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65

Abstract66

Objective: Post-stroke epilepsy (PSE) is a major complication that worsens both prognosis and67
quality of life in patients with ischemic stroke. This study aims to develop an interpretable68
machine learning model to predict PSE using medical records from four hospitals in Chongqing.69

Methods:We collected and analyzed medical records, imaging reports, and laboratory test70
results from 21,459 patients diagnosed with ischemic stroke. Traditional univariable and71
multivariable statistical analyses were performed to identify key predictive factors. The dataset72
was divided into a 70% training set and a 30% testing set. To address class imbalance, the73
Synthetic Minority Oversampling Technique combined with Edited Nearest Neighbors was used.74
Nine widely applied machine learning algorithms were evaluated and compared using relevant75
prediction metrics. SHAP (SHapley Additive exPlanations) was used to interpret the model,76
assessing the contributions of different features.77

Results: Regression analyses showed that complications such as hydrocephalus, cerebral hernia,78
and deep vein thrombosis, as well as brain regions (frontal, parietal, and temporal lobes),79
significantly contributed to PSE. Factors like age, gender, NIH Stroke Scale (NIHSS) scores, and80
laboratory results such as WBC count and D-dimer levels were associated with a higher risk of81
PSE. Among the machine learning models, tree-based methods such as Random Forest,82
XGBoost, and LightGBM demonstrated strong predictive performance, achieving an AUC of83
0.99.84

Conclusion: Our model successfully predicts PSE risk, with tree-based models showing superior85
performance. The NIHSS score, WBC count, and D-dimer were identified as the most important86
predictors.87

88

Introduction89

Stroke is the second leading cause of death globally, with an annual mortality of90
approximately 5.5 million, and it is also the leading cause of disability, accounting for 50% of91
cases worldwide [1]. Ischemic stroke comprises about 80% of all stroke cases [2][3]. Post-stroke92
epilepsy (PSE) is a common complication, with studies reporting that 3-30% of stroke patients93
develop epilepsy, which adversely affects their prognosis and quality of life [4]. PSE can worsen94
cognitive, psychiatric, and physical impairments already caused by cerebrovascular disease and95
related conditions [5]. The highest incidence of PSE occurs within the first year after an acute96
stroke, accounting for nearly half of the cases [2]. Thus, early prediction and intervention for97
PSE, especially in ischemic strokes, are critical.98
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Currently, most studies rely on clinical data to build statistical models using survival99
analysis, Cox regression [2][6], and multiple linear regression [7] to create basic models for PSE100
prediction. Last year, Lin et al. developed a radiomics-based model that outperformed101
conventional clinical models in predicting PSE related to intracerebral hemorrhage (ICH). They102
suggested that a combined radiomics-clinical model could improve the assessment of individual103
PSE risk after the first occurrence of ICH, facilitating early diagnosis and treatment [8]. However,104
subsequent research raised concerns about the use of radiomics, indicating a need for further105
investigation [9]. Overall, research on PSE prediction remains limited, with most studies106
focusing on specific risk factors [10][11][8][12] and building simple models, without proposing107
more comprehensive and scientifically robust prediction models.108

Machine learning has gained attention as a powerful tool for building medical models due to109
its ability to process large datasets and complex information. It has been increasingly applied in110
neuroscience and clinical prediction [13][14][15]. Previous studies have used machine learning111
to explore post-stroke cognitive impairments [16], predict stroke and myocardial infarction risks112
in large artery vasculitis patients [14], develop post-stroke depression models based on liver113
function tests [17], and predict hematoma expansion in traumatic brain injury (TBI) [18].114
Machine learning models can automatically manage both linear and complex nonlinear115
relationships between variables and offer insights into how different factors contribute to the116
prediction target—something that is difficult for traditional statistical models. However, machine117
learning requires substantial amounts of data and is prone to overfitting with small sample sizes.118
The quality and volume of input data are critical for the algorithm to detect underlying patterns119
and make accurate predictions.120

This study aims to identify key risk factors from various features extracted from the clinical121
records and test data of ischemic stroke patients. Using these features, we will develop a machine122
learning-based prediction model for PSE. By leveraging early admission data, we seek to123
automatically predict the likelihood of PSE occurrence and provide guidance for clinical124
decision-making and patient care.125
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Result126

Filling of missing data127

Missing values were filled using a Random Forest (RF) model, handling one feature at a128
time. The imputed features were: Plt, WBC, RBC, HbA1c, CRP, TG, LDL, HDL, AST, ALT,129
bilirubin, albumin, urea, creatinine, BUA, PT, APTT, TT, INR, D-dimer, fibrinogen, CK, CK-130
MB, LDH, HBDH, IMA, lactate, anion gap, TCO2, and NIHSS.131

Characteristics of study participants132

A total of 21,459 patients were included in the study. The training set consisted of 15,021133
patients, with a PSE incidence of 4.3%. The test set contained 6,438 patients, also with a 4.3%134
incidence of PSE. The external validation cohort included 536 patients from three hospitals. The135
statistical details of the clinical characteristics are presented in Table 1.136

Statistical analysis indicated that patients with a higher likelihood of developing PSE had137
complications such as uremia, a history of DVT, atrial fibrillation, hyperuricemia, cerebral hernia,138
and hydrocephalus. The affected brain regions included the frontal, parietal, occipital, and139
temporal lobes, as well as the cortex, subcortex, basal ganglia, and hypothalamus. General140
characteristics included age, gender, and NIHSS score. Laboratory indicators associated with a141
higher risk of PSE included WBC count, HbA1C, CRP, triglycerides, AST, ALT, bilirubin, urea,142
uric acid, APTT, PT, D-dimer, CK, CK-MB, LDH, HBDH, IMA, lactate, and anion gap.143
Additionally, significant p-values were found for fatty liver, coronary heart disease,144
hyperlipidemia, and HDL, with low or negative values of these indicators linked to a higher risk145
of secondary complications. The results of the statistical analyses, as well as the univariate and146
multivariate regression analyses, are detailed in Tables 1, 2, and 3.147

Performance of machine learning models148

The relevant performance indicators of the machine learning models are presented in Table149
4, while the ROC curves, calibration curve, and decision curve analysis (DCA) are shown in150
Figure 3. Among all models, tree-based models such as Random Forest (RF), XGBoost, and151
LightGBM had the highest AUC scores, outperforming other models. Notably, Random Forest152
had the highest positive predictive value (PPV) at 0.864, which was the most significant metric153
in our models. Complex machine learning algorithms performed better than traditional logistic154
regression. The Brier score of the calibration curve was 0.006, and the DCA demonstrated good155
clinical decision-making benefits, indicating strong practical value. In the external validation156
cohort, we used RF for predictions, achieving a sensitivity of 0.91 and a PPV of 0.95, confirming157
the model's strong predictive capability.158

Analysis of SHAP risk factors159
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Figure 4 shows the SHAP (Shapley Additive Explanations) values, individual decision160
attempts, and overall decision curves. Among general characteristics, females had a higher rate161
of PSE. A higher NIHSS score was associated with a higher incidence of PSE. Additionally,162
elevated values of WBC count, D-dimer, CRP, AST, CK-MB, HbA1c, bilirubin, TCO2, and163
LDH at admission were linked to a greater likelihood of developing PSE. Conversely, lower164
levels of HBDH, PLT, and APTT were also associated with a higher probability of PSE. The165
specific brain regions affected did not have a significant individual effect on the overall outcome.166
Among complications, hypertension was more strongly associated with PSE development, while167
other conditions, such as coronary heart disease, diabetes, hyperlipidemia, and fatty liver, were168
less likely to be related to the outcome. We used the force plot of the first patient to illustrate169
how different features influenced the prediction. In this case, a prolonged APTT time contributed170
the most to PSE, followed by elevated AST levels, while a low NIHSS score contributed171
negatively to the final result. The decision plot aggregated model decisions to show how172
complex models arrived at their predictions.173

Discussion174

Our study used comprehensive clinical, imaging, and laboratory data from stroke patients to175
develop a predictive model using machine learning algorithms. This model achieved an AUC176
score above 0.95, demonstrating more accurate predictions compared to traditional statistical177
methods. Our research revealed that tree-based ensemble models provided superior predictive178
performance, especially when handling large datasets with high-dimensional features.179

During the modeling process, due to the extreme imbalance between negative and positive180
samples, we applied the SMOTEENN technique to resample the dataset, improving the181
performance of the machine learning models. Through SHAP analysis, we conducted182
interpretability assessments of the model and identified the importance of different features.183

In our study, age and NIHSS scores were treated as continuous variables. We found that184
female patients, older individuals, and those with higher NIHSS scores were more likely to185
develop PSE, consistent with recent studies. Higher NIHSS scores, indicating more severe186
strokes, significantly increased the risk of complications, second only to white blood cell (WBC)187
count and D-dimer in our model [5][19][10][20]. However, there are differing views on the188
effect of age. Some studies [5][21] suggest that age below 65 is a high-risk factor, which aligns189
with our findings, while other studies [22] have found that advanced age is the key factor.190
Yamada et al. [21] also agreed with our study, indicating that female patients have a higher risk191
of complications. On the other hand, Waafi et al. [10] reported that male patients are 3.325 times192
more likely to develop complications, which contradicts our findings.193
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Previous research has shown that patients with diabetes, dyslipidemia, hypertension,194
depression, or dementia are at higher risk of developing vascular epilepsy [12]. In our study,195
statistical analysis and multiple machine learning (ML) models examined the relationship196
between comorbidities and complications. We found that patients with coronary heart disease,197
diabetes, fatty liver, hyperlipidemia, or large artery stenosis or plaques (CCA and ICA) were less198
likely to develop epilepsy. According to the TOAST classification, ischemic stroke is divided199
into five categories: large artery atherosclerosis, cardioembolism, small vessel occlusion, other200
determined etiology, and undetermined etiology. Patients with multiple comorbidities often fall201
into the large artery atherosclerosis and cardioembolism categories, which are more clearly202
defined and easier to treat, resulting in a lower likelihood of epilepsy. In contrast, strokes of203
undetermined etiology tend to have worse prognoses and are more likely to lead to epilepsy.204
Among patients with diabetes, higher HbA1c levels indicate poor blood sugar control and a205
higher risk of complications. Patients with better control of their blood sugar have a lower206
overall risk of developing complications.207

Alain et al. found that cortical infarction is more likely to lead to epilepsy in patients208
hospitalized with anterior circulation ischemic stroke [23]. Lin et al. found that factors such as209
cortical involvement and intracerebral hemorrhage volume increase the likelihood of PSE, which210
is consistent with our findings [8]. Al-Sahli et al. also suggested that cortical brain injury and211
large-area lesions raise the risk of PSE [5][21]. In our study, statistics showed that both cortical212
and subcortical involvement increased the likelihood of PSE, but these regions had less influence213
compared to other features and were not selected in the LASSO regression.214

Previous studies have identified acute infection as a risk factor for ischemic stroke [24]. C-215
reactive protein (CRP) reflects inflammation levels and is an independent prognostic factor [25].216
In our study, both regression and SHAP analysis indicated that WBC count had a significant217
impact among routine blood test parameters, even surpassing the NIHSS score in SHAP analysis.218
A high WBC count may indicate severe inflammation or infection, as well as increased blood219
viscosity, making patients more prone to secondary complications. In general, a high red blood220
cell count and low platelet count also contributed to an increased risk of complications.221

A large-scale study on Chinese individuals found a negative correlation between plasma222
high-density lipoprotein cholesterol (HDL-C) levels and the risk of ischemic stroke, a weak223
positive correlation between plasma triglyceride (TG) levels and stroke risk, and a strong224
correlation between plasma low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B225
levels [26]. High HDL-C levels are linked to better prognosis [27]. Our study aligns with these226
findings, showing that high LDL-C, low HDL-C, and elevated TG levels are more likely to result227
in PSE. This can be understood as high cholesterol and triglyceride levels increase blood228
viscosity and contribute to vascular sclerosis, promoting clot formation [12][28][29]. Higher D-229
dimer levels indicate more significant brain tissue damage, increasing the likelihood of PSE. In230
general, lower activated partial thromboplastin time (APTT) and fibrinogen levels are associated231
with higher PSE risk, while INR, PT, and TT have a smaller impact. Among liver function232
indicators, aspartate aminotransferase (AST) had the greatest influence on PSE. High AST, low233
alanine aminotransferase (ALT), and low albumin levels also had some impact. Lingling Ding et234
al. found that liver enzyme subgroups defined by ALT and AST were linked to higher risks of235
adverse outcomes [30], which is consistent with our findings.236
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Studies have also shown that renal function biomarkers such as urinary microalbumin,237
cystatin C, and creatinine are associated with higher stroke recurrence rates and poorer prognosis238
[30]. In our study, low urea levels and high uric acid levels had a negative impact [31][32][33].239
Our research supports these conclusions. Elevated uric acid levels at admission were positively240
associated with PSE, although patients with a prior diagnosis of hyperuricemia were less likely241
to develop epilepsy. Since uric acid acts as a strong antioxidant and has neuroprotective242
properties [34], patients with normal liver and kidney function and mild hyperuricemia may have243
greater resilience in emergencies [35][36]. However, excessively high uric acid levels suggest244
metabolic disorders and poor liver and kidney function, which are linked to a poor prognosis.245

When stroke patients are admitted, cardiac enzyme tests are often conducted to rule out246
myocardial ischemia. However, studies have shown that elevated CK-MB in stroke patients may247
not be solely heart-related [37]. Cardiac enzymes are important prognostic indicators [38][39]248
and have been incorporated into stroke scores [40]. Some studies have reported a higher249
incidence of abnormal serum cardiac enzyme levels in the acute phase of stroke. While the250
abnormalities are not related to the stroke type, they are associated with stroke severity, with251
patients exhibiting consciousness disorders having a significantly higher incidence of abnormal252
cardiac enzymes than those without such disorders [41]. In our study, CK, CK-MB, and IMA in253
the cardiac enzyme profile had a significant impact and high predictive value, though further254
research is required to understand the specific mechanisms involved [34].255

Although our study incorporated extensive clinical, imaging, and laboratory data to build256
more accurate prediction models using machine learning algorithms, surpassing traditional257
statistical methods, there were still several limitations in the modeling process.258

While the current study offers valuable insights, the data sample may not be fully259
representative, and the model's generalizability requires further evaluation. Although the data260
was collected from multiple tertiary hospitals and includes over 20,000 cases, earlier data was261
lost due to hospital system upgrades. The dataset mainly reflects patients diagnosed within the262
past five years and is predominantly from the Chongqing region, which may limit the model's263
applicability to other geographic areas.264

Additionally, the retrospective nature of the study led to the absence of some important265
predictive indicators. Many potentially valuable features, such as hemorheology,266
thromboelastography, and hormone levels, were missing and had to be excluded. Including these267
features could potentially improve the model's accuracy.268

To enhance the predictive power of the model, it would be beneficial to incorporate more269
data beyond baseline patient characteristics. The current analysis primarily used the results from270
the first examination upon admission, without fully utilizing information from subsequent exams.271
In future research, recurrent neural networks could be employed to extract features from the272
entire sequence of examinations more comprehensively.273

To strengthen the study further, data standardization should be improved, and the number of274
cases and key indicators should continue to grow. Additionally, it would be advantageous to275
explore more advanced scientific methods, such as deep learning, and utilize all available data to276
improve prediction accuracy.277
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Materials and methods278

Research patients279

This study retrospectively included all stroke patients admitted to the Chongqing280
Emergency Center between June 2017 and June 2022 for the development of the prediction281
model. Data from three external validation centers—Qianjiang Central Hospital, Bishan District282
People's Hospital, and Yubei District Traditional Chinese Medicine Hospital—were collected283
between July 2022 and July 2023 to validate and evaluate the model externally. The external284
validation cohort emphasized collecting positive cases to test the model's ability to identify these285
cases accurately.286

Inclusion criteria: (1) Age between 18 and 90 years at admission; (2) Diagnosed with acute287
ischemic stroke and hospitalized for treatment.288

Exclusion criteria: (1) Patients with a history of stroke or transient ischemic attack (TIA); (2)289
Patients with a history of other conditions such as traumatic brain injury, intracranial tumors, or290
cerebral vascular malformations that may cause epilepsy; (3) Patients with a history of epilepsy291
or who have received antiseizure medications for the prevention of seizures or for other diseases292
(such as migraine or psychiatric disorders); (4) Patients who died within 72 hours after stroke293
onset.294

This study collected de-identified data from relevant patients to build a multi-modal stroke295
patient database. The study protocol was approved by the Ethics Committees of Chongqing296
University Center Hospital, Chongqing University Qianjiang Central Hospital, Bishan District297
People's Hospital, and Yubei District Traditional Chinese Medicine Hospital.298

The selection process is outlined in Figure 1. A total of 42,079 records were retrieved from299
the stroke database, and 24,733 patients were diagnosed with ischemic or lacunar stroke with300
new onset. Hemorrhagic strokes (4,565), a history of stroke (2,154), TIA (3,570), unclear cause301
strokes (561), and records with missing essential data (6,496) were excluded. Patients whose302
seizures might have been caused by other factors (such as brain tumors, intracranial vascular303
malformations, or traumatic brain injury) (865), those with a seizure history (152), and patients304
who died in the hospital (1,444) were also excluded. Additionally, patients lost to follow-up305
(those without outpatient records or unreachable by phone) or who died within three months of306
the stroke incident (813) were excluded. Finally, 21,459 cases were included in the study.307

308

Data collection309

We extracted all relevant records and data from the hospital databases. Using310
PostgreSQL, we wrote Structured Query Language (SQL) to manage the data as follows:311

(1) General Information: This included gender, age, and NIH Stroke Scale (NIHSS) score at312
admission.313

(2) Comorbidities and Complications: These included uremia, previous deep vein314
thrombosis (DVT), diabetes mellitus, hypertension, coronary atherosclerosis, atrial fibrillation,315
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cerebral hernia, hydrocephalus, hypoproteinemia, hyperuricemia, hyperlipidemia, internal carotid316
stenosis, and common carotid stenosis.317

(3) Brain Involvement (CT or MRI records): We recorded involvement of the cortical lobes318
and subcortical areas, including the frontal, parietal, temporal, occipital, and insular lobes, as319
well as the basal ganglia, internal capsule, brain stem, cerebellum, periventricular area, centrum320
semiovale, and thalamus. The extent of cortical involvement (frontal, parietal, temporal, occipital,321
and insular lobes) was scored, with each lobe contributing 1 point. Similarly, subcortical322
involvement (basal ganglia, internal capsule, brain stem, periventricular area, thalamus, and323
cerebellum) was scored with each area contributing 1 point.324

(4) Vascular Involvement (CTA, MRA, or DSA records): We recorded the presence of325
vascular stenosis or occlusion in the anterior cerebral artery (ACA), middle cerebral artery326
(MCA), posterior cerebral artery (PCA), vertebral artery (VA), and basilar artery (BA).327

(5) Key Laboratory Indicators: These included blood lipids such as triglycerides (TG), high-328
density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL); liver329
function indicators such as alanine transaminase (ALT), aspartate aminotransferase (AST),330
bilirubin, and albumin; renal function markers such as urea, blood uric acid (BUA), and331
creatinine; blood gas parameters such as lactate, anion gap, and total carbon dioxide (TCO2);332
coagulation markers such as international normalized ratio (INR), prothrombin time (PT),333
activated partial thromboplastin time (APTT), thrombin time (TT), D-dimer, and fibrinogen; and334
myocardial enzymes such as creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate335
dehydrogenase (LDH), ischemic modified albumin (IMA), and α-hydroxybutyrate336
dehydrogenase (HBDH).337

338

Data processing and model building339

Processing of Missing Data: We recorded all laboratory indicators from the first set of tests340
after stroke admission (every stroke patient undergoes routine blood tests, and liver and kidney341
function assessments). Indicators with more than 10% missing data were excluded. The342
remaining indicators with missing values were imputed using the random forest algorithm with343
default parameters. We processed the features in order of missing values, starting with those that344
had the least missing data (as this requires the least information for imputation). When imputing345
a feature, missing values in other features were temporarily replaced with 0. After each346
regression prediction, the predicted value was inserted into the original feature matrix before347
proceeding to the next feature. Once all features were processed, the dataset was complete.348

Distribution of Characteristics: We used univariate analysis to compare the distribution of349
characteristics between the PSE-negative and PSE-positive groups. The data were then divided350
into a training set and a test set in a 7:3 ratio.351

Processing of Unbalanced Data: Given the low incidence of PSE and the small proportion352
of positive cases, we augmented the positive data in the training set using the Synthetic Minority353
Over-sampling Technique combined with Edited Nearest Neighbors (SMOTEENN). The354
SMOTEENN method from the imblearn Python package was applied with default parameters,355
and a random seed of 42 was set to ensure reproducibility.356

357
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Processing of Categorical Data: For categorical variables, we used the one-hot encoding358
method for transformation. We then applied the LASSO method to the training set to identify the359
most important features.360

Model Building: First, we used LASSO regression to select the 20 most important features.361
We then employed 9 commonly used machine learning methods, including Naive Bayes,362
Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, Multi-Layer Perceptron,363
XGBoost, LightGBM, and K-Nearest Neighbors. Hyperparameters for each model were364
optimized through grid search to enhance performance. Model evaluation metrics included365
accuracy, sensitivity, specificity, F1-score, positive predictive value, and negative predictive366
value. We also generated ROC curves, calibration curves, and decision curves to further assess367
model performance. An independent external validation dataset was used to evaluate the368
generalization ability of the selected model. Lastly, we applied the SHAP algorithm to interpret369
the best-performing model, analyzing the contribution of each feature to the model’s predictions370
and their clinical relevance. Through this process of model development, optimization, and371
interpretation, we constructed a machine learning model with strong predictive performance and372
interpretability, offering valuable support for clinical decision-making.373

374

Statistical approach375

PostgreSQL v15 (http://www.postgresql.org/) was used to search and extract data from the376
local database. The open-source statistical package "Scipy.stats" in Python was used for377
statistical analysis. The details of the univariate significance analysis for each feature are as378
follows:379

The Shapiro-Wilk test was applied to assess the normality of each feature's distribution. For380
features that did not follow a normal distribution, the Mann-Whitney U test was used to evaluate381
their significance in relation to the target variable. For features with a normal distribution, the382
Levene test was performed to evaluate the homogeneity of variances. Features with383
homogeneous variances were analyzed using the Student's t-test for significance, while those384
with heterogeneous variances were analyzed using Welch's t-test.385

Confidence intervals for AUC values and Brier scores were calculated using 1,000386
bootstrap resampling iterations on the datasets. Binary classification thresholds for the predicted387
probabilities from all models were established using the maximum Youden index derived from388
the training cohort.389

Throughout the study, a two-tailed p-value of less than 0.05 was considered statistically390
significant.391

All the code used in this study was uploaded to https://github.com/conanan/lasso-ml.392

Conclusion393
We developed an interpretable machine learning model to predict the risk of post-stroke394

epilepsy (PSE) in hospitalized patients with ischemic stroke. Using a large dataset of medical395

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.06.27.24309564doi: medRxiv preprint 

https://github.com/conanan/lasso-ml
https://doi.org/10.1101/2024.06.27.24309564


records, our artificial intelligence model demonstrates strong predictive performance for PSE.396
The key predictors identified by the model include NIHSS score, D-dimer levels, lactate levels,397
and white blood cell count, along with liver function and cardiac enzyme profile indicators. The398
model's transparency and interpretability can build trust among clinicians and support decision-399
making. While the results are promising, further prospective studies are necessary to validate the400
clinical utility of this tool before it can be applied in real-world settings.401
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Figure 1.Selection and Exclusion Procedure of Patients

A total of 42,079 records were retrieved from the stroke database, and 24,733 patients
were diagnosed with ischemic or lacunar stroke with new onset. Hemorrhagic strokes
(4,565), a history of stroke (2,154), TIA (3,570), unclear cause strokes (561), and records
with missing essential data (6,496) were excluded. Patients whose seizures might have
been caused by other factors (such as brain tumors, intracranial vascular malformations,
or traumatic brain injury) (865), those with a seizure history (152), and patients who died
in the hospital (1,444) were also excluded. Additionally, patients lost to follow-up (those
without outpatient records or unreachable by phone) or who died within three months of
the stroke incident (813) were excluded. Finally, 21,459 cases were included in the study.

Figure 2.LASSO Regression Coefficient Paths
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The image shows the LASSO regression coefficient paths for various features related
to a medical or research study. The x-axis represents the log of the regularization
parameter alpha, and the y-axis shows the regression coefficient values.

The lines in the plot represent the coefficient paths for different features as the
regularization parameter changes. The features are labeled on the right side of the
plot, and the most important features selected by the LASSO model are shown at the
bottom of the image.

Figure 3. Model Evaluation Metrics and Curves

The figure displays model
performance curves across six sections (A1, A2, A3 on the left; B1, B2, B3 on the
right) for training and test sets.

ROC Curve: Illustrates the trade-off between sensitivity and specificity, with the AUC
indicating overall model performance.
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Calibration Curve: Compares predicted probabilities to actual outcomes, assessing
the model's confidence accuracy.

Precision-Recall Curve: Analyzes the balance between precision and recall at
various thresholds, particularly useful for imbalanced datasets.

Figure 4.Description of the SHAP Values and Feature Importance

SHAP Value (Left): Displays the impact of each feature on the model’s predictions,
with features sorted by importance. The color gradient indicates the range of
feature values, from low (blue) to high (red).

Force Plot (Upper Right): Illustrates the contribution of individual features of the
first sample to the final model output, highlighting how each feature value pushes
the prediction away from the baseline value.

Decision Plot (Lower Right): Visualizes the cumulative impact of features on the
model output for each sample, showing how the feature values combine to produce
the final prediction.
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——0 830
(87.002%)

19559
(94.083%) - - -

——1 43 (4.507%) 467 (2.246%) - - -

——2 32 (3.354%) 329 (1.583%) - - -

——3 31 (3.249%) 224 (1.077%) - - -

——4 15 (1.572%) 175 (0.842%) - - -

——5 3 (0.314%) 35 (0.168%) - - -

epencephalon - - Chi-Square 1 0

——0 934
(97.904%)

20362
(97.946%) - - -

——1 20 (2.096%) 427 (2.054%) - - -

hydrocephalus - - Chi-Square 0 181.23517

——0 895
(93.816%)

20565
(98.923%) - - -

——1 59 (6.184%) 224 (1.077%) - - -

insular_lobe - - Chi-Square 0.391042 0.735699

——0 938
(98.323%)

20519
(98.701%) - - -

——1 16 (1.677%) 270 (1.299%) - - -

gender - - Chi-Square 0 44.244052

——0 372
(38.994%)

10407
(50.06%) - - -

——1 582
(61.006%)

10382
(49.94%) - - -

uremia - - Chi-Square 0.00008 15.568169

——0 934
(97.904%)

20618
(99.177%) - - -

——1 20 (2.096%) 171 (0.823%) - - -

atrial_fibrillation - - Chi-Square 0.008017 7.029734
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——0 838
(87.841%)

18811
(90.485%) - - -

——1 116
(12.159%) 1978 (9.515%) - - -

centrum_semiovale - - Chi-Square 0.36206 0.830735

——0 922
(96.646%) 20207 (97.2%) - - -

——1 32 (3.354%) 582 (2.8%) - - -

basal_ganglia - - Chi-Square 0.005355 7.755329

——0 893
(93.606%)

19869
(95.575%) - - -

——1 61 (6.394%) 920 (4.425%) - - -

dvt - - Chi-Square 0 40.790867

——0 847
(88.784%)

19534
(93.963%) - - -

——1 107
(11.216%) 1255 (6.037%) - - -

fatty_liver - - Chi-Square 0.000171 14.123893

——0 812
(85.115%)

16655
(80.114%) - - -

——1 142
(14.885%)

4134
(19.886%) - - -

hyperlipidaemia - - Chi-Square 0.000317 12.969155

——0 801
(83.962%)

16439
(79.075%) - - -

——1 153
(16.038%)

4350
(20.925%) - - -

cca_plaque - - Chi-Square 0.376965 0.780577

——0 751
(78.721%)

16100
(77.445%) - - -

——1 203
(21.279%)

4689
(22.555%) - - -
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va - - Chi-Square 0.797483 0.065847

——0 927 (97.17%) 20159
(96.97%) - - -

——1 27 (2.83%) 630 (3.03%) - - -

fibrinogen 3.518 ± 0.663 3.602 ± 0.464 Mann-
Whitney U 0.434584 10064078.5

d_dimer 4.362 ± 4.398 1.198 ± 0.98 Mann-
Whitney U 0 3555180.5

bua 342.521 ±
74.651

344.132 ±
58.336

Mann-
Whitney U 0.000037 10698805.5

tco2 22.739 ±
1.025 22.781 ± 1.225 Mann-

Whitney U 0.166751 10178363

hbdh 209.295 ±
57.826

175.906 ±
48.18

Mann-
Whitney U 0 6107843

anion_gap 13.026 ±
1.456 12.345 ± 1.368 Mann-

Whitney U 0 6496800

ldl 2.686 ± 0.372 2.685 ± 0.361 Mann-
Whitney U 0.23394 10140916.5

tt 16.636 ±
0.809 16.432 ± 0.615 Mann-

Whitney U 0 7950954.5

nihss 11.529 ±
2.564 7.886 ± 2.871 Mann-

Whitney U 0 2984725.5

albumin 40.734 ± 2.37 40.886 ± 2.257 Mann-
Whitney U 0.025821 10338834.5

inr 1.068 ± 0.072 1.076 ± 0.149 Mann-
Whitney U 0 9016933.5

tg 1.662 ± 0.484 1.536 ± 0.433 Mann-
Whitney U 0 7582690.5

bilirubin 16.516 ±
4.009 15.197 ± 3.981 Mann-

Whitney U 0 7522775

ima 81.624 ±
8.559

75.458 ±
12.891

Mann-
Whitney U 0 4487861
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pt 13.822 ±
0.627 13.843 ± 1.151 Mann-

Whitney U 0 8374380.5

crp 55.681 ±
48.823

15.314 ±
18.865

Mann-
Whitney U 0 3060302

wbc 11.79 ± 3.084 8.316 ± 1.286 Mann-
Whitney U 0 2667973

age 65.335 ±
13.909

66.806 ±
12.597

Mann-
Whitney U 0.013188 10386092

hdl 1.246 ± 0.146 1.249 ± 0.149 Mann-
Whitney U 0.619502 10008026

lactate 2.825 ± 0.376 2.505 ± 0.411 Mann-
Whitney U 0 4480425

rbc 4.408 ± 0.274 4.304 ± 0.324 Mann-
Whitney U 0 7811417

ast 38.25 ±
18.205 26.05 ± 12.823 Mann-

Whitney U 0 3814876

plt 180.251 ±
36.939

190.132 ±
26.424

Mann-
Whitney U 0 11826502.5

alt 26.827 ±
10.349

24.193 ±
10.108

Mann-
Whitney U 0 7632233.5

aptt 35.045 ±
1.881 35.702 ± 2.313 Mann-

Whitney U 0 11737054.5

ldh 296.455 ±
111.282

215.357 ±
75.036

Mann-
Whitney U 0 5261997.5

creatinine 83.837 ±
24.574

85.199 ±
52.439

Mann-
Whitney U 0 8567930.5

hba1c 6.759 ± 1.048 6.662 ± 0.916 Mann-
Whitney U 0.000035 9132523

urea 6.33 ± 1.354 6.419 ± 1.438 Mann-
Whitney U 0.001566 10515532

ck 1029.594 ±
872.8

195.007 ±
273.212

Mann-
Whitney U 0 3469376
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Table 1.Single factor significant analysis results

This table presents the results of Chi-Square and Mann-Whitney U tests used to
evaluate the association of various features with positive and negative samples.

Sample Sizes: Positive samples (N=954) and negative samples (N=20,789).
Statistical Methods: The Chi-Square test assesses the relationship between
categorical variables, while the Mann-Whitney U test compares differences between
independent groups for continuous data.
P-values: Indicate the significance of the associations, with lower values suggesting
stronger evidence against the null hypothesis.
Statistical Values: Include counts and percentages of samples for each feature in
both groups, along with the calculated statistics for each test.

Feature 0
(N=20
789)

1
(N=95
4)

OR
(univariab

le)

co
ef

std
err

z P
>|
z|

[0.
02
5

0.
97
5]

Label_
1

Label_0

age

66.806
±
12.597

65.335
±
13.909

0.991
(0.986-
0.996,
p=0.0)

-
0.0
09
0

0.0
03

-
3.5
08

0.
0
0
0

-
0.
01
4

-
0.
00
4 - -

plt

190.13
2 ±
26.424

180.25
1 ±
36.939

0.986
(0.983-
0.988,
p=0.0)

-
0.0
14
1

0.0
01

-
11.
32
0

0.
0
0
0

-
0.
01
7

-
0.
01
2 - -

wbc

8.316
±
1.286

11.79
±
3.084

2.23
(2.149-
2.314,
p=0.0)

0.8
02
2

0.0
19

42.
30
6

0.
0
0
0

0.
76
5

0.
83
9 - -

rbc

4.304
±
0.324

4.408
±
0.274

2.622
(2.162-
3.177,
p=0.0)

0.9
63
8

0.0
98

9.8
05

0.
0
0
0

0.
77
1

1.
15
6 - -

hba1c

6.662
±
0.916

6.759
±
1.048

1.112
(1.042-
1.186,
p=0.001)

0.1
05
9

0.0
33

3.1
76

0.
0
0
1

0.
04
1

0.
17
1 - -
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crp

15.314
±
18.865

55.681
±
48.823

1.033
(1.031-
1.035,
p=0.0)

0.0
32
6

0.0
01

36.
79
2

0.
0
0
0

0.
03
1

0.
03
4 - -

tg

1.536
±
0.433

1.662
±
0.484

1.617
(1.441-
1.815,
p=0.0)

0.4
80
7

0.0
59

8.1
70

0.
0
0
0

0.
36
5

0.
59
6 - -

ldl

2.685
±
0.361

2.686
±
0.372

1.009
(0.843-
1.207,
p=0.924)

0.0
08
7

0.0
91

0.0
95

0.
9
2
4

-
0.
17
1

0.
18
8 - -

hdl

1.249
±
0.149

1.246
±
0.146

0.87
(0.562-
1.349,
p=0.534)

-
0.1
38
9

0.2
23

-
0.6
22

0.
5
3
4

-
0.
57
7

0.
29
9 - -

ast

26.05
±
12.823

38.25
±
18.205

1.028
(1.024-
1.031,
p=0.0)

0.0
27
7

0.0
02

17.
00
7

0.
0
0
0

0.
02
4

0.
03
1 - -

alt

24.193
±
10.108

26.827
±
10.349

1.017
(1.012-
1.021,
p=0.0)

0.0
16
9

0.0
02

7.5
07

0.
0
0
0

0.
01
2

0.
02
1 - -

bilirubin

15.197
±
3.981

16.516
±
4.009

1.068
(1.054-
1.082,
p=0.0)

0.0
66
2

0.0
07

9.8
26

0.
0
0
0

0.
05
3

0.
07
9 - -

albumin

40.886
±
2.257

40.734
± 2.37

0.971
(0.945-
0.999,
p=0.042)

-
0.0
29
1

0.0
14

-
2.0
36

0.
0
4
2

-
0.
05
7

-
0.
00
1 - -

urea

6.419
±
1.438

6.33 ±
1.354

0.955
(0.91-
1.002,
p=0.063)

-
0.0
45
9

0.0
25

-
1.8
62

0.
0
6
3

-
0.
09
4

0.
00
2 - -

creatini
ne 85.199

±
83.837
±

0.999
(0.998-
1.001,

-
0.0
00 0.0

-
0.7

0.
4

-
0.
00

0.
00

- -
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52.439 24.574 p=0.425) 6 01 98 2
5

2 1

bua

344.13
2 ±
58.336

342.52
1 ±
74.651

1.0 (0.998-
1.001,
p=0.411)

-
0.0
00
5

0.0
01

-
0.8
22

0.
4
1
1

-
0.
00
2

0.
00
1 - -

pt

13.843
±
1.151

13.822
±
0.627

0.982
(0.925-
1.043,
p=0.564)

-
0.0
17
7

0.0
31

-
0.5
77

0.
5
6
4

-
0.
07
8

0.
04
2 - -

aptt

35.702
±
2.313

35.045
±
1.881

0.863
(0.835-
0.891,
p=0.0)

-
0.1
47
3

0.0
17

-
8.9
17

0.
0
0
0

-
0.
18
0

-
0.
11
5 - -

tt

16.432
±
0.615

16.636
±
0.809

1.411
(1.287-
1.547,
p=0.0)

0.3
44
2

0.0
47

7.3
28

0.
0
0
0

0.
25
2

0.
43
6 - -

inr

1.076
±
0.149

1.068
±
0.072

0.643
(0.385-
1.074,
p=0.091)

-
0.4
42
1

0.2
62

-
1.6
89

0.
0
9
1

-
0.
95
5

0.
07
1 - -

d_dimer
1.198
± 0.98

4.362
±
4.398

1.717
(1.662-
1.774,
p=0.0)

0.5
40
5

0.0
17

32.
72
4

0.
0
0
0

0.
50
8

0.
57
3 - -

fibrinog
en

3.602
±
0.464

3.518
±
0.663

0.675
(0.585-
0.778,
p=0.0)

-
0.3
93
1

0.0
73

-
5.4
08

0.
0
0
0

-
0.
53
6

-
0.
25
1 - -

ck

195.00
7 ±
273.21
2

1029.5
94 ±
872.8

1.002
(1.002-
1.002,
p=0.0)

0.0
02
4

6.1
5e-
05

38.
32
6

0.
0
0
0

0.
00
2

0.
00
2 - -

ldh

215.35
7 ±
75.036

296.45
5 ±
111.28
2

1.005
(1.005-
1.006,
p=0.0)

0.0
05
3

0.0
00

21.
42
4

0.
0
0
0

0.
00
5

0.
00
6 - -
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hbdh

175.90
6 ±
48.18

209.29
5 ±
57.826

1.006
(1.005-
1.007,
p=0.0)

0.0
06
2

0.0
00

15.
63
7

0.
0
0
0

0.
00
5

0.
00
7 - -

ima

75.458
±
12.891

81.624
±
8.559

1.015
(1.012-
1.017,
p=0.0)

0.0
14
7

0.0
01

10.
70
7

0.
0
0
0

0.
01
2

0.
01
7 - -

lactate

2.505
±
0.411

2.825
±
0.376

3.12
(2.784-
3.494,
p=0.0)

1.1
37
7

0.0
58

19.
58
7

0.
0
0
0

1.
02
4

1.
25
1 - -

anion_g
ap

12.345
±
1.368

13.026
±
1.456

1.344
(1.29-
1.399,
p=0.0)

0.2
95
3

0.0
21

14.
36
8

0.
0
0
0

0.
25
5

0.
33
6 - -

tco2

22.781
±
1.225

22.739
±
1.025

0.972
(0.921-
1.025,
p=0.293)

-
0.0
28
7

0.0
27

-
1.0
51

0.
2
9
3

-
0.
08
2

0.
02
5 - -

nihss

7.886
±
2.871

11.529
±
2.564

1.342
(1.318-
1.368,
p=0.0)

0.2
94
2

0.0
10

30.
95
7

0.
0
0
0

0.
27
6

0.
31
3 - -

uremia_
0

20618
(99.17
7%)

934
(97.90
4%) - - - - - - -

4.334%
(934 /
21552)

95.666%
(20618 /
21552)

uremia_
1

171
(0.823
%)

20
(2.096
%)

2.582
(1.618-
4.121,
p=0.0)

0.9
48
5

0.2
39

3.9
74

0.
0
0
0

0.
48
1

1.
41
6

10.471
% (20 /
191)

89.529%
(171 /
191)

dvt_0

19534
(93.96
3%)

847
(88.78
4%) - - - - - - -

4.156%
(847 /
20381)

95.844%
(19534 /
20381)

dvt_1

1255
(6.037
%)

107
(11.21
6%)

1.966
(1.595-
2.423,
p=0.0)

0.6
76
1

0.1
07

6.3
40

0.
0
0
0

0.
46
7

0.
88
5

7.856%
(107 /
1362)

92.144%
(1255 /
1362)
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fatty_liv
er_0

16655
(80.11
4%)

812
(85.11
5%) - - - - - - -

4.649%
(812 /
17467)

95.351%
(16655 /
17467)

fatty_liv
er_1

4134
(19.88
6%)

142
(14.88
5%)

0.705
(0.587-
0.845,
p=0.0)

-
0.3
50
2

0.0
93

-
3.7
82

0.
0
0
0

-
0.
53
2

-
0.
16
9

3.321%
(142 /
4276)

96.679%
(4134 /
4276)

diabete
s_0

13737
(66.07
8%)

617
(64.67
5%) - - - - - - -

4.298%
(617 /
14354)

95.702%
(13737 /
14354)

diabete
s_1

7052
(33.92
2%)

337
(35.32
5%)

1.064
(0.929-
1.219,
p=0.371)

0.0
62
0

0.0
69

0.8
95

0.
3
7
1

-
0.
07
4

0.
19
8

4.561%
(337 /
7389)

95.439%
(7052 /
7389)

hyperte
nsion_0

6497
(31.25
2%)

290
(30.39
8%) - - - - - - -

4.273%
(290 /
6787)

95.727%
(6497 /
6787)

hyperte
nsion_1

14292
(68.74
8%)

664
(69.60
2%)

1.041
(0.904-
1.198,
p=0.578)

0.0
40
0

0.0
72

0.5
56

0.
5
7
8

-
0.
10
1

0.
18
1

4.44%
(664 /
14956)

95.56%
(14292 /
14956)

coronar
y_disea
se_0

11288
(54.29
8%)

599
(62.78
8%) - - - - - - -

5.039%
(599 /
11887)

94.961%
(11288 /
11887)

coronar
y_disea
se_1

9501
(45.70
2%)

355
(37.21
2%)

0.704
(0.616-
0.805,
p=0.0)

-
0.3
50
8

0.0
68

-
5.1
28

0.
0
0
0

-
0.
48
5

-
0.
21
7

3.602%
(355 /
9856)

96.398%
(9501 /
9856)

atrial_fi
brillatio
n_0

18811
(90.48
5%)

838
(87.84
1%) - - - - - - -

4.265%
(838 /
19649)

95.735%
(18811 /
19649)

atrial_fi
brillatio
n_1

1978
(9.515
%)

116
(12.15
9%)

1.316
(1.078-
1.608,
p=0.007)

0.2
74
9

0.1
02

2.6
99

0.
0
0
7

0.
07
5

0.
47
5

5.54%
(116 /
2094)

94.46%
(1978 /
2094)

hyperuri
cemia_
0

18547
(89.21
5%)

801
(83.96
2%) - - - - - - -

4.14%
(801 /
19348)

95.86%
(18547 /
19348)

hyperuri
cemia_

2242
(10.78

153
(16.03

1.58
(1.322-
1.889,

0.4
57 0.0 5.0

0.
0

0.
27

0.
63

6.388%
(153 /

93.612%
(2242 /
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1 5%) 8%) p=0.0) 5 91 27 0
0

9 6 2395) 2395)

hyperlip
idaemia
_0

16439
(79.07
5%)

801
(83.96
2%) - - - - - - -

4.646%
(801 /
17240)

95.354%
(16439 /
17240)

hyperlip
idaemia
_1

4350
(20.92
5%)

153
(16.03
8%)

0.722
(0.605-
0.861,
p=0.0)

-
0.3
25
9

0.0
90

-
3.6
27

0.
0
0
0

-
0.
50
2

-
0.
15
0

3.398%
(153 /
4503)

96.602%
(4350 /
4503)

hypopro
teinemi
a_0

18479
(88.88
8%)

774
(81.13
2%) - - - - - - -

4.02%
(774 /
19253)

95.98%
(18479 /
19253)

hypopro
teinemi
a_1

2310
(11.11
2%)

180
(18.86
8%)

1.86
(1.573-
2.201,
p=0.0)

0.6
20
8

0.0
86

7.2
48

0.
0
0
0

0.
45
3

0.
78
9

7.229%
(180 /
2490)

92.771%
(2310 /
2490)

cerebral
_hernia
_0

20626
(99.21
6%)

934
(97.90
4%) - - - - - - -

4.332%
(934 /
21560)

95.668%
(20626 /
21560)

cerebral
_hernia
_1

163
(0.784
%)

20
(2.096
%)

2.71
(1.696-
4.332,
p=0.0)

0.9
96
8

0.2
39

4.1
66

0.
0
0
0

0.
52
8

1.
46
6

10.929
% (20 /
183)

89.071%
(163 /
183)

hydroce
phalus_
0

20565
(98.92
3%)

895
(93.81
6%) - - - - - - -

4.171%
(895 /
21460)

95.829%
(20565 /
21460)

hydroce
phalus_
1

224
(1.077
%)

59
(6.184
%)

6.052
(4.509-
8.125,
p=0.0)

1.8
00
4

0.1
50

11.
98
2

0.
0
0
0

1.
50
6

2.
09
5

20.848
% (59 /
283)

79.152%
(224 /
283)

frontal_l
obe_0

19943
(95.93
1%)

868
(90.98
5%) - - - - - - -

4.171%
(868 /
20811)

95.829%
(19943 /
20811)

frontal_l
obe_1

846
(4.069
%)

86
(9.015
%)

2.336
(1.852-
2.945,
p=0.0)

0.8
48
3

0.1
18

7.1
66

0.
0
0
0

0.
61
6

1.
08
0

9.227%
(86 /
932)

90.773%
(846 /
932)

parietal
_lobe_0

20180
(97.07
1%)

884
(92.66
2%) - - - - - - -

4.197%
(884 /
21064)

95.803%
(20180 /
21064)
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parietal
_lobe_1

609
(2.929
%)

70
(7.338
%)

2.624
(2.03-
3.391,
p=0.0)

0.9
64
7

0.1
31

7.3
75

0.
0
0
0

0.
70
8

1.
22
1

10.309
% (70 /
679)

89.691%
(609 /
679)

tempora
l_lobe_
0

20209
(97.21
%)

886
(92.87
2%) - - - - - - -

4.2%
(886 /
21095)

95.8%
(20209 /
21095)

tempora
l_lobe_
1

580
(2.79
%)

68
(7.128
%)

2.674
(2.063-
3.469,
p=0.0)

0.9
83
6

0.1
33

7.4
13

0.
0
0
0

0.
72
4

1.
24
4

10.494
% (68 /
648)

89.506%
(580 /
648)

occipital
_lobe_0

20422
(98.23
5%)

919
(96.33
1%) - - - - - - -

4.306%
(919 /
21341)

95.694%
(20422 /
21341)

occipital
_lobe_1

367
(1.765
%)

35
(3.669
%)

2.119
(1.489-
3.016,
p=0.0)

0.7
51
1

0.1
80

4.1
70

0.
0
0
0

0.
39
8

1.
10
4

8.706%
(35 /
402)

91.294%
(367 /
402)

insular_
lobe_0

20519
(98.70
1%)

938
(98.32
3%) - - - - - - -

4.372%
(938 /
21457)

95.628%
(20519 /
21457)

insular_
lobe_1

270
(1.299
%)

16
(1.677
%)

1.296
(0.78-
2.155,
p=0.317)

0.2
59
5

0.2
59

1.0
00

0.
3
1
7

-
0.
24
9

0.
76
8

5.594%
(16 /
286)

94.406%
(270 /
286)

range_l
obe_0

19559
(94.08
3%)

830
(87.00
2%) - - - - - - -

4.071%
(830 /
20389)

95.929%
(19559 /
20389)

range_l
obe_1

467
(2.246
%)

43
(4.507
%)

2.17
(1.576-
2.989,
p=0.0)

0.7
74
6

0.1
63

4.7
45

0.
0
0
0

0.
45
5

1.
09
5

8.431%
(43 /
510)

91.569%
(467 /
510)

range_l
obe_2

329
(1.583
%)

32
(3.354
%)

2.292
(1.584-
3.317,
p=0.0)

0.8
29
4

0.1
89

4.3
99

0.
0
0
0

0.
46
0

1.
19
9

8.864%
(32 /
361)

91.136%
(329 /
361)

range_l
obe_3

224
(1.077
%)

31
(3.249
%)

3.261
(2.226-
4.778,
p=0.0)

1.1
82
1

0.1
95

6.0
66

0.
0
0

0.
80
0

1.
56
4

12.157
% (31 /
255)

87.843%
(224 /
255)
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0

range_l
obe_4

175
(0.842
%)

15
(1.572
%)

2.02
(1.186-
3.438,
p=0.01)

0.7
03
0

0.2
71

2.5
91

0.
0
1
0

0.
17
1

1.
23
5

7.895%
(15 /
190)

92.105%
(175 /
190)

range_l
obe_5

35
(0.168
%)

3
(0.314
%)

2.02 (0.62-
6.58,
p=0.243)

0.7
03
0

0.6
03

1.1
67

0.
2
4
3

-
0.
47
8

1.
88
4

7.895%
(3 / 38)

92.105%
(35 / 38)

basal_g
anglia_
0

19869
(95.57
5%)

893
(93.60
6%) - - - - - - -

4.301%
(893 /
20762)

95.699%
(19869 /
20762)

basal_g
anglia_
1

920
(4.425
%)

61
(6.394
%)

1.475
(1.129-
1.927,
p=0.004)

0.3
88
8

0.1
37

2.8
47

0.
0
0
4

0.
12
1

0.
65
6

6.218%
(61 /
981)

93.782%
(920 /
981)

brainste
m_0

20532
(98.76
4%)

938
(98.32
3%) - - - - - - -

4.369%
(938 /
21470)

95.631%
(20532 /
21470)

brainste
m_1

257
(1.236
%)

16
(1.677
%)

1.363
(0.819-
2.268,
p=0.234)

0.3
09
5

0.2
60

1.1
91

0.
2
3
4

-
0.
20
0

0.
81
9

5.861%
(16 /
273)

94.139%
(257 /
273)

epence
phalon_
0

20362
(97.94
6%)

934
(97.90
4%) - - - - - - -

4.386%
(934 /
21296)

95.614%
(20362 /
21296)

epence
phalon_
1

427
(2.054
%)

20
(2.096
%)

1.021
(0.649-
1.606,
p=0.928)

0.0
20
9

0.2
31

0.0
90

0.
9
2
8

-
0.
43
2

0.
47
4

4.474%
(20 /
447)

95.526%
(427 /
447)

paraven
tricular_
0

19786
(95.17
5%)

899
(94.23
5%) - - - - - - -

4.346%
(899 /
20685)

95.654%
(19786 /
20685)

paraven
tricular_
1

1003
(4.825
%)

55
(5.765
%)

1.207
(0.912-
1.597,
p=0.187)

0.1
88
0

0.1
43

1.3
18

0.
1
8
7

-
0.
09
2

0.
46
8

5.198%
(55 /
1058)

94.802%
(1003 /
1058)

centrum
_semio

20207
(97.2

922
(96.64

- - - - - - - 4.364%
(922 /

95.636%
(20207 /
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vale_0 %) 6%) 21129) 21129)

centrum
_semio
vale_1

582
(2.8%)

32
(3.354
%)

1.205
(0.839-
1.73,
p=0.313)

0.1
86
5

0.1
85

1.0
10

0.
3
1
3

-
0.
17
5

0.
54
8

5.212%
(32 /
614)

94.788%
(582 /
614)

thalamu
s_0

20565
(98.92
3%)

937
(98.21
8%) - - - - - - -

4.358%
(937 /
21502)

95.642%
(20565 /
21502)

thalamu
s_1

224
(1.077
%)

17
(1.782
%)

1.666
(1.013-
2.74,
p=0.044)

0.5
10
2

0.2
54

2.0
11

0.
0
4
4

0.
01
3

1.
00
8

7.054%
(17 /
241)

92.946%
(224 /
241)

aca_0

20524
(98.72
5%)

941
(98.63
7%) - - - - - - -

4.384%
(941 /
21465)

95.616%
(20524 /
21465)

aca_1

265
(1.275
%)

13
(1.363
%)

1.07
(0.611-
1.874,
p=0.813)

0.0
67
6

0.2
86

0.2
36

0.
8
1
3

-
0.
49
3

0.
62
8

4.676%
(13 /
278)

95.324%
(265 /
278)

mca_0

19998
(96.19
5%)

912
(95.59
7%) - - - - - - -

4.362%
(912 /
20910)

95.638%
(19998 /
20910)

mca_1

791
(3.805
%)

42
(4.403
%)

1.164
(0.848-
1.598,
p=0.348)

0.1
52
1

0.1
62

0.9
39

0.
3
4
8

-
0.
16
5

0.
46
9

5.042%
(42 /
833)

94.958%
(791 /
833)

pca_0

20729
(99.71
1%)

952
(99.79
%) - - - - - - -

4.391%
(952 /
21681)

95.609%
(20729 /
21681)

pca_1

60
(0.289
%)

2
(0.21
%)

0.726
(0.177-
2.974,
p=0.656)

-
0.3
20
5

0.7
20

-
0.4
45

0.
6
5
6

-
1.
73
1

1.
09
0

3.226%
(2 / 62)

96.774%
(60 / 62)

va_0

20159
(96.97
%)

927
(97.17
%) - - - - - - -

4.396%
(927 /
21086)

95.604%
(20159 /
21086)

va_1

630
(3.03
%)

27
(2.83
%)

0.932
(0.631-
1.377,
p=0.724)

-
0.0
70
4

0.1
99

-
0.3
53

0.
7
2

-
0.
46
1

0.
32
0

4.11%
(27 /
657)

95.89%
(630 /
657)
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4

ba_0

20605
(99.11
5%)

945
(99.05
7%) - - - - - - -

4.385%
(945 /
21550)

95.615%
(20605 /
21550)

ba_1

184
(0.885
%)

9
(0.943
%)

1.067
(0.544-
2.09,
p=0.851)

0.0
64
4

0.3
43

0.1
88

0.
8
5
1

-
0.
60
8

0.
73
7

4.663%
(9 /
193)

95.337%
(184 /
193)

gender_
0

10407
(50.06
%)

372
(38.99
4%) - - - - - - -

3.451%
(372 /
10779)

96.549%
(10407 /
10779)

gender_
1

10382
(49.94
%)

582
(61.00
6%)

1.568
(1.373-
1.791,
p=0.0)

0.4
50
0

0.0
68

6.6
35

0.
0
0
0

0.
31
7

0.
58
3

5.308%
(582 /
10964)

94.692%
(10382 /
10964)

cca_pla
que_0

16100
(77.44
5%)

751
(78.72
1%) - - - - - - -

4.457%
(751 /
16851)

95.543%
(16100 /
16851)

cca_pla
que_1

4689
(22.55
5%)

203
(21.27
9%)

0.928
(0.792-
1.088,
p=0.356)

-
0.0
74
6

0.0
81

-
0.9
23

0.
3
5
6

-
0.
23
3

0.
08
4

4.15%
(203 /
4892)

95.85%
(4689 /
4892)

ica_pla
que_0

19392
(93.28
%)

878
(92.03
4%) - - - - - - -

4.332%
(878 /
20270)

95.668%
(19392 /
20270)

ica_pla
que_1

1397
(6.72
%)

76
(7.966
%)

1.202
(0.945-
1.528,
p=0.135)

0.1
83
6

0.1
23

1.4
96

0.
1
3
5

-
0.
05
7

0.
42
4

5.16%
(76 /
1473)

94.84%
(1397 /
1473)

eca_pla
que_0

20591
(99.04
8%)

942
(98.74
2%) - - - - - - -

4.375%
(942 /
21533)

95.625%
(20591 /
21533)

eca_pla
que_1

198
(0.952
%)

12
(1.258
%)

1.325
(0.737-
2.382,
p=0.347)

0.2
81
2

0.2
99

0.9
40

0.
3
4
7

-
0.
30
5

0.
86
8

5.714%
(12 /
210)

94.286%
(198 /
210)

subcort
ex_lobe
_0

18454
(88.76
8%)

814
(85.32
5%) - - - - - - -

4.225%
(814 /
19268)

95.775%
(18454 /
19268)

subcort 2335 140 1.359 5.657% 94.343%
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ex_lobe
_1

(11.23
2%)

(14.67
5%)

(1.131-
1.634,
p=0.001)

0.3
07
0

0.0
94

3.2
62

0.
0
0
1

0.
12
3

0.
49
1

(140 /
2475)

(2335 /
2475)

Table 2.Single Factor Significant Analysis Results
This table presents the results of a single factor significance analysis for various
features across two groups of samples: negative samples (0) and positive samples
(1).
Sample Size:
Group 0 (Negative): N = 20,789
Group 1 (Positive): N = 954
Feature Analysis: For each feature, the table includes the mean and standard
deviation (±) for both groups, odds ratios (OR) from univariable analysis,
coefficients (coef), standard errors (std err), z-scores (z), p-values (P>|z|), and 95%
confidence intervals ([0.025, 0.975]).
Significance Levels: Features with statistically significant differences are indicated
by p-values less than 0.05. An odds ratio greater than 1 suggests an increased risk
associated with the feature in the positive group, while an odds ratio less than 1
suggests a decreased risk.
Labels: The last two columns provide the proportions of the positive and negative
samples for selected features.

Feature
0

(N=207
89)

1
(N=954

)

OR
(multivariab

le)
Coe

f.
Std.E

rr. z P>|
z|

[0.02
5

0.97
5]

tg 1.536 ±
0.433

1.662 ±
0.484

2.458
(2.069-2.92,
p=0.0)

0.8
99 0.088 10.2

3 0 0.72
7

1.07
1

rbc 4.304 ±
0.324

4.408 ±
0.274

4.731
(3.274-
6.837,
p=0.0)

1.5
54 0.188 8.27

5 0 1.18
6

1.92
2

age
66.806
±
12.597

65.335
±
13.909

1.012
(1.004-
1.021,
p=0.003)

0.0
12 0.004 2.97

1
0.0
03

0.00
4

0.02
1

ast 26.05 ±
12.823

38.25 ±
18.205

1.048 (1.04-
1.055,
p=0.0)

0.0
46 0.004 12.4

13 0 0.03
9

0.05
4

plt
190.13
2 ±
26.424

180.25
1 ±
36.939

0.977
(0.973-0.98,
p=0.0)

-
0.0
24

0.002
-

13.3
75

0
-

0.02
7

-
0.02
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alt
24.193
±
10.108

26.827
±
10.349

0.953
(0.942-
0.964,
p=0.0)

-
0.0
48

0.006
-

8.17
7

0
-

0.05
9

-
0.03

6

ima
75.458
±
12.891

81.624
± 8.559

1.006
(1.001-
1.012,
p=0.014)

0.0
06 0.003 2.45

3
0.0
14

0.00
1

0.01
2

ldh
215.35
7 ±
75.036

296.45
5 ±
111.28
2

0.984
(0.982-
0.987,
p=0.0)

-
0.0
16

0.001
-

12.9
92

0
-

0.01
8

-
0.01

4

tt 16.432
± 0.615

16.636
± 0.809

1.13 (1.009-
1.265,
p=0.034)

0.1
22 0.058 2.11

6
0.0
34

0.00
9

0.23
5

crp
15.314
±
18.865

55.681
±
48.823

1.032
(1.028-
1.036,
p=0.0)

0.0
31 0.002 15.5

85 0 0.02
7

0.03
5

wbc 8.316 ±
1.286

11.79 ±
3.084

2.091
(1.985-
2.204,
p=0.0)

0.7
38 0.027 27.5

83 0 0.68
5 0.79

ck

195.00
7 ±
273.21
2

1029.5
94 ±
872.8

1.001
(1.001-
1.001,
p=0.0)

0.0
01 0 7.86 0 0.00

1
0.00

1

subcortex_lobe
_0

18454
(88.768
%)

814
(85.325
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Table 3.Multivariable Analysis Results

This table summarizes the results of a multivariable analysis for various features
across two groups of samples: negative samples (0) and positive samples (1).

Sample Size:

Group 0 (Negative): N = 20,789

Group 1 (Positive): N = 954

Feature Analysis: For each feature, the table includes the mean and standard
deviation (±) for both groups, odds ratios (OR) from multivariable analysis,
coefficients (Coef.), standard errors (Std. Err.), z-scores (z), p-values (P>|z|), and
95% confidence intervals ([0.025, 0.975]).

Significance Levels: Features with statistically significant differences are indicated
by p-values less than 0.05. An odds ratio greater than 1 indicates an increased risk
associated with the feature in the positive group, while an odds ratio less than 1
suggests a decreased risk.

Labels: The last column presents the proportions of the positive and negative
samples for selected features.

Model AUC Accuracy Sensitivity/Recall Specificity F1-score PPV/precision

LR 0.967 | 0.973 0.928 | 0.927 0.920 | 0.929 0.928 | 0.927 0.530 | 0.524 0.373 | 0.365

NB 0.903 | 0.909 0.938 | 0.936 0.634 | 0.662 0.952 | 0.949 0.474 | 0.472 0.378 | 0.367

DT 0.997 | 0.906 0.993 | 0.970 1.000 | 0.836 0.993 | 0.976 0.930 | 0.706 0.870 | 0.610

GB 0.998 | 0.992 0.987 | 0.980 0.976 | 0.900 0.988 | 0.983 0.871 | 0.794 0.786 | 0.711

RF 1.000 | 0.996 0.997 | 0.989 1.000 | 0.883 0.997 | 0.994 0.967 | 0.873 0.936 | 0.864

MLP 0.996 | 0.984 0.977 | 0.972 0.975 | 0.932 0.977 | 0.974 0.790 | 0.744 0.664 | 0.619

XGB 1.000 | 0.996 0.996 | 0.988 1.000 | 0.897 0.996 | 0.992 0.961 | 0.867 0.926 | 0.840
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LGBM 1.000 | 0.996 0.997 | 0.989 1.000 | 0.886 0.997 | 0.993 0.970 | 0.869 0.941 | 0.853

KNN 0.997 | 0.955 0.965 | 0.955 0.999 | 0.890 0.964 | 0.958 0.717 | 0.631 0.560 | 0.489

Table 4.Model Performance Evaluation Results
This table presents the performance evaluation metrics for various machine
learning models, including AUC, Accuracy, Sensitivity (Recall), Specificity, F1-score,
Positive Predictive Value (PPV/Precision), and Negative Predictive Value (NPV)

AUC: Area Under the Curve, indicating the model's ability to distinguish between
positive and negative samples; values closer to 1 indicate better performance.

Accuracy: The proportion of correctly classified samples among the total samples.

Sensitivity/Recall: The proportion of correctly identified positive samples out of all
actual positive samples.

Specificity: The proportion of correctly identified negative samples out of all actual
negative samples.

F1-score: The harmonic mean of precision and recall, considering both the accuracy
and completeness of the model.

Positive Predictive Value (PPV/Precision): The proportion of correctly identified
positive samples among all samples predicted as positive.

Negative Predictive Value (NPV): The proportion of correctly identified negative
samples among all samples predicted as negative.
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