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Abstract
Objective: Cardiovascular ageing is a progressive loss of physiological reserve, modified by environmental and genetic
risk factors, that contributes to multi-morbidity due to accumulated damage across diverse cell types, tissues and
organs. Obesity is implicated in premature ageing but the effect of body fat distribution in humans is unknown. Here
we assessed the association between image-derived adiposity phenotypes on cardiovascular age in men and women.
Methods: We analysed data from 21,241 participants in UK Biobank. Machine learning was used to predict
cardiovascular age from 126 image-derived traits of vascular function, cardiac motion and myocardial fibrosis. An
age-delta was calculated as the difference between predicted age and chronological age. The volume and distribution
of body fat was assessed from whole body imaging. The association between adiposity phenotypes and cardiovascular
age-delta was assessed using multivariable linear regression with age and sex as co-covariates, reporting β coefficients
with 95% confidence intervals (CI). Two-sample Mendelian randomisation was used to assess causal associations.
Results: Visceral adipose tissue volume (β = 0.656, [95% CI, 0.537 - 0.755], P < 0.0001), muscle adipose tissue
infiltration (β = 0.183, [95% CI, 0.122 - 0.244], P = 0.0003), and liver fat fraction (β = 1.066, [95% CI 0.835 - 1.298], P <
0.0001) were the strongest predictors of increased cardiovascular age-delta for both sexes. Abdominal subcutaneous
adipose tissue volume (β = 0.688, [95% CI, 0.64 - 1.325], P < 0.0001) was associated with increased age-delta only in
males. Genetically-predicted gluteo-femoral fat showed an association with decreased age-delta.
Conclusion: This work demonstrates the contribution of sex-dependent patterns of visceral adipose tissue and
subcutaneous fat distribution to biological cardiovascular ageing in middle aged adults. This highlights the potential
for strategies to attenuate ageing through modifying adipose tissue function.
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Introduction

Obesity is a chronic complex condition characterised by excessive fat deposits that are detrimental to health. Globally
43% of adults, affecting men and women in equal proportions, are overweight with a rising prevalence.1 It is a
multifactorial and heterogeneous disease related to obesogenic environments, psycho-social influences and genetic
risk factors. Individuals with similar body mass index (BMI) may have distinct metabolic and cardiovascular disease
(CVD) risk profiles, therefore susceptibility to obesity-related cardiovascular complications is not mediated solely by
overall body mass but may be strongly influenced by variation in fat distribution.2 For instance, visceral fat confers a
higher risk of adverse outcomes,3 promotes systemic and vascular inflammation,4,5 and is independently linked with
dysmetabolic profiles.6

Obesity, as a systemic syndrome of adipose tissue dysfunction, can be considered a pro-inflammatory process of
accelerated cardiovascular ageing with which it shares common genetic, epigenetic, immunological and metabolic
mechanisms.7,8 Recently, imaging and physiological parameters have been used to assess environmental and genetic
risk factors for accelerated biological ageing which point to complex inter-organ ageing networks that are regulated by
genes involved in inflammation, tissue elasticity and pro-fibrotic pathways.9,10 Relatively less is known about drivers
of sexual dimorphism in cardiovascular ageing, although cellular and molecular mechanisms of ageing may be better
maintained in women until the menopause.11 Sex hormones modify key aspects of nutrient sensing, metabolism and
fat depot regulation - with men tending to have more visceral fat, whereas women have greater fat deposition in the
lower body.12 The role of sex-specific fat distribution on accelerated cardiovascular ageing is not known, but could be a
key modifiable mediator of obesity-related risk.

In this study, we use machine learning techniques to predict biological age from multiple image-derived cardio-
vascular traits that assess the structure, function and tissue characteristics of the heart and circulation. We then
express how an individual’s cardiovascular system has aged relative to a normative population using an “age-delta”.
Through assessing body fat distributions with whole body image phenotyping, as well as circulating biomarkers and
sex hormones, we aimed to understand the relationship between fat distribution and cardiovascular ageing in over
20,000 middle aged men and women.

Methods

Study overview
UK Biobank comprises approximately 500,000 community-dwelling participants aged 40–69 years who were recruited
across the United Kingdom between 2006 and 2010.13 All participants provided written informed consent for participa-
tion in the study, which was approved by the National Research Ethics Service (11/NW/0382). Our study was conducted
under terms of access approval number 40616.

An outline of the methods is shown in Figure 1. We used a pre-trained model to predict cardiovascular age from
126 image-derived traits of vascular function, cardiac motion and myocardial fibrosis. Cardiovascular age-delta was
calculated as the difference between predicted age and chronological age.9 We combined data from body imaging to
assess phenotypes of fat volume and distribution including visceral adipose tissue, abdominal subcutaneous adipose
tissue, muscle adipose tissue infiltration, liver proton density fat fraction, total abdominal adipose tissue, android
adipose tissue mass and gynoid adipose tissue mass, as well as total trunk and whole body fat mass.

We used multivariable linear regression modelling stratified by sex to assess the association of fat phenotypes with
cardiovascular ageing. Additionaly, the relationship between BMI categories and fat phenotypes by sex was assessed.

Cardiac image acquisition
A standardised cardiac magnetic resonance (CMR) imaging protocol was followed to acquire two-dimensional,
retrospectively-gated cine imaging on a Siemens MAGNETOM Aera 1.5-T scanner (Siemens Healthineers, Erlan-
gen, Germany).14 Short-axis cine imaging comprised a contiguous stack of images from the left ventricular base to
apex, and long axis cine imaging was performed in the two and four chamber planes. Cine sequences consisted of
50 cardiac phases with an acquired temporal resolution of 31 ms.14 Transverse cine imaging of the ascending and
descending thoracic aorta was also performed. Native T1 mapping within a single breath hold was performed at mid-
ventricular level using a shortened modified Look-Locker inversion recovery (ShMOLLI) sequence. Imaging phenotypes
all underwent quality control prior to use in analysis.15

Cardiac image analysis
Automated segmentation of the short-axis and long-axis cine images in UK Biobank was performed using fully convo-
lutional networks.16 Volumes (end-diastolic, end-systolic, and stroke volume) and ejection fraction were determined
for both ventricles. Myocardial volumes were used to compute left ventricular myocardial mass assuming a density
of 1.05 g.ml –1. Atrial volumes were calculated using biplane area–length. Central vascular function was assessed
by measuring aortic distensibility from central blood pressure estimates and dynamic aortic imaging.17 The aorta
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was segmented on the cine images with a spatio-temporal neural network,18 from which maximum and minimum
cross-sectional areas were derived. Distensibility was calculated using central blood pressure estimates obtained using
peripheral pulse-wave analysis (Vicorder, Wuerzburg, Germany).17

Diastolic function, which is a key feature of the ageing heart, was assessed using motion analysis to derive end
diastolic strain rates.16 Non-rigid image registration between successive frames enabled motion tracking on greyscale
images.19 Registration errors were minimised by tracking motion in both backwards and forwards directions from
end-diastole, resulting in an averaged displacement field,17 which was then used to warp segmentations from end-
diastole to successive adjacent frames. Circumferential (𝐸cc) and radial (𝐸rr) strains were calculated using short
axis cines. Longitudinal (𝐸ll) strain was calculated from long-axis four-chamber motion tracking measured at basal,
mid-ventricular, and apical levels. Segmental and global peak strains were then calculated. Strain rate was computed
as the first derivative of strain and thereafter peak early diastolic strain rate in radial (PDSRrr) and longitudinal (PDSRll)
directions calculated. We assessed diffuse myocardial fibrosis, an early feature of natural ageing,20 using native T1
mapping of the interventricular septum.21 The ShMOLLI T1 maps were analysed using probabilistic hierarchical
segmentation with automated quality control defining a region of interest within the interventricular septum as
previously validated.21 Blood pool T1 was used as a linear correction of myocardial T1 values.21,22

In total, 126 quantitative imaging phenotypes characterising structure, function and tissue characteristics were
generated for each participant.

Cardiovascular age prediction
We used a model to predict cardiovascular age from image-derived phenotypes that was pre-trained on 5,065 healthy
individuals, not included in the current study, that were free of cardiac, metabolic or respiratory disease and had a body
mass index below 30. The development and performance of the model has been previously reported (Supplementary
Methods).9 Briefly, we used CatBoost, a machine learning algorithm based on decision trees and gradient boosting,
to estimate the age of each participant from a joint analysis of all cardiac image-derived phenotypoes. Similar to
brain age modelling, we addressed the correlation between age-delta and chronological age using a linear regression
analysis between the initial unadjusted cardiovascular age-delta and chronological age. Subsequently, an offset was
determined by multiplying the chronological age by the slope of the regression line and adding the intercept. This
offset was then subtracted from the initial unadjusted predicted age to yield the corrected predicted age.9

Body adipose tissue analysis
Abdominal and body adipose tissue assessment was performed on the same 1.5T scanner using a dual-echo Dixon Vibe
imaging protocol, enabling a comprehensive evaluation of the entire body from the neck to the knees.23 This imaging
protocol generated a dataset with water and fat components separated, facilitating the analysis of body fat composition.
In brief, 6 overlapping sections were acquired that underwent calibration, stacking, fusion, and segmentation. Body
composition analyses were carried out using the AMRA Profiler™ (AMRA AB, Linköping, Sweden). Values for android
and gynoid adipose tissue mass were acquired from over 20,000 subjects UK Biobank dataset with multi sequence
magnetic resonance and dual-energy X-ray absorptiometry (DXA) scans, using self-supervised, multi-modal alignment
for whole body medical imaging, and transferring segmentation maps from DXA to MRI scans achieving high accuracy
in matching different-modality scans without requiring ground-truth magnetic resonance examples .24

We also utilised datasets for liver proton density fat fraction employing the gradient echo protocol from the UK
Biobank, specifically the LMS (Liver MultiScan) Dixon method. The LMS Dixon proton density fat fraction captures
images during a single breath-hold, reducingmotion artifacts and ensuring consistentmeasurements. Analysis involves
three 15 mm circular regions of interest in the liver parenchyma, calculating proton density fat fraction, liver iron
concentration, and iron-corrected T1 (cT1). Proton density fat fraction, a reliable measure of liver fat, is determined
using water-fat separation masks, with values over 5% indicating fatty liver disease.25

Standing height without shoes was assessed using a Seca (Hamburg, Germany) 202 height measure. Weight, without
shoes or outer clothing, was assessed with a Tanita (Tokyo, Japan) body composition analyser. Each BMI was calculated
as weight in kilograms divided by height in metres2.

Circulating bio-markers
We assessed 9 cardiometabolic and endocrine circulating biomarkers (triglycerides, direct low-density lipoprotein
(direct LDL) cholesterol, high density lipoprotein (HDL) cholesterol, cholesterol (total), apolipoprotein A and B, sex
hormone binding globulin (SHBG), oestradiol (E2), testosterone (free form)) as potential modifiers of cardiovascular
ageing. The collection of these biomarkers involved standardised venous blood sampling followed by serum separation
and storage at -80°C to ensure stability. The samples were then analysed using validated biochemical assays to quantify
levels of each biomarker.26

Mendelian randomisation
Mendelian randomisation (MR) was performed to investigate the potential causality of adipose tissue volumes on
cardiovascular age-delta. We used large-scale genome wide association studies of image-derived visceral, abdominal
subcutaneous, and gluteofemoral adipose tissue volumes after adjustment with BMI and height,27 as well as of the
cardiovascular age-delta.9
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We used the R package TwoSampleMR to perform the analysis.28 Independent genetic instruments were selected at
the conventional genome wide significance threshold of P < 5 x 10−8, using the 1000G genomes European population
as reference for linkage disequilibrium (LD) with an r2 threshold of 0.001. Exposure and outcome statistics were
harmonised to allow consistency of alleles for MR analysis. Palindromic single nucleotide polymorphisms (SNPs)
with intermediate allele frequencies were removed before MR. For each analysis, we performed MR with 5 methods,28

including the inverse variance-weightedmethod that assumes all genetic variants are valid IVs, theMR Egger regression
as a check for horizontal pleiotropy, the weighted median method, which is additionally robust in the presence of
outliers, the simple mode and weighted mode methods which clusters SNPs into groups based on similarity of causal
effects.

Statistics
Analysis was performed in R (version 4.2.3) and Python. Variables were expressed as percentages and frequencies
if categorical, mean ± standard deviation (SD) if continuous and normal, and median ± inter-quartile range (IQR) if
continuous and non-normal. Comparison of independent groups was performed with a two sample t test. Multivariable
linear regression was used to estimate the association between age-delta (as the dependent variable), and adipoisity
phenotypes and cardiometabolic biomarkers (as independent variables) using age, age2, and sex as covariates. Addition-
ally, the model was adjusted for height2 to account for variation in stature (Supplementary Methods).29 Standardised β
coefficients are reported for continuous predictors, each with 95% confidence intervals (CI). Fat mass was categorised
using centile ranges of each BMI group and then compared with alluvial plots (see Supplementary Methods and
Supplementary Figure 1). We applied the Benjamini-Hochberg procedure to control the false discovery rate. Statistical
significance was considered at P ≤ 0.05 (two-sided).

Results

Sex-dependent associations of body fat with chronological age
In total 21,241 participants were included in the analysis (Table 1). Females had more abdominal subcutaneous fat (8.3
± 3.5 L vs 6.0 ± 2.5 L, P < 0.0001), muscle adipose tissue infiltration (7.9 ± 1.9 % vs 6.9 ± 1.7 % , P < 0.0001) and gynoid
fat (4.8± 1.6 kg vs 3.6 ± 1.2 kg, P =0.0001), whereas males predominantly had greater volumes of visceral fat (5.1 ±
2.3 L vs 2.8 ± 1.5 L, P < 0.0001), android fat (2.8 ± 1.2 kg vs 2.3 ± 1.2 kg, P = 0.0002), and whole body fat mass (23.9 ±
8.6 kg vs 20.1 ± 7.0 kg, P < 0.0001) (Figure 2). Muscle adipose tissue infiltration increased by an average of 11.7% per
decade in females and 9.8% in males. Visceral fat increased more with age in males, rising by an average of 8.2% each
decade compared to 5.3% in females. Abdominal subcutaneous fat showed a modest decrease of 5.4% in females and
4.3% in males per decade (Figure 3). Adipose phenotype distribution by ancestry is shown in Supplementary Figure 2
and Supplementary Table 1.

Association of cardiovascular age-delta and body fat phenotypes
Visceral adipose tissue (β = 0.656, [95% CI, 0.537 - 0.775], P <0.0001), muscle adipose tissue infiltration (β = 0.448, [95%
CI, 0.112 - 0.224], P = 0.0005), liver fat fraction (β = 1.066, [95% CI, 0.835 - 1.298], P < 0.0001), and total abdominal
adipose tissue (β = 0.615, [95% CI, 0.499 - 0.732], P < 0.0001) were associated with adverse changes in cardiovascular
age-delta for both sexes. For males, an increased age-delta was associated with android (β = 0.983, [95% CI, 0.64 -
1.326], P < 0.0001) and gynoid fat (β = 0.688, [95% CI, 0.33 - 1.046], P = 0.0066) (Figure 4A). Conversely, in females,
gynoid fat (β = -0.499, [95% CI, -0.85 - -0.149], P = 0.0003), total trunk fat mass (β = -0.403, [95% CI, -0.821 - -0.14], P =
0.0061), and whole-body fat mass (β = -0.389, [95% CI, -0.732 - -0.254 ], P = 0.0043) were associated with beneficial
changes in cardiovascular age-delta (Table 2). BMI was a weaker predictor of age-delta than body fat in females (β =
-0.85, [95% CI, -0.115 - -0.055], P = 0.0092) and males (β = 0.063, [95% CI, 0.026 - 0.1], P = 0.0813).

The relationship between fat distribution and cardiovascular age-delta remained mainly independent of height2.
Visceral adipose tissue (β = 0.432, [95% CI, 0.296 - 0.567], P <0.0001), liver fat fraction (β = 0.207, [95% CI, 0.154 - 0.261],
P <0.0001), muscle adipose tissue infiltration (β = 0.21, [95% CI, 0.055 - 0.364], P = 0.0078) and total abdominal adipose
tissue (β = 0.326, [95% CI, 0.165 - 0.487], P < 0.0001) remained the strongest predictors for increased age-delta in the
overall cohort. However in females muscle adipose tissue infiltration (β = 0.08, [95% CI, -0.116 - 0.277], P = 0.4235),
total trunk (β = 0.003, [95% CI, -0.068 - 0.075], P = 0.9276) and whole body fat mass (β = -0.004, [95% CI, -0.042 - 0.034],
P = 0.8255) became insignificant, while gynoid fat mass (β = -0.499, [95% CI, -0.85 - -0.149], P = 0.0052) showed a
stronger negative association with age-delta (Supplementary Figure 3).

Mendelian randomisation analysis
Using 17, 14, and 25 genetically independent instruments, we tested the causal association of image-derived fat
phenotypes with cardiovascular age-delta (Supplementary Table 2). We observed genetic associations of gluteofemoral
adipose tissue to cardiovascular age-delta (β = -0.96, [95% CI, -0.39 - -1.52], P = 8.7 x 10−4) from inverse variance-
weighted two-sample MR, suggesting a potentially protective role against increasing cardiovascular age-delta. Two
other fat traits, visceral and abdominal subcutaneous adipose tissue, did not have significant association with age-delta
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but had the opposite effect directions to gluteofemoral adipose tissue (Supplementary Table 3 and Supplementary
Figure 4).

Relationship between circulating biomarkers and cardiovascular age-delta
We found significant associations between increased cardiovascular age-delta and apolipoprotein B (β = 0.336, [95% CI,
0.224 - 0.448], P < 0.0001), total cholesterol (β = 0.304, [95% CI, 0.191 - 0.417], P < 0.0001), and direct LDL cholesterol
(β = 0.287, [95% CI, 0.176 - 0.399], P < 0.0001) while HDL cholesterol showed a decrease in cardiovascular age-delta (β =
-0.187, [95% CI, -0.311 - -0.0063], P =0.0071) across both sexes. Notably, no significant changes between sexes were
observed (Figure 4B).

Oestradiol (E2) was associated with increased cardiovascular age-delta in males (β = 0.481, [95% CI, 0.245 - 0.717],
P < 0.0001) while in all-age females it did not show a significant association (β = - 0.061, [95% CI, -0.685 - -0.558], P =
0.0871). However, in females aged ≤ 55 years, oestradiol was associated with a weak effect on decreased cardiovascular
age-delta (β = -0.000499, [95% CI, -0.000772 to -0.000226], P = 0.0001) (Table 2). An association between sex hormone-
binding globulin (SHBG) and increased age-delta was seen in females (β = 0.360, [95% CI, -0.245 - 0.965], P = 0.0437).
Free testosterone was associated with a decrease in cardiovascular age-delta in both sexes (males: β = -0.081, [95%
CI,-0.109 - -0.052], P < 0.0001; females: β = -0.04, [95% CI, -0.066 - -0.014], P = 0.0071) (Figure 4C).

Comparison of body mass index with fat mass
Categorising body composition by the same centile ranges as BMI-defined normal, overweight and obese categories we
showed that 31% (n=1141/3681) of overweight female participants fell into the “normal” range for whole body fat mass.
Among overweight male participants, 11% (n=537/4882) were reclassified to “normal” whole body fat mass, and 23%
(n=1123) into the “obese” range (Figure 5).

Discussion

Obesity is a leading cause of CVD independent of other risk factors,30 and in animal models causes a state of accelerated
biological ageing of the heart and circulation through up-regulation of pro-fibrotic and inflammatory factors.31,32 Here
we show that fat distribution may underlie premature ageing of the human cardiovascular system and that phenotypic
differences between sexes modify these processes. This work demonstrates the key role played by visceral adipose
tissue and the distribution of subcutaneous fat in regulating biological age and highlights the potential value for novel
therapies intended to extend health span through modifying adipose tissue function.

Adipose tissue is a metabolically active distributed organ system composed of a variety of cell types that store energy
and also contribute to the regulation of diverse biological functions through secretion of cytokines, chemokines, and
hormones.33 Adipose tissue is morphologically heterogeneous with white, beige and brown fat possessing increasing
thermogenic adipocytes.34 Visceral and subcutaneous white adipose tissue depots are also developmentally distinct,35

with visceral adiposity associated with insulin resistance, local and systemic inflammation, and dyslipidemia.36 We
showed that absolute visceral fat volume in women is 54% of that seen in men while subcutaneous fat is 38% higher
than men. In middle aged adults, while whole body fat remains relatively stable with age there is a progressive increase
in muscle fat infiltration, a small rise in visceral fat volume and a decline in subcutaneous fat in both sexes. Such
age-related changes in adipose tissue are thought to involve a redistribution of fat depots and changes in their cellular
composition, alongside a functional decline of adipocyte progenitors and accumulation of senescent cells.37 In animal
models, widespread activation of immune cells is especially pronounced with the earliest signs present in white adipose
depots during middle age as part of an asynchronous pattern of inter-organ ageing.38

We used non-invasive imaging to provide an estimate of how an individual’s cardiovascular system has aged relative
to a normative population and explore the association with fat phenotypes.9 We found that BMI was a weak predictor of
age-delta in either sex reflecting that accelerated ageing is not predicted by overall body mass. BMI also showed a sex
bias in terms of over-representing women with normal fat mass as overweight and vice versa for men. Our data showed
that visceral adipose tissue, liver fat, and to a lesser extent, muscle fat infiltration all predicted an increased age-delta
in both sexes. Visceral adipose tissue promotes abnormal secretion of adipose-derived inflammatory cytokines and
bioactive peptides which are thought to promote premture brain ageing,39,40 and here we show a potential shared
mechanism with accelerated ageing of the heart and circulation that is independent of sex. We also found key sex
differences with a gynoid fat distribution appearing protective for ageing in females and a potential causal association
of genetically-determined gluteofemoral fat on attenuated cardiovascular ageing. Gluteofemoral fat is negatively
correlated with cardiometabolic disease risk factors,41 and while the mechanism remains unclear it may be partially
mediated by secretion of adiponectin which enhances insulin sensitivity.41 However, gynoid fat was only associated
with attenuated ageing in women suggesting that hormonal factors that regulate fat distribution could also directly
influence ageing.42 Oestradiol plays a key role in the biology of ageing across organ systems,11,43,44 and we found that
it might attenuate cardiovascular ageing in women until the menopause.

Our observation that visceral fat promotes ageing of the heart and circulation in humans provides support for the
potential role of emerging treatments that target adipose tissue function to extend health-span. Glucagon-like peptide-
1 receptor agonists (GLP-1 RAs), a class of antihyperglycemic drugs, are used to manage type 2 diabetes mellitus,
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but also have pleiotropic effects on protecting against age-related oxidative stress, cellular senescence and chronic
inflammation. They also substantially reduce visceral and liver fat in those with or without diabetes.45 Therefore they
may reduce both the volume of visceral fat as well as suppress secreted pro-inflammatory mediators of ageing.46,47 For
age-associated diseases and lifespan, ERK, AMPK and mTORC1 represent critical modifiable pathways.48 In animal
models of ageing IL11 is progressively up-regulated in liver, skeletalmuscle, and fat to stimulate an ERK/AMPK/mTORC1
axis of cellular, tissue and organismal ageing pathologies. Anti-IL11 therapy may reactivate age-repressed metabolic
function in adipose tissue and is a potential therapeutic target for extending mammalian healthspan.49 Together, this
shows the potential for treatments that target “inflamm-ageing” through mechanisms that include reprogramming of
adipose tissue function.

Our study has limitations. Older age groups and persons living in less socioeconomically deprived areas are
under-represented in UK Biobank.50 The population is predominantly European and further work is required in people
of diverse ancestries and social groups. People of Asian ancestry in particular may have different sex-dependent
distributions of fat compared to other ancestries.51 Phenotyping is derived at a single time-point in this cross-sectional
study, and we could not assess within-person trajectories nor fully account for differential cohort and periodic effects.

In conclusion, sex-dependent fat phenotypes are related to biological cardiovascular ageing in humans which
highlight adipose tissue distribution and function as potential targets for interventions to extend healthy lifespan.
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Table 1. Study population characteristics. Baseline cardiac MRI and adipose tissue parameters by sex.

Female (n = 10558)
Mean ± SD, or n (%)

Male (n = 10683)
Mean ± SD, or n (%)

P value

Baseline characteristics
Age at MRI (years) 62.5 ± 7.3 63.9 ± 7.6 <0.0001
White ancestry (n/%) 9690/91.7 9822/91.9 0.68
Black ancestry (n/%) 181/1.7 226/2.1 0.037
Asian ancestry (n/%) 386/3.7 296/2.8 0.0009
Mixed ancestry (n/%) 301/2.9 339/3.2 0.18
Body mass index 26.6 ± 4.9 27.3 ± 3.9 <0.0001
Systolic blood pressure (mmHg) 131 ± 17 139 ± 18 <0.0001
Diastolic blood pressure (mm Hg) 77 ± 8 82 ± 8 <0.0001
Pulse rate (bpm) 75 ± 7 71 ± 8 <0.0001
Diabetes mellitus (n/%) 745/7.1 1088/10.2 <0.0001
Hypercholesterolaemia (n/%) 975/9.2 1749/16.3 <0.0001
Hypertension (n/%) 2129/20.2 3082/28.8 <0.0001
Coronary artery disease (n/%) 383/3.6 1162/10.8 <0.0001
Obesity (n/%) 2491/23.6 2826/26.5 <0.0001
Current smoker (n/%) 383/3.6 508/4.8 <0.0001
Current alcohol consumption (n/%) 338/3.2 483/4.5 <0.0001

Cardiac parameters from CMR
Left ventricular ejection fraction (LVEF) (%) 60.7 ± 5.7 58.2 ± 6.2 <0.0001
Left ventricular end-diastolic volume (LVEDV) (ml) 133.6 ± 26.5 164.3 ± 33.6 <0.0001
Left ventricular end-systolic volume (LVESV) (ml) 52.8 ± 14.9 69.2 ± 20.2 <0.0001
Left ventricular stroke volume (LVSV) (ml) 80.8 ± 16.0 95.1 ± 19.7 <0.0001
Left ventricular cardiac output (LVCO) (ml) 5.1 ± 1.1 5.9 ± 1.3 <0.0001
Left ventricle mass (LVM) (g) 74.5 ± 16.1 100.0 ± 20.3 <0.0001
Right ventricular ejection fraction (RVEF) (%) 58.8 ± 5.7 55.7 ± 6.1 <0.0001
Right ventricular end-diastolic volume (RVEDV) (ml) 138.9 ± 29.3 175.6 ± 35.5 <0.0001
Right ventricular end-systolic volume (RVESV) (ml) 57.6 ± 16.3 78.2 ± 20.6 <0.0001
Right ventricular stroke volume (RVSV) (ml) 81.3 ± 17.0 97.3 ± 20.5 <0.0001

Adiposity parameters from MRI
Visceral adipose tissue (VAT) (L) 2.76 ± 1.5 5.1 ± 2.3 <0.0001
Abdominal subcutaneous adipose tissue (ASAT) (L) 8.3 ± 3.5 6.0 ± 2.5 <0.0001
Muscle adipose tissue infiltration (MATI) (%) 7.9 ± 1.9 6.9 ± 1.7 <0.0001
Liver proton density fat fraction (PDFF) ( (%) 4.8 ± 4.3 4.6 ± 4.4 0.60
Whole body fat mass (WBFM) (kg) 20.1 ± 7.0 23.9 ± 8.6 <0.0001
Total trunk fat mass (TTFM) (kg) 14.4 ± 5.0 12.0 ± 4.8 <0.0001
Gynoid fat mass (kg) 4.8±1.6 3.6±1.2 0.0001
Android fat mass (kg) 2.3±1.2 2.8±1.2 0.0002

Losev et al. 2024 | medR𝜒iv | 10 of 16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.27.24309526doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.27.24309526
http://creativecommons.org/licenses/by/4.0/


Table 2. Association of adiposity phenotypes, cardiometabolic and endocrine biomarkers with cardiovascular age-delta. Sex stratified β coefficients, 95%
confidence intervals and P values for each predictor with age-delta as the dependent variable in a linear regression model with age and age2 as
covariates.

Trait 𝛽 coefficient 95% CI P value

Body fat phenotypes
Visceral adipose tissue (VAT) 0.656 0.537 - 0.775 < 0.0001

Female 0.497 0.323 - 0.671 0.0007
Male 0.739 0.577 - 0.9 < 0.0001

Abdominal subcutaneous adipose tissue (ASAT) 0.154 0.045 - 0.264 0.0069
Female -0.099 -0.246 - 0.047 0.1981
Male 0.432 0.269 - 0.596 < 0.0001

Muscle adipose tissue infiltration (MATI) 0.183 0.112 - 0.224 0.0003
Female 0.482 0.321 - 0.692 < 0.0001
Male 0.283 0.198 - 0.376 0.0007

Liver proton density fat fraction (PDFF) 1.066 0.835 - 1.298 < 0.0001
Female 0.991 0.675 - 1.306 < 0.0001
Male 1.13 0.788 - 1.472 < 0.0001

Total abdominal adipose tissue (TAAT) 0.615 0.499 - 0.732 < 0.0001
Female 0.355 0.205 - 0.505 0.0007
Male 0.949 0.767 - 1.132 < 0.0001

Android adipose tissue mass 0.527 0.292 - 0.761 0.0002
Female 0.121 -0.199 - 0.441 0.4727
Male 0.983 0.64 - 1.326 < 0.0001

Gynoid adipose tissue mass 0.077 -0.175 - 0.329 0.5479
Female -0.499 -0.85 - -0.149 0.0003
Male 0.688 0.33 - 1.046 0.0066

Body fat composition
Total trunk fat mass -0.15 -0.165 - 0.41 0.0408

Female -0.403 -0.821 - -0.14 0.0061
Male 0.415 0.032 - 0.211 0.0343

Whole body fat mass 0.011 -0.12 - 0.02 0.0431
Female -0.389 -0.732 - -0.254 0.0043
Male 0.428 0.071 - 0.114 0.0191

Body mass index -0.025 -0.048 - -0.001 0.0430
Female -0.85 -0.115 - -0.055 0.0092
Male 0.063 0.026 - 0.1 0.0813

Cardiometabolic biomarkers
Apolipoprotein A -0.003 -0.125 - 0.12 0.9673

Female -0.12 -0.293 - 0.053 0.1946
Male 0.09 -0.084 - 0.257 0.3413

Apolipoprotein B 0.336 0.224 - 0.448 < 0.0001
Female 0.209 0.052 - 0.33 0.0117
Male 0.214 0.058 - 0.37 0.0117

Direct low-density Lipoprotein 0.287 0.176 - 0.399 <0.0001
Female 0.15 0.029 - 0.388 0.0423
Male 0.18 0.024 - 0.336 0.0310

High-density lipoprotein cholesterol -0.187 - 0.311 - -0.063 0.0071
Female -0.331 -0.535 - -0.1 0.0053
Male -0.261 -0.435 - -0.088 0.0072

Triglycerides 0.569 0.459 - 0.679 0.0062
Female 0.652 0.485 - 0.858 0.0073
Male 0.671 0.485 - 0.858 0.0072

Cholesterol (total) 0.304 0.191 - 0.417 < 0.0001
Female 0.183 0.048 - 0.373 0.0219
Male 0.197 0.04 - 0.353 0.0207

Endocrine biomarkers
Sex hormone binding globulin (SHBG) 0.107 -0.356 - 0.57 0.6497

Female 0.36 -0.245 -0.965 0.0437
Male -0.362 -1.068 - 0.344 0.3546

Testosterone (free form) -0.063 -0.082 - -0.043 < 0.0001
Female -0.04 -0.066 - -0.014 0.0071
Male -0.0811 -0.109 - -0.052 < 0.0001

Oestradiol (E2) 0.189 -0.259 - 0.679 0.0862
Female - 0.061 -0.685 - 0.558 0.0871
Female aged 55 and younger - 0.00499 -0.000772 - -0.000226 0.0001
Female aged 55 and older 0.000301 -0.000105 - 0.000707 0.1424
Male 0.481 0.245 - 0.717 < 0.0001
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Figure 1. Analysis of fat phenotypes and cardiovascular aging. A Flowchart of analyses performed in UK Biobank participants. B Fat phenotyping was
performed by segmentation of whole body MRI into visceral, subcutaneous and muscle compartments (credit: AMRA Medical). C Phenotypes derived from
cardiac MRI were used for age prediction. These included automated time-resolved segmentations of the aorta and cardiac chambers, as well as strain
rate analysis and T1 mapping. D Integration of MRI and DXA enabled regional body composition analysis. (credit: Rhydian Windsor,24 under Creative
Commons Attribution License CC BY 4.0). MRI, magnetic resonance imaging; DXA, dual X-ray absorptiometry; Asc Ao, ascending aorta; Dsc Ao, descending
aorta.
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Figure 2. Distribution of fat phenotypes and association with cardiovascular age-delta. Ridge plots summarising the distribution densities of adiposity
phenotypes. Unadjusted and normalised values shown. Body mass index, BMI; Magnetic resonance imaging, MRI; Adiposity phenotypes n= 21,241; BMI
and MRI assessed adiposity n= 21,241; Android and gynoid adipose tissue deposition n = 5,168.
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Figure 3. Adiposity and biomarker associations with chronological age. A selection of representative phenotypes grouped by MRI-derived adipose
features (n=21,241), android and gynoid fat mass (n=5,168), circulating biomarkers (n=19,856) and hormones (n=3,588) are shown with their relationship
to chronological age at the time of imaging (ages jittered, density contours, point colours represent coefficient of determination (R2). VAT, visceral
adipose tissue; ASAT, abdominal subcutaneous adipose tissue; TTFM total trunk fat mass; WBFM, whole body fat mass; MATI, muscle adipose tissue
infiltration; TAAT, total abdominal adipose tissue; PDFF, proton density fat fraction (of the liver); LDL, low density lipoprotein; HDL, high density
lipoprotein; SHBG, sex hormone-binding globulin.
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Figure 4. Adiposity phenotype, cardiometabolic and endocrine associations with cardiovascular age-delta. A Linear regression analysis of quantitative
adipose tissue traits (n=21,241, of which 5,168 had android and gynoid fat mass values) with cardiovascular age-delta as the dependent variable. P
values, standardised beta-coefficient point estimates, and 95% confidence intervals shown stratified by sex. Linear regression analysis of B circulating
lipids (n=19,856) and C sex hormones (n=3,588) with cardiovascular age-delta as the dependent variable. P values, standardised beta-coefficient point
estimates, and 95% confidence intervals shown stratified by sex. LDL, low density lipoprotein; HDL, high density lipoprotein; SHBG, sex hormone-binding
globulin.
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Figure 5. Reclassification of body mass index groups by whole body fat mass. Series of alluvial plots that show the redistribution of participants in each
body mass index (BMI) group to equivalent centile ranges of whole body fat mass. A Overall population (n=21,241), B females (n=10,558), and C males
(n=10,683).
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