the sparse BagNet model. In addition to the assigned
class, we recorded the time it took for the reader to grade each
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image and asked them to rate their confidence on a scale from
1 to 5. Ethical approval for the study was obtained from the
Ethics Committee at the University Hospital Tübingen (Ref No.
249/2023BO2).

A custom-written browser interface based on the Python web
framework Django (version 4.2.1) with a secure PostgreSQL
database (version 15.3) and a JavaScript front-end was used to
carry out the study (appendix figure A3-A5). The tool showed
the fundus image, and response options and provided a digital
magnifier to enlarge small image regions.

2.4. Evaluation criteria and statistical analysis

Criteria for evaluating the performance of the inherently in-
terpretable deep learning model were specified before the start
of the study based on previous work [17]. We evaluated three
aspects of the model’s quality:

1. DR screening performance compared to a regular deep
learning model, within and across datasets.

2. The quality of the class evidence maps and derived bound-
ing boxes in terms of lesion localization.

3. The usefulness of the inherently interpretable deep-
learning model and the derived bounding boxes for deci-
sion support.

DR screening performance. The primary measure of DR
screening performance was the accuracy of the model for early
DR detection using the reference labels. Additionally, we eval-
uated the area under the receiver-operating curve (AUC), sensi-
tivity, specificity, and precision. All measures were computed
on the internal test set as well as on the ten external datasets
(table 1). The model was not retrained or fine-tuned before as-
sessment on the external datasets. All measures were computed
using the scikit-learn package (v 1.0.2) and confidence intervals
were computed using a bootstrap procedure with 1000 unstrat-
ified resamples [36].

Quality of class evidence maps. To measure the quality of the
class evidence maps and the derived bounding boxes for le-
sion localization, we calculated the proportion of highlighted
regions (regions within the bounding box) that contained anno-
tated lesions (“localization precision”). To this end, we used
the annotations collected for this study on 65 images from the
test set, as well as those external datasets containing pixel-level
annotations (table 1). We did not evaluate the fraction of lesions
detected by our model (“recall”), as we did not train the model
for lesion detection, and diagnostic support does not require an
exhaustive detection of all lesions.

Statistical analysis of decision support. We measured the per-
formance of the readers in our clinical user study (see Sec. 2.3
as the accuracy of the reader’s decision with respect to the ref-
erence labels. To assess the effect of the task and DR refer-
ence grade statistically, we fit the responses with a generalized
linear model (R, function glm, v 4.0.3) with predictor task or
with predictors task and DR grade including interactions. If we
found significant predictors at the α = 0.05 level, we computed

the marginal means and 95%-confidence intervals (package em-
means, v 1.5.3) as well as the respective contrasts between con-
ditions for post-hoc testing. Tukey’s method was used for cor-
recting for multiple comparisons. We used the same procedure
for analyzing the measured grading time and the reported con-
fidence, but used a linear model (function lm) instead.

2.5. Role of the funding source

The funders of this work had no role in the study design,
collection, analysis, and interpretation of data, the writing of the
report, nor in the decision to submit the paper for publication.

3. Results

We trained and evaluated an inherently interpretable deep
learning model (“sparse BagNet”) for early DR screening (fig-
ure 1b, see Sec. 2.2). We first evaluated screening performance
for early DR against the state-of-the-art non-interpretable
black-box model (“ResNet50”) on the internal test set of the
development dataset and a large number of additional datasets
(see Sec. 2.1 and table 2).

On the internal test set (table 2, top row), the sparse Bag-
Net performed well and was comparable to the state-of-the-art
model (accuracy: 0.906, 95% CI [0.900 − 0.913]; AUC: 0.904
[0.894 − 0.913]; sensitivity: 0.709 [0.688 − 0.729]; specificity:
0.977 [0.973 − 0.981]; precision: 0.918 [0.903 − 0.932]) de-
spite the difficulty of screening for early DR, which includes
cases with Non-Proliferative DR (NPDR) with comparably mi-
nor abnormalities in the fundus image. Note that these numbers
are therefore lower than those reported in other papers for DR
screening [7], as most papers evaluate deep learning models for
identifying DR starting at moderate NPDR. Despite the diffi-
cult task, the inherently interpretable model thus detected 7 out
of 10 individuals with a reference label of at least mild NPDR,
and the number of false positives was low, with 91 out of 100
positively screened individuals having a DR reference label.

The performance of the sparse BagNet also generalized to
external datasets, which partially exhibited strong distribution
shifts compared to the development dataset due to the different
origin composition (table 1, second column). On most datasets,
the model achieved similar performance as on the development
dataset, as well as similar performance to the state-of-the-art
black-box model. The particularly low performance on the
FCM-UNA and FGA-DR datasets could be explained by the
relatively low quality of most images in the FCM-UNA dataset
and the large intensity variation of the FGA-DR dataset (ap-
pendix A6). Taken together, our results show that the inherently
interpretable sparse BagNet architecture achieves state-of-the-
art performance on a wide variety of datasets.

The key advantage of our inherently interpretable model is
that the local disease evidence is explicitly represented in a class
evidence map (figure 1b.3 and 2a-b). During training, the class
evidence map is encouraged to be sparse, such that the final loss
function balances prediction accuracy and an interpretable map.
At each location in the map, the color indicates the model out-
put for an individual image patch (see Sec. 2.2). We detected the
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Dataset Accuracy AUC Sensitivity Specificity Precision Loc. precision
Bag. .906 (.900 - .913) .904 (.894 - .913) .709 (.688 - .729) .977 (.973 - .981) .918 (.903 - .932) .960 (.941 - .976)

Kaggle
Res. .914 (.907 - .921) .935 (.927 - .943) .765 (.745 - .784) .967 (.962 - .972) .894 (.878 - .908) -

.891 (.864 - .917) .879 (.838 - .913) .951 (.927 - .972) .768 (.699 - .828) .895 (.861 - .925) .811 (.793 - .828)
IDRiD

.882 (.851 - .909) .864 (.822 - .902) .963 (.942 - .981) .714 (.639 - .781) .875 (.84 - .908) -

.903 (.864 - .917) .944 (.838 - .913) .920 (.927 - .972) .892 (.699 - .828) .851 (.861 - .925) .664 (.636 - .692)
E-Ophtha

.933 (.851 - .909) .972 (.822 - .902) .966 (.942 - .981) .912 (.639 - .781) .880 (.840 - .908) -

.799 (.781 - .819) .789 (.752 - .823) .811 (.793 - .830) .594 (.500 - .687) .972 (.963 - .980) .881 (.877 - .886)
FGA-DR

.763 (.743 - .781) .816 (.768 - .858) .764 (.743 - .783) .743 (.653 - .819) .981 (.973 - .987) -

.831 (.753 - .899) .931 (.870 - .981) .821 (.733 - .898) 1 1 .889 (.870 - .908)
DIARETDB1

.742 (.652 - .831) .811 (.715 - .900) .738 (.640 - .829) .800 (.333 - 1.00) .984 (.950 - 1.00) -

.825 (.818 - .832) .926 (.922 - .931) .669 (.657 - .681) .980 (.977 - .984 .971 (.966 - .976) .965 (.961 - .970)
DDR

.887 (.881 - .892) .963 (.960 - .966) .800 (.790 - .810) .973 (.968 - .977) .967 (.962 - .972) -

.879 (.847 - .908) .922 (.889 - .951) .662 (.584 - .742) .983 (.968 - .997) .950 (.905 - .990) -
DR2

.876 (.845 - .906) .866 (.825 - .905) .669 (.591 - .742) .977 (.959 - .993) .933 (.884 - .975) -

.973 (.968 - .979) .995 (.992 - .996) .982 (.975 - .987) .965 (.956 - .973) .966 (.958 - .974) -
APTOS

.949 (.942 - .956) .972 (.965 - .978) .942 (.931 - .952) .956 (.946 - .965) .956 (.947 - .966) -

.773 (.744 - .802) .936 (.918 - .952) .702 (.664 - .738) .989 (.972 - 1.00) .995 (.987 - 1.00) -
FCM-UNA

.877 (.853 - .900) .967 (.954 - .979) .840 (.811 - .868) .989(.971 - 1.00) .996 (.989 - 1.00) -

.889 (.871 - .907) .943 (.929 - .955) .832 (.804 - .859) .958 (.939 - .974) .959 (.941 - .975) -
Messidor-1

.893 (.876 - .909) .954 (.942 - .965) .852 (.823 - .878) .943 (.923 - .963) .947 (.928 - .964) -

.829 (.812 - .847) .876 (.859 - .894) .750 (.719 - .785) .886 (.865 - .906) .825 (.794 - .853) -
Messidor-2

.851 (.835 - .869) .925 (.912 - .938) .794 (.763 - .823) .893 (.875 - .913) .841 (.815 - .868) -

Table 2: Summary of the classification performance with confidence intervals (CIs) computed at 95% using bootstrapping (n=1000)
“AUC” refer to the receiver-operating curve. “Loc. precision.” refers to the localization precision of the sparse BagNet at localizing lesions from annotated
images. For each dataset, the first row shows the performance of the interpretable sparse BagNet model, while the second row shows the performance of the baseline
black-box ResNet-50 model. The Kaggle dataset (first row, shaded in gray) is the internal dataset used to evaluate the model, while the other datasets were used for
external validation to assess the generalization properties of the trained model.

regions with the highest evidence and placed bounding boxes
corresponding to the patch size around these points (figure 2c).
Although the model was never trained with pixel-level annota-
tions or supervision signals other than the image-level DR ref-
erence label, the highlighted regions typically contained DR-
related lesions such as microaneurisms, drusen, or hemorrhage
with high precision (figure 3).

We quantitatively evaluated how well the class evidence
maps provide information about the location of disease-related
lesions using a subset of images from the test set of the de-
velopment dataset (figure 3) as well as external datasets with
pixel-level annotations (table 1). The class evidence maps pre-
cisely localized DR lesions, as most regions flagged as suspi-
cious indeed contained annotated lesions (table 2, last column).
For the images from the development dataset, we obtained a
precision of 0.960 (95% CI [0.941− 0.976]), with minor differ-
ences between images with mild and moderate NPDR (0.783
vs. 0.970). Notably, our model generalized well to external test
sets, with precision ranging from 0.664 to 0.965 (table 2, last
column). The particularly low localization precision (0.664) on
the E-Ophtha dataset could be explained by the fact that annota-
tions were only provided for “Microaneurysms” and “Exudate”
lesions, while the images could contain other DR-related le-
sions. To summarize, the class evidence map extracted from the
inherently interpretable sparse BagNet model provided highly
precise localization of disease-related lesions.

We then investigated whether our interpretable deep learn-
ing model could effectively aid clinicians in detecting DR via
a retrospective reader study with six experienced ophthalmolo-

gists screening fundus images for the presence of early DR with
various levels of AI assistance (see Sec. 2.3).

Without AI assistance (labeled “H”) ophthalmologists
reached a mean classification accuracy of 0.611 (95% CI
[0.560 − 0.660]; figure 4a). Their accuracy increased sig-
nificantly to 0.758 ([0.711 − 0.800], p= 0.0001, post-hoc test
with Tukey’s correction for multiple comparisons, see Sec. 2.4)
when they had access to the deep learning model’s predic-
tion and confidence (“H+AI”). They achieved similar perfor-
mance with additional access to AI explanations in the form
of bounding boxes around suspicious regions extracted from
the class evidence maps (“H+XAI”) at an accuracy of 0.786
[0.741 − 0.825].

We studied ophthalmologists’ performance in screening for
DR in fundus images of different disease grades in more de-
tail (figure 4b). Without AI support, detecting images with
mild DR (grade 1) was the most challenging with compara-
bly low performance, which improved with AI support. For
healthy images, screening performance improved significantly
with any form of AI decision support (H: 0.567, [0.477−0.652];
H+AI: 0.842, [0.765− 0.897]; H+XAI: 0.817, [0.737− 0.876];
H vs. H+AI: p< 0.0001; H vs. H+XAI: p= 0.0001; H+AI
vs. H+XAI: p= 0.8645), while for images with mild DR, we
observed that screening only improved significantly for AI sup-
port with explanations (H: 0.483, [0.395−0.572]; H+AI: 0.617,
[0.527 − 0.699]; H+XAI: 0.733, [0.647 − 0.805]; H vs. H+AI:
p= 0.0962; H vs. H+XAI: p= 0.0003; H+AI vs. H+XAI:
p= 0.1326). For images with moderate DR, AI support had
no significant effect on screening performance. Taken together,
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Figure 2: Example images with heatmap visualizations and bounding boxes around relevant regions
(a) Examples of retinal fundus images from different DR grades (top to bottom: mild NPDR, moderate NPDR and severe NPDR). (b) Heatmap generated by the
sparse BagNet, where red regions provide evidence for at least mild DR. (c) Bounding boxes around suspicious regions based on the local evidence map. In some
cases, the bounding boxes are placed in regions for which there is no visible evidence due to the scaling of the colormap. Yet, these evidence values are also strictly
positive. (d) Most suspicious regions of (c) enlarged and sorted with decreasing evidence scores. Depending on the image grade, the suspicious regions contain
various DR-related lesions such as microaneurisms, drusen, or hemorrhage.

this provides evidence that giving ophthalmologists access to
AI support led to superior DR screening performance, with ex-
planations based on the sparse BagNet model being most effec-
tive for difficult diagnostic decisions.

We next studied whether AI decision support would not
only allow ophthalmologists to make more accurate screen-
ing decisions but also reach their decisions faster. We found
that the decision time was significantly reduced when provid-
ing ophthalmologists AI support with explanations compared
to both other tasks (figure 4c, H: 15.2 s [14.1-16.4]; H+AI:
15.9 s [14.7-17.1]; H+XAI: 11.7 s [10.8-12.6]; H vs. H+AI:
p = 0.7435; H vs. H+XAI: p < 0.0001; H+AI vs. H+XAI: p
< 0.0001). This reduction was present at all disease stages,
with a significant effect of AI decision support with expla-
nations for healthy images (figure 4d; H: 15.8 s [14.1-17.7];
H+AI: 16.3 s [14.5-18.3]; H+XAI: 11.2 s [10.0-12.6], H vs.
H+AI: p = 0.9153; H vs. H+XAI: p < 0.0001; H+AI vs.
H+XAI: p < 0.0001), mild DR (H: 15.2 s [13.5-17.0]; H+AI:
17.5 s [15.6-19.7]; H+XAI: 12.1 s [10.8-13.6], H vs. H+AI:
p = 0.1843; H vs. H+XAI: p = 0.180; H+AI vs. H+XAI: p <
0.0001), as well as moderate DR (H: 13.8 s [12.3-15.5]; H+AI:

11.7 s [10.4-13.1]; H+XAI: 10.1 s [9.0-11.3]; H vs. H+AI:
p = 0.1058; H vs. H+XAI: p = 0.004; H+AI vs. H+XAI:
p = 0.1724). In summary, this indicates that decision sup-
port with accurate explanations provided by the sparse BagNet
model could reduce screening times across all disease levels.

We also analyzed whether AI decision support would change
the confidence with which the ophthalmologists could grade
the images, but did not find a significant effect of AI support
(H: 3.8 [3.7-3.9]; H+AI: 3.7 [3.6-3.9]; H+XAI: 3.6 [3.5-3.7],
H vs. H+AI: p = 0.6806; H vs. H+XAI: p = 0.0543; H+AI
vs. H+XAI: p = 0.3023). We conclude that self-reported confi-
dence may not be a reliable measure of grader uncertainty com-
pared to recorded decision time.

We finally analyzed whether the positive effect on accuracy
was dependent on whether the deep learning model had clas-
sified the image correctly or not, as AI support has been re-
ported to be detrimental in case of model errors [37]. In line
with the results above, we found that screening performance
and decision time significantly improved for cases in which the
deep learning model had made a correct decision (appendix fig-
ure 4a-b; accuracy, H vs. H+AI: p < 0.0001; H vs. H+XAI:
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Figure 3: Quality of lesion detection
Example fundus images with DR, with DR lesions (combined annotations by all clinicians) marked as cyan dots. Based on the heatmaps provided by our model,
bounding boxes were drawn around the regions with positive local evidence.

p < 0.0001; H+AI vs. H+XAI: p < 0.0001; time, H vs. H+AI:
p = 0.8178; H vs. H+XAI: p < 0.0001; H+AI vs. H+XAI:
p < 0.0001). For cases in which the model had made an in-
correct decision, we neither detected positive nor negative ef-
fects on accuracy (H vs. H+AI: p < 0.3216; H vs. H+XAI:
p = 0.4953; H+AI vs. H+XAI: p = 0.9480) and slightly pos-
itive effects on decision time (H vs. H+AI: p = 0.4557; H vs.
H+XAI: p = 0.0941; H+AI vs. H+XAI: p = 0.0031).

4. Discussion

Summary of the findings. In this study, we trained and evalu-
ated an inherently interpretable deep learning model for early
diabetic retinopathy detection, which is a challenging task even
for experienced ophthalmologists. Our model achieved a clas-
sification performance comparable to the black-box baseline
model in the internal test set and on ten publicly available ex-
ternal datasets. In addition to a binary diagnostic decision, our
model provides explanations via interpretable evidence maps,
which highlight regions of the image used by the network in
making its decisions. In a retrospective reader study, we found
that highlighting these regions during grading helped ophthal-
mologists improve their grading performance, especially for
difficult cases, while reducing their decision time. Our study
further showed that the errors of the AI model did not negatively
affect decision-making by ophthalmologists, in contrast to ear-
lier human-AI studies [37, 38]. A limitation of our model is that
it was trained on a dataset from North America, and may need
to be fine-tuned on data from the intended target population, al-
though its generalization results on ten additional datasets were
promising.

Need for interpretable AI in medicine. As the potential of AI
for medical image analysis has become evident [39, 40], such
systems have reached performance close to, or even superior
to, those of clinical experts in a variety of tasks [41]. More re-
cently, the focus has shifted towards AI systems assisting clin-
icians in making better decisions [37]. In this setting, clini-
cians need to understand how decisions are formed by the AI
model, such that transparency and interpretability of medical

AI systems have become important aspects [13, 14, 15, 42].
In agreement, the need for trustworthy and transparent AI sys-
tems and effective human/AI collaboration has been identified
in standardized guidelines to facilitate their adoption in clini-
cal practice [43, 42]. While this generally poses challenges in
balancing high performance and interpretability [43], our study
has shown that inherent interpretability can be achieved without
significant performance trade-offs if the inductive biases of the
interpretable model are met – in our case, as early DR causes
only very localized lesions in the retina. Such a model can assist
clinicians in mitigating the challenge of early and accurate diag-
nosis of presymptomatic diseases, such as diabetic retinopathy
detection. One limitation of our model is that it may not pro-
vide good explanations if its inductive bias is not matched to
the disease, e.g. when lesions cover large parts of the retina as
in more advanced DR grades [17].

Validation of AI systems in real-world application settings and
application readiness. To improve the integration of AI sys-
tems in clinical settings, their design must be carried out in col-
laboration with the identified stakeholders for whom the AI sys-
tem is intended, to ensure that the resulting model combines dif-
ferent expertise from the beginning and meets the clinical task
for which it was developed, including clinicians and patients.
Early planning of the intended use of a medical AI model is
critical, as it allows to maximize its alignment with the clinical
application, reducing the potential for complications at later de-
velopment stages or during application. Despite the success of
AI models in healthcare, comparatively few studies have eval-
uated their usefulness in collaboration with healthcare profes-
sionals in real or retrospective clinical settings [41, 44].

Here, we validated our model for clinical decision support
in early DR in a retrospective, simulated clinical reader setting
using an online platform. Given the clear evidence for its use-
fulness in screening for early DR, the next step towards clinical
readiness would be to evaluate the system in a prospective study
in a dedicated screening setting, e.g. in specialized diabetic
clinics, as done for breast cancer screening in [38]. Once the
system has also been validated in this context, there is a com-
parably straightforward path towards deployment as a medical
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Figure 4: Main results of the retrospective reader study with six experienced ophthalmologists
(a) Ophthalmologists’ accuracy with different levels of AI assistance. Ophthalmologists’ accuracy is low without AI assistance “H”, then increases significantly when
they have access to AI prediction and confidence “H+AI”, and increases further slightly with additional access to AI explanations “H+XAI”. (b) Ophthalmologists’s
accuracy in screening for DR on fundus images of different disease grades. For healthy images “grade 0”, accuracy improved significantly with any form of AI
decision support (“H+AI” or “H+XAI”) while for images with mild DR (“grade 1”), screening improved significantly for AI support with explanation (“H+XAI”).
For images with moderate DR (“grade 2”), AI support had no significant effect on screening performance. (c) Ophthalmologists’s decision time in screening DR
with different levels of AI assistance. The decision time is significantly reduced with AI support (“H+XAI”) with explanation compared to the other tasks (“H”, and
“H+AI”). (d) Ophthalmologists’s decision time in screening for DR on fundus images of different disease grades. The reduction in the decision time is present at all
disease stages with a significant effect of AI decision support with explanation for healthy images (“grade 0”), mild DR (“grade 1”), and moderate DR (“grade 2”).

product, as already several similar systems for DR screening
have received regulatory clearance [8] and could be upgraded
with an interpretable model. We believe that following this
route may enable more accurate and faster DR screening, par-
ticularly in low-resource settings where the prevalence of di-
abetes is high and there is a shortage of ophthalmologists to
monitor patients’ eye conditions.

5. Data Sharing

The implementation of our sparse BagNet model is available
at GitHub3. The annotations performed for this study on se-
lected Kaggle database images, the study data, and the analysis
are available in the same GitHub repository.
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[44] M. D. Abràmoff, P. T. Lavin, M. Birch, N. Shah, J. C. Folk, Pivotal trial
of an autonomous ai-based diagnostic system for detection of diabetic
retinopathy in primary care offices, NPJ digital medicine 1 (1) (2018) 39.

10

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.27.24309574doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.27.24309574
http://creativecommons.org/licenses/by/4.0/


Figure A1: Web interface for the annotation task
A fundus image is shown and based on it, the annotator is asked to annotate lesions related to Diabetic Retinopathy. By moving the mouse over a region of the
image, an enlarged version of that region is displayed. All images are from patients with DR of grade 1 (“mild DR”) or 2 (“moderate DR”). Each lesion is marked
by selecting the type (Microaneurysms: MA, hemorrhages: HE, exudates: EX, soft exudate: SE, artifact, or any other lesions) and clicking on the image location.
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Precision
Grader 1 0.709
Grader 2 0.610
Grader 3 0.923
Random 0.102
Grader 1 ∪ Grader 2 ∪ Grader 3 0.932
Grader 1 ∩ Grader 2 ∩ Grader 3 0.545

Table A3: Summary of model performance on localizing DR-related lesions from graders’ annotations
The precision of the model on each clinician annotation is calculated as the proportion of bounding boxes from regions highlighted on heatmaps containing lesions
annotated by a grader. The random precision is obtained by drawing 20 random bounding boxes over each annotated image, excluding those falling in regions
containing more than 10% black pixels. The union “∪” gives the precision of the model with the combined clinicians’ annotation masks, while the intersection “∩”
gives the precision of the model with reference annotation masks obtained as the intersections of clinicians’ annotation over each image.

Dice (s=8) Dice (s=32) Dice (s=33)
Grader 1 - Grader 2 0.609 0.613 0.597
Grader 1 - Grader 3 0.545 0.543 0.542
Grader 2 - Grader 3 0.494 0.485 0.504
Grader 1 - Grader 2 ∪ Grader 3 0.546 0.551 0.544
Grader 2 - Grader 1 ∪ Grader 3 0.480 0.479 0.486
Grader 3 - Grader 1 ∪ Grader 2 0.613 0.613 0.616
Grader 1 - Grader 2 ∩ Grader 3 0.609 0.602 0.597
Grader 2 - Grader 1 ∩ Grader 3 0.480 0.479 0.486
Grader 3 - Grader 1 ∩ Grader 2 0.402 0.391 0.404

Table A4: Inter-grader performance on 65 fundus images from the internal Kaggle test set annotated by three ophthalmologists
“Grader X - Grader Y” refers to the dice score between grader X and grader Y. The Dice score is calculated for each pair of graders as the overlap between their
annotation using a patch size of 33 × 33 pixels corresponding to the receptive field of the model and considering different strides (s = 8, 32 for overlapping patches
and s=33 for non-overlapping patches). “Grader X - Grader Y ∪ Grader Z” refers to the dice score between grader X, Y, and Z while “Grader Y ∪ Grader Z” is the
union between grader Y and Z, and “Grader Y ∩ Grader Z” is the intersection between grader Y and Z.
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Figure A2: Comparison of the sparse BagNet performance with different regularization values on the validation dataset
The regularization coefficient λ affects the classification performance (accuracy and AUC) of the model. The red points indicate the selected value, which is a
compromise between sparsity and both accuracy and AUC. It also defines the trade-off between the model’s interpretability and classification performance.
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Figure A3: Web interface for the grading task without AI support (“H”)
A fundus image is shown and based on it, the grader is asked to decide whether the corresponding patient has Diabetic Retinopathy (DR) of any severity, including
mild DR. In addition, the grader is asked to rate the confidence of his/her decision on a scale from 1 (least confident) to 5 (most confident). By moving the mouse
over a region of the image, an enlarged version of that region is displayed. The time taken to reach each decision (grading and confidence) is recorded.
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Figure A4: Web interface for the grading task with AI support (“H + AI”)
A fundus image is shown with the model’s prediction and its confidence level (from 0% to 100 %, with 100% being the highest confidence score). Based on this,
the grader is asked to decide whether the corresponding patient has Diabetic Retinopathy (DR) of any severity, including mild DR. In addition, the grader is asked
to rate the confidence of his/her decision on a scale from 1 (least confident) to 5 (most confident). By moving the mouse over a region of the image, an enlarged
version of that region is displayed. The time taken to reach each decision (grading and confidence) is recorded.
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Figure A5: Web interface for the grading task with AI support and explanations (“H + XAI”)
A fundus image is shown with the model’s prediction, its confidence level (from 0% to 100 %, with 100% being the highest confidence score), and explanation in
the form of blue bounding boxes around the regions for which the AI model believes that they contain signs of DR. Based on this, the grader is asked to decide
whether the corresponding patient has Diabetic Retinopathy (DR) of any severity, including mild DR. In addition, the grader is asked to rate the confidence of his/her
decision on a scale from 1 (least confident) to 5 (most confident). By moving the mouse over a region of the image, an enlarged version of that region is displayed.
The time taken to reach each decision (grading and confidence) is recorded.
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Figure A6: Examples of fundus images from each dataset.
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Figure A7: Heatmap with combined clinicians’ annotations of four examples of fundus cases with DR
For each example, the left side shows the heatmap with bounding boxes around the regions of positive activation, while the right side shows the fundus with
clinicians’ annotations and bounding boxes around the regions of positive activations. Sometimes, bounding boxes are placed where the positive evidence (in red)
is very light and difficult to visualize due to the small number of low positive values.
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Figure A8: Analysis of errors of the AI model on accuracy and decision times for different tasks during the retrospective reader study
(a) For all tasks, ophthalmologists’ accuracy is higher when the deep learning model makes the correct decision. For correct classifications, the AI assistance
improves grading accuracy. For incorrect classification, it does not make it worse. (b) Ophthalmologists’ decision time decreases overall when the deep learning
model makes the correct decision. When the AI model is correct, the explanation decreases decision time significantly, while it does not increase the decision time
for incorrect decisions.
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