Transcriptome- and proteome-wide Mendelian randomization to prioritize therapeutic targets for coronary heart disease

Liam Gaziano PhD\# ${ }^{1,2}$, Elias Allara MD, PhD\# $\#^{2,3,4}$, Claudia Giambartolomei $\mathrm{PhD}^{5,6}$, David Stacey $\mathrm{PhD}^{7,8}$, Jing Hua Zhao $\mathrm{PhD}^{2,3}$, Hesam Dashti $\mathrm{PhD}^{9,10}$, Tao Jiang MSc ${ }^{2,11}$, Scott C. Ritchie $\mathrm{PhD}^{2,3,12,13,14,15,16}$, Brian R Ferolito MS^{9}, Danielle Rasooly PhD ${ }^{9,17}$, Gina M. Peloso $\mathrm{PhD}^{9,18}$, Emanuele Di Angelantonio MD, PhD, FMedSci ${ }^{2,3,4,5,12,13}$, Eleanor Wheeler PhD^{19}, Maik Pietzner $\mathrm{PhD}^{19,20,21}$, Themistocles L Assimes MD, PhD ${ }^{22,23}$, Peter WF Wilson MD ${ }^{24,25}$, Kelly Cho PhD, MPH ${ }^{26,27,28}$, Krishna G Aragam MD, MS ${ }^{29,30}$, Stephen Burgess PhD ${ }^{2,31}$, John Danesh FMedSci ${ }^{2,3,4,12,13,32}$, Claudia Langenberg MD, $\mathrm{PhD}^{19,20,21}$, Juan Pablo Casas MD, PhD^{33}, J Michael Gaziano MD, MPH ${ }^{26,27,28}$, Alexandre C Pereira MD, $\mathrm{PhD}^{\dagger} \dagger^{9,27,28,34}$, Adam S Butterworth $\mathrm{PhD} \dagger^{2,3,4,12,13}$

\#Contributed equally. \dagger Contributed equally.
${ }^{1}$ Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs Healthcare System, Boston, MA, USA
${ }^{2}$ British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
${ }^{3}$ Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
${ }^{4}$ NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
${ }^{5}$ Health Data Science Centre, Human Technopole, Milan, Italy
${ }^{6}$ Million Veteran Program (MVP) Consultant, Veterans Affairs Healthcare System, Boston, MA, USA
${ }^{7}$ Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
${ }^{8}$ South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
${ }^{9}$ Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
${ }^{10}$ Broad Institute of MIT and Harvard, Cambridge, MA, USA
${ }^{11}$ Victor Philip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
${ }^{12}$ British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
${ }^{13}$ Health Data Research UK Cambridge, University of Cambridge, Cambridge, UK
${ }^{14}$ Health Data Research UK Cambridge, Wellcome Genome Campus, Hinxton, UK
${ }^{15}$ Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary
Care, University of Cambridge, Cambridge, UK
${ }^{16}$ Cambridge Baker Systems Genomics Initiative, Baker Heart \& Diabetes Institute, Melbourne,
Victoria, Australia
${ }^{17}$ Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
${ }^{18}$ Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA ${ }^{19}$ MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
${ }^{20}$ Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
${ }^{21}$ Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
${ }^{22}$ VA Palo Alto Health Care System, Palo Alto, CA, USA
${ }^{23}$ Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
${ }^{24}$ Emory University School of Medicine (Cardiology), Emory University, Atlanta, GA, USA
${ }^{25}$ Internal Medicine, VA Atlanta Healthcare System, Decatur, GA, USA
${ }^{26}$ Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
${ }^{27}$ Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
${ }^{28}$ Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
${ }^{29}$ Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
${ }^{30}$ Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
${ }^{31}$ MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
${ }^{32}$ Human Genetics, Wellcome Sanger Institute, Hinxton, UK
${ }^{33}$ Biomarker Development/Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
${ }^{34}$ Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil

Corresponding author: Professor Adam Butterworth
Department of Public Health and Primary Care
University of Cambridge
Victor Phillip Dahdaleh Heart \& Lung Research Institute,
Papworth Road, Cambridge, CB2 0BB
Tel. 00441223748673
E-mail: asb38@medschl.cam.ac.uk

Manuscript word count: 3703

Abstract

Despite widespread use of drugs targeting traditional cardiovascular risk factors such as lipids and blood pressure, a high burden of coronary heart disease (CHD) remains, hence novel therapeutics are needed for people who harbor residual risk. Using transcriptomic and proteomic data to instrument 15,527 genes or proteins, we conducted systematic cis-Mendelian randomization (MR) and conditional colocalization analyses with a genetic meta-analysis involving nearly 300,000 CHD cases. We identified 567 targets with putative causal relevance to CHD, of which 69 were not identified in previous genetic discovery or MR studies and were the sole causal signal in that genomic region. To aid translation of our findings, we annotated results with up-to-date information on drugs acting on these targets. Our results revealed opportunities for drug repurposing and development prioritization. For example, we provide evidence that cilostazol, a drug that targets PDE3A and is currently used for claudication, could be repurposed for prevention of CHD.

Introduction

There is a need to develop novel therapeutics to prevent CHD, which remains a leading cause of death in adults across the globe ${ }^{1}$. Although several safe and effective drugs exist for primary prevention of CHD, many adults experience residual hypertension or dyslipidemia following standard therapies ${ }^{2,3}$, suggesting a need to identify new approaches to target these traditional cardiovascular risk factors. Furthermore, an increasing proportion of myocardial infarctions occur in patients without traditional cardiovascular risk factors ${ }^{4}$, highlighting the need to identify and modulate novel pathways implicated in coronary atherosclerosis and thrombosis.

Around 50% of drug development failures occur due to lack of efficacy ${ }^{5}$, suggesting that the chosen target is not causally related to the outcome. Mendelian randomization (MR) ${ }^{6}$ analyses exploit the random allocation of genetic alleles through the population and avoid the pitfalls of relying on pre-clinical models that may not translate to human biology. Indeed, drugs that target proteins with supportive evidence from human genetic studies have a higher chance of gaining regulatory approval ${ }^{7}$.

Recently, large-scale proteomic profiling has led to the creation of extensive catalogs of genetic variants that influence circulating protein levels ${ }^{8-11}$. Similarly, the GTEx consortium ${ }^{12}$ has measured transcriptome-wide RNA levels in nearly 50 tissues to identify associated genetic variants. In combination, these resources can provide tissue-specific instruments to evaluate the causal relevance of the human proteome and transcriptome on CHD. To achieve this goal, we leverage transcriptomic and proteomic summary statistics to perform Mendelian randomization and colocalization analyses between more than 15,000 genes or proteins and the risk of CHD,

125

Results

We took a similar approach as our previous transcriptomic and proteomic MR analyses ${ }^{16}$, with the overall study design for the current analysis shown in Figure 1. To minimize the potential for horizontal pleiotropy (i.e. the CHD-associated variants acting through a different gene/protein to the one being instrumented), we used locally-acting (cis), conditionally-independent, protein quantitative trait loci (cis-pQTLs) to instrument levels of 1,497 plasma proteins assayed using the SomaScan V4 platform in the Fenland study ${ }^{17}$ (Supplementary Table 1). We also selected conditionally-independent, cis gene expression QTLs (cis-eQTLs) from Version 8 of the Genotype-Tissue Expression (GTEx) resource ${ }^{12}$ as instruments for 15,412 protein-coding genes (Supplementary Table 2). With these instruments, we performed MR using a GWAS metaanalysis of CHD that we conducted using results from European ancestry participants of the Million Veteran Program (MVP) ${ }^{18}$, the latest CARDIoGRAMplusC4D Consortium GWAS ${ }^{14}$, and the FinnGen biobank ${ }^{15}$ involving 296,537 CHD cases among 1,593,766 participants (Supplementary Table 3). 15,527 genes or proteins had at least one instrumental variant in at least one tissue, hence we set a Bonferroni-adjusted significance threshold at $P=3.22 \times 10^{-6}$ ($0.05 / 15,527$). A full list of MR results can be found in Supplementary Table 4. To reduce the possibility that MR associations arise due to confounding by linkage disequilibrium (LD), we additionally performed a pairwise conditional colocalization ${ }^{19}$ analysis between pQTL or eQTL summary statistics and CHD summary statistics for all significant MR results. We annotated results (those that passed both Bonferroni-adjusted P-value for MR and colocalization [PPH4>0.80] thresholds) with information about drugs that act on these targets using the OpenTargets ${ }^{20}$ and DrugBank ${ }^{21}$ resources (Supplementary Table 5-7), and assessed novelty and potential for horizontal pleiotropy (Supplementary Table 8). For specific targets of interest, we
performed phenome-wide association scans of instrumental variants and colocalization to identify putative mechanisms, safety signals and alternative indications (Supplementary Table 9). Lastly, we conducted enrichment analyses to assess whether the potential causal genes for CHD occur more frequently in certain biological pathways (Supplementary Table 10).

Overall, we found 567 unique genes/proteins colocalizing with CHD. Using eQTL instruments, 736 genes passed the MR significance threshold $\left(P<3.22 \times 10^{-6}\right)$ with 551 (74.9\%) colocalizing (PPH4>0.8). Using pQTL instruments, 39 proteins passed MR significance with 24 colocalizing. Twenty of these were also tested using eQTL instruments, of which nine (ABO, GSTT2B, IL6R, MST1, MXRA7, PCSK9, PDE5A, TMEM106A, TMEM106B) also passed the colocalization threshold, and seven (ABO, GSTT2B, MST1, MXRA7, PCSK9, PDE5A, TMEM106A) had an eQTL signal in at least one tissue in the same direction as the plasma pQTL.

Replication of past Mendelian randomization studies

We assessed whether we could replicate results from two transcriptome-/proteome-wide MR studies that have included CHD as an outcome, both of which used outcome summary statistics from the 2015 CARDIoGRAMplusC4D GWAS that included 60,801 CHD cases ${ }^{22}$. First, Zheng et al. ${ }^{19}$ used five ${ }^{9,23-26}$ publicly available pQTL resources to select instrumental variants, identifying $L P A$ and IL6R with MR $P<3.22 \times 10^{-6}$ when restricting to results that used cisinstruments and colocalized. Here, we also identified $\operatorname{IL6R}\left(P=2.5 \times 10^{-22}\right.$, highest PPH4 in any tissue is 1.00) but could not assess $L P A$, as it is not measured on the SomaScan V4 panel. Second, Richardson et al. ${ }^{27}$ used cis-eQTL variants from GTEx Version 7 and eQTLGen ${ }^{28}$ as instruments and found 21 protein-coding genes with MR $P<3.22 \times 10^{-6}$ and $P_{\text {HEIDI }}$ (a test for confounding by

LD) >0.05, of which 20 were replicated here (ABO, AIDA, ATP2B1, CARF, CELSR2, FAM117B, FES, GGCX, GUCY1A1, ICA1L, JCAD, LIPA, MIA3, MORF4L1, MRAS, NBEAL1, PHACTR1, PSRC1, SORT1, SWAP70), suggesting that our framework identifies robust results. Only VAMP8 from Richardson et al. did not colocalize in our analysis (highest PPH4 in any tissue was 0.33). In the VAMP8 region, we instead identified $G G C X\left(P=1.7 \times 10^{-52}, \mathrm{PPH} 4=1.00\right.$ in aortic artery tissue $)$, which is targeted by the Anisindione, an anticoagulant occasionally used in those who cannot tolerate warfarin ${ }^{29}$. It is reassuring that our approach identified GGXC over VAMP8 in that region, considering the biological role of $G G C X$ in coagulation by activating vitamin K-dependent proteins and the relevance of coagulation to CHD.

Assessment of horizontal pleiotropy

We considered an instrumental variant that influences expression of multiple genes / proteins as having the potential to introduce a form of horizontal pleiotropy that arises from shared regulation of nearby genes. Therefore, we grouped results with instrumental variants that are in close proximity (250 kb) or are correlated ($r^{2}>0.2$ in 1000 Genomes EUR). The 567 genes/proteins, hereafter referred to as "targets", that passed MR and colocalization thresholds lie within 283 genomic regions. We allocated results into tiers based on the number of targets within a genomic region: Tier 1 includes 165 targets that are the sole result within a region to pass MR and colocalization thresholds, while the remaining 404 results (located within 116 regions) were annotated as Tier 2 (Supplementary Table 8). Tier 1 genes included several well-known to relate to CHD risk, such as $A P O B, I L 6 R, I L 1 R N, L I P A$, and others previously identified by GWAS as the most likely causal gene in the region, such as ITGA1, MYO9B, and SERPINA1 ${ }^{14}$. Because we tested all protein-coding genes in GTEx, Tier 1 results that are the only significant signal in the
region are less likely to exhibit this form of horizontal pleiotropy. Conversely, since Tier 2 results contain multiple targets, it can be difficult to disentangle the gene responsible for driving the signal(s) in each region using MR and colocalization alone. For example, in one region on chromosome 1 (region \#13 in Supplementary Table 8), there are four targets (SARS1, CELSR2, PSRC1 and SORT1) that pass MR and colocalization thresholds. However, previous functional work has shown that $S O R T 1$ is likely driving the signal in the 1 p 13.3 locus ${ }^{30}$, meaning results for SARS1, CELSR2, and PSRC1 likely arose due to horizontal pleiotropy (Supplementary Figure 1).

Novel putative therapeutic targets

We classified results as novel if they (1) were based on instrumental variants that were not correlated ($r^{2}<0.2$ in 1000 Genomes EUR) or in close proximity ($\pm 250 \mathrm{~kb}$) with genome-wide significant $\left(P<5 \times 10^{-8}\right)$ variants for CHD reported in Tcheandjieu et al. ${ }^{18}$, Aragam et al. ${ }^{14}$, or Supplementary Table 2 of Aragam et al. ${ }^{14}$ which includes 216 CHD-associated variants previously reported in the literature and (2) were not reported in Zheng et al. ${ }^{19}$ or Richardson et al. ${ }^{27}$. We classified 184 targets as novel, 69 of which were classified also as Tier 1 (Figure 2, Supplementary Table 8).

Targets with existing drugs

Of the 567 targets that passed MR and colocalization thresholds, 30 had drugs developed that act on these targets according to DrugBank ${ }^{21}$ (Supplementary Table 5) and 32 according to OpenTargets ${ }^{20}$ (Supplementary Table 6), of which 19 from both. Forty-three targets had an existing drug according to either DrugBank or OpenTargets and the remaining 524 targets were
classified as not currently having a drug (Supplementary Table 7). Of the 43 targets with existing drugs, several are involved in well-known vascular pathways such as lipid metabolism (e.g., PCSK9, LPL, APOC3, NPC1L1, CETP, ABCA1), hemostasis (e.g., F11, FN1, PDE3A, PIK3CB, TFPI, KLKB1, PDE8A, GGCX) and inflammation (e.g. IL6R, IL23A, MIF). Some of these - such as $P C S K 9^{31}, N P 1 C L 11^{32}$, and $C E T P^{33}$ - have already been shown to be effective therapeutic targets for CHD in clinical trials, while others like $I L 6 R$ are currently being tested ${ }^{34}$.

Repurposing

Our results also reveal notable repurposing opportunities. An example is the novel, Tier 1 result for PDE3A, which is targeted by several inhibitory drugs for a wide range of indications, including thrombotic events and respiratory diseases (Supplementary Table 5 and 6). Higher geneticallypredicted expression of PDE3A was positively associated with CHD ($P=2.25 \times 10^{-7}$) using a colocalizing (PPH4=0.99) eQTL instrumental variant (rs7488772) in subcutaneous adipose tissue, suggesting that therapeutic inhibition might be beneficial. A phenome-wide association scan with colocalization (PheWAS-coloc) for rs7488772 showed that higher genetically-predicted expression of PDE3A was associated with higher levels of several cardiometabolic risk factors, including systolic blood pressure, triglycerides, and glycated hemoglobin (Figure 3 and Supplementary Table 9).

Identifying safety concerns for non-cardiovascular drugs

We also found an inverse association between higher genetically-predicted expression of CXCR4 (instrumented by rs10171574) and risk of CHD ($P=9.52 \times 10^{-7}$) (Supplementary Table 5). PheWAS-coloc showed associations of the CHD-increasing (and CXCR4-decreasing) allele with
higher neutrophil percentage of white blood cells and lower lymphocyte percentage of white blood cells (Supplementary Figure 2 and Supplementary Table 9). These associations are consistent with the role of $C X C R 4$ inhibitors such as plerixafor, which is commonly used in stem cell transplantation to mobilize granulocytes and their precursors into the blood stream ${ }^{35}$. Our findings suggest that CXCR4 inhibitors (e.g. plerixafor and uloplucumab) may increase risk of CHD in an on-target fashion, raising potential safety concerns for long-term use.

Disentangling effects for drugs with multiple targets

One therapeutic target, PLA2G5, which encodes secretory phospholipase A2 group V (sPLA2-V), is inhibited by Varespladib methyl. We found that higher genetically-predicted PLA2G5 expression, a Tier 1 result, was associated with higher risk of CHD $\left(P=3.18 \times 10^{-6}\right)$ (Figure 4) using an instrumental variant (rs12408798) in aortic artery tissue (PPH4=0.99). However, Varespladib methyl did not reduce coronary events in ~ 5000 patients with acute coronary syndrome in the VISTA-16 trial ${ }^{36}$, and even showed an increased risk of myocardial infarction. Varespladib methyl also targets isoenzymes sPLA2-IIA (encoded by PLA2G2A) and sPLA2-X (encoded by PLA2G10) ${ }^{37}$. Here, eQTL instruments for PLA2G2A expression appeared in multiple tissues, none of which were associated with CHD ($P>0.52$), while there was no eQTL instrument for PLA2G10 in any tissue nor a pQTL instrument.

Targets currently without a drug

The 524 targets for which drugs do not currently exist can help prioritize drug development programs. For example, we found positive associations for genetically-predicted $A B C A 8$ expression with risk of CHD ($P=6.50 \times 10^{-7}$), suggesting ATP binding cassette subfamily A
member 8 as a potential therapeutic target. PheWAS-coloc for $A B C A 8$ (instrumented by rs34931250 in several tissues) showed positive associations with LDL-cholesterol concentration and Apolipoprotein B, and inverse associations with HDL-cholesterol and Apolipoprotein-A1 (Figure 5 and Supplementary Table 9), suggesting pro-atherogenic lipids and poor cholesterol efflux as the potential mediators.

Pathway and gene ontology term enrichment analysis

To determine whether our set of 567 putative causal genes for CAD was over-represented in specific biological mechanisms or pathways, we performed enrichment analyses using Enrichr ${ }^{38-}$ ${ }^{40}$. Overall, we found significant ($P_{\text {adj }}<0.05$) evidence of enrichment for 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or gene ontology (GO) terms, with the highest significance observed for lipid-related categories (Supplementary Table 10). This included the KEGG pathways "cholesterol metabolism" $\left(P=8.85 \times 10^{-10}\right.$, odds ratio [OR]=12.32) and "fat digestion and absorption" $\left(P=2.37 \times 10^{-5}, \mathrm{OR}=7.95\right)$, as well as the GO terms "lipoprotein particle remodeling" $\left(P=3.35 \times 10^{-5}, \mathrm{OR}=12.24\right)$ and "sterol transfer activity" $\left(P=1.49 \times 10^{-4}, \mathrm{OR}=12.36\right)$. Furthermore, Enrichr also highlighted $\left(P_{a d j}<0.05\right)$ GO terms relating to endothelial cell migration $\left(P=2.71 \times 10^{-5}, \mathrm{OR}=5.19\right)$, focal adhesion $\left(P=3.00 \times 10^{-4}, \mathrm{OR}=2.33\right)$, and cell-substrate junctions $\left(P=4.03 \times 10^{-4}, \mathrm{OR}=2.28\right)$. Thus, these analyses revealed a highly significant enrichment of genes involved in CAD-related biological pathways and mechanisms.

We then performed a separate enrichment analysis focusing specifically on our set of 165 Tier 1 putative causal genes. These analyses highlighted 51 significant ($P_{a d j}<0.05$) KEGG pathways or GO terms (Supplementary Table 11), double the number observed in the previous enrichment
analysis of all 567 candidates and which again included the KEGG pathways "cholesterol metabolism" $\left(P=3.39 \times 10^{-6}, \mathrm{OR}=16.97\right)$ and "fat digestion and absorption" $\left(P=4.29 \times 10^{-4}\right.$, $\mathrm{OR}=12.61$). The Tier 1 analysis also highlighted a major theme related to cell migration, motility, and chemotaxis, while reiterating an enrichment of gene products localized to focal adhesions $\left(P=4.18 \times 10^{-6}, \mathrm{OR}=4.84\right)$ and cell-substrate junctions $\left(P=5.29 \times 10^{-6}, \mathrm{OR}=4.73\right)$. Together, this analysis, confined to the 165 Tier 1 genes, highlights pathways that influence CAD risk by regulating spatial arrangements and interactions between cells at the arterial wall, which is consistent with current models of atherosclerosis ${ }^{41}$.

Discussion

Using instruments derived from gene expression in multiple tissues and plasma protein levels, we identified 567 targets within 283 genomic regions with a putative causal relevance to CHD. We annotated the findings with information on existence of current targeting drugs to aid translation of our findings into actionable interventions and followed-up specific results with phenome-wide scans and colocalization to identify possible mechanisms or on-target safety concerns. While previous studies have used transcriptomic and proteomic genetic instruments on CHD ${ }^{19,27}$, none have been applied to a GWAS of this size. As a result, this analysis increased the number of genes/proteins with putative causal relevance to the development of CHD, with 69 novel, Tier 1, eQTL-CHD or pQTL-CHD pairs.

These results can help establish novel therapeutics for prevention of CHD in several ways. First, we identified possible opportunities for drugs currently on the market, that might be repurposed. PDE3A is targeted by multiple small molecules, two of which (milrinone and amrinone) were tested in overt heart failure but displayed null or harmful effects ${ }^{42-44}$, and one, cilostazol, which is currently used for intermittent claudication. Cilostazol has antiplatelet and vasodilatory effects ${ }^{45}$ by inhibiting PDE3A's catalysis of inactive adenosine monophosphate (AMP) from cyclic (cAMP). We found higher genetically-predicted PDE3A expression to be positively associated with CHD and a number of cardiovascular risk factors. Some of the PheWAS-coloc results for the PDE3A instrumental variant have been additionally corroborated by human trials of cilostazol. For example, trials have found that cilostazol reduces triglycerides and increases HDL-cholesterol ${ }^{46,47}$. Cilostazol, in addition to its antiplatelet effects, also acts as a vasodilator, so the PheWAS-coloc result for systolic blood pressure is perhaps not surprising, especially considering cilostazol has
been shown in trials to reduce ankle brachial index ${ }^{48}$. The congruence between existing trial data and the PheWAS-coloc analysis provides evidence that the instrumental variant for $P D E 3 A$ expression is accurately mimicking the on-target effects of cilostazol. Our findings additionally corroborate previous findings for PDE3B (a protein with similar function as PDE3A and is also targeted by Cilostazol ${ }^{49}$), which found loss of function mutations in $P D E 3 B$ are associated with reductions in CHD, decreased triglycerides, and increased HDL-C ${ }^{50}$.

Cilostazol has also been shown to reduce secondary ischemic stroke by 32% in a meta-analysis of trials ${ }^{51}$. It is often tested against antiplatelet drugs, like aspirin, clopidogrel, or a combination of the two, and has shown superiority in preventing bleeding events as well, including a 57% reduction in hemorrhagic stroke ${ }^{51}$. While aspirin and clopidogrel reduce CHD in primary prevention, there is debate about whether the increased bleeding risk outweighs the benefits ${ }^{52}$. Therefore, large trials of cilostazol for primary prevention of CHD may be warranted to determine if it provides a safer and more effective antiplatelet strategy than aspirin or clopidogrel.

Second, our findings can help clear up questions surrounding drugs that target multiple proteins. Varespladib inhibits isoenzymes sPLA2-V (encoded by PLA2G5), sPLA2-IIA (encoded by PLA2G2A) and sPLA2-X (encoded by PLA2G10). All three of these genes have been assessed previously in MR studies for CHD and all have been null ${ }^{53-55}$. The previous study instrumented gene expression of PLA2G5 with rs525380 in aorta adventitia tissue from 133 participants of the Advanced Study of Aortic Pathology (ASAP). ASAP participants were genotyped using the Illumina Human 610 W -Quad Bead array without imputation. The variant from Holmes et al., rs525380, is in weak LD ($r^{2}=0.28$ in 1000 Genomes European ancestry) with the one used here for

PLA2G5, and this may explain the different results (Figure 4). We replicated a separate study that found no association between genetically-predicted PLA2G2A and CHD^{54} that used an identical instrumental variant as the present analysis (rs11573156). A previous MR analysis on sPLA2-X suffered from weak instruments for PLA2G10 expression ${ }^{55}$ (similarly, there were no significant eQTLs for PLA2G10 in GTEx), and without strong genetic instruments it is difficult to understand its causal relevance to CHD through MR.

The phase 3 VISTA-16 trial found that Varespladib had no effect on a composite outcome of cardiovascular mortality, nonfatal MI, nonfatal stroke, or unstable angina in those with acute coronary syndrome ${ }^{36}$ but did find an increase in myocardial infarction. This may be explained by Varespladib's inhibition of sPLA2-X, which showed antiatherogenic effects in mouse models ${ }^{56}$. Indeed, Varespladib is five times more active for sPLA2-X than sPLA2-V, with half maximal inhibitory concentrations of 15 nM for sPLA2-X versus 77 nM for sPLA2- V^{57}. In aggregate, these results suggest that specific inhibition of sPLA2-V without inhibition of sPLA2-IIA or sPLA2-X could be an effective intervention for CHD prevention.

Third, MR results for non-druggable targets can help to indicate which targets should be carried forward for development. We found that higher levels of $A B C A 8$ gene expression decrease HDLcholesterol levels and increase LDL-cholesterol levels and risk of CHD, suggesting that modulating ABCA8 could prevent CHD, potentially through either reductions in Apo-Bcontaining lipoproteins or improved cholesterol efflux. Our findings for HDL-cholesterol are discordant with studies of deleterious $A B C A 8$ mutations and $A B C A 8$ knock-out mice, which have shown decreased HDL-cholesterol levels ${ }^{58-60}$. Combined with the biological role of ABCA8 and
other ATP binding cassette proteins ${ }^{58}$, and the congruence between the effect of the instrumental variant on ApoB-containing lipoproteins and CHD, these findings suggest that it is actually reduced ABCA8 protein levels that increase ApoB-containing lipoproteins and risk of CHD. This highlights one of the challenges of transcriptomic-derived instruments, in that there are several reasons why expression of a gene may be elevated. For example, gene expression may be upregulated as a compensatory mechanism for a variant that causes decreased function of a protein through changes in key amino acids, splicing, or other mechanisms. It is possible such a phenomenon is occurring for $A B C A 8$, particularly because the instrumental variant lies within a splice region ${ }^{61}$. More in-depth evaluation of ABCA8 and the many other potentially causal targets instrumented by gene expression are warranted to determine the desired direction of therapeutic modulation.

Lastly, our findings can help identify on-target effects of drugs that may increase the risk of CHD, suggesting potential safety concerns We found an association between greater expression of CXCR4 and lower risk of CHD, which is consistent with a previous study in hyperlipidemic mice ${ }^{62}$. Additionally, CXCL12, the natural ligand for CXCR4, shows a positive, Tier 1, association for CHD in our analysis. CXCR4, which encodes C-X-C chemokine receptor type 4, is the target of multiple marketed medications, including Plerixafor and Ulocuplumab, and our findings suggest that these drugs could increase the risk of CHD in an on-target fashion. CXCR4 inhibitors are currently used in stem cell transplant donors to elicit more stem cells into the peripheral blood and this transient use is unlikely to have a lasting harmful impact on CHD risk. However, they have been considered for more long-term use for other conditions ${ }^{63-65}$, and our findings recommend evaluation of cardiovascular safety in such settings. Other drug development programs can
similarly use our findings to better predict whether a drug for any disease could have a harmful on-target effect on CHD.

The major limitation of our analytical approach is that within 116 loci there were multiple targets that passed MR and colocalization thresholds. Tier 2 results that lie within the same genomic region, like the SORT1, CELSR2 and PSRC1 locus, provide evidence that even cis-instruments may exhibit horizontal pleiotropy, perhaps through shared regulation of multiple local genes or linkage disequilibrium, making it difficult to determine the true causal target(s) in a region. Although the approach taken here equally prioritizes these genes, functional work has suggested that SORT1 is likely driving the signal in the 1 p 13.3 locus ${ }^{30}$. Conversely, though, due to our comprehensive testing of all protein-coding genes in GTEx, Tier 1 results that are the only result in the region are more likely to be the causal gene driving the association.

There are other limitations as well. This study was undertaken in almost exclusively European ancestry, so other studies in diverse ancestries are warranted. The pQTL MR only covers a small proportion of the human proteome and instrumenting plasma protein levels may not always provide the most relevant tissue in the context of CHD. The eQTL MR analysis used instruments for gene expression which may not translate to effects on protein levels in a relevant cell type. Lastly it can be difficult through MR, especially with gene expression data, to determine how much inhibition or activation of a certain protein is required for a meaningful reduction in CHD.

Our study has several strengths. We conducted a de novo GWAS meta-analysis involving nearly 300,000 CHD cases, providing a well-powered outcome dataset. We performed conditional
colocalization analysis to robustly test for pleiotropy, avoiding the one-signal-per-locus limitation of the traditional colocalization approaches. Annotations of results with up-to-date information on the druggable genome help facilitate translation into actionable interventions. Further investigations with phenome-wide scans with colocalization on instrumental variants can identify possible on-target safety concerns as well as elucidate potential mechanisms for CHD pathogenesis.

In summary, our transcriptomics and proteomics analysis identified 69 novel, Tier 1 targets with putative causal relevance for CHD. We show opportunities for drug repurposing and development prioritization. Additionally, our results can be used for understanding CHD safety of current and future drugs indicated for non-cardiovascular diseases.

References

1. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204-1222 (2020).
2. Reith, C. \& Armitage, J. Management of residual risk after statin therapy. Atherosclerosis 245, 161-70 (2016).
3. Noubiap, J.J. et al. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart 105, 98-105 (2019).
4. Vernon, S.T. et al. Increasing proportion of ST elevation myocardial infarction patients with coronary atherosclerosis poorly explained by standard modifiable risk factors. Eur J Prev Cardiol 24, 1824-1830 (2017).
5. Harrison, R.K. Phase II and phase III failures: 2013-2015. Nat Rev Drug Discov 15, 817818 (2016).
6. Burgess, S., Butterworth, A. \& Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37, 658-65 (2013).
7. Minikel, E.V., Painter, J.L., Dong, C.C. \& Nelson, M.R. Refining the impact of genetic evidence on clinical success. Nature (2024).
8. Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).
9. Sun, B.B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73-79 (2018).
10. Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 53, 1712-1721 (2021).
11. Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab 2, 1135-1148 (2020).
12. The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580-5 (2013).
13. Gaziano, J.M. et al. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. J Clin Epidemiol 70, 214-23 (2016).
14. Aragam, K.G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet 54, 1803-1815 (2022).
15. Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat Med 26, 549-557 (2020).
16. Gaziano, L. et al. Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nature Medicine (2021).
17. Pietzner, M. et al. Synergistic insights into human health from aptamer- and antibodybased proteomic profiling. Nat Commun 12, 6822 (2021).
18. Tcheandjieu, C. et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat Med 28, 1679-1692 (2022).
19. Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet 52, 1122-1131 (2020).
20. Ochoa, D. et al. Open Targets Platform: supporting systematic drug-target identification and prioritisation. Nucleic Acids Research 49, D1302-D1310 (2020).
21. Wishart, D.S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46, D1074-d1082 (2018).
22. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association metaanalysis of coronary artery disease. Nat Genet 47, 1121-1130 (2015).
23. Suhre, K. et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun 8, 14357 (2017).
24. Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet 13, e1006706 (2017).
25. Yao, C. et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun 9, 3268 (2018).
26. Emilsson, V. et al. Co-regulatory networks of human serum proteins link genetics to disease. Science 361, 769-773 (2018).
27. Richardson, T.G., Hemani, G., Gaunt, T.R., Relton, C.L. \& Davey Smith, G. A transcriptome-wide Mendelian randomization study to uncover tissue-dependent regulatory mechanisms across the human phenome. Nat Commun 11, 185 (2020).
28. van der Wijst, M. et al. The single-cell eQTLGen consortium. Elife 9(2020).
29. Spyropoulos, A.C., Hayth, K.A. \& Jenkins, P. Anticoagulation with anisindione in a patient with a warfarin-induced skin eruption. Pharmacotherapy 23, 533-6 (2003).
30. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714-9 (2010).
31. Sabatine, M.S. et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 376, 1713-1722 (2017).
32. Cannon, C.P. et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med 372, 2387-97 (2015).
33. Bowman, L. et al. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N Engl J Med 377, 1217-1227 (2017).
34. Ridker, P.M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc Res 117, e138-e140 (2021).
35. De Clercq, E. Mozobil®(Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antiviral Chemistry and Chemotherapy 27, 2040206619829382 (2019).
36. Nicholls, S.J. et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. Jama 311, 252-62 (2014).
37. Carvalho-Silva, D. et al. Open Targets Platform: new developments and updates two years on. Nucleic Acids Res 47, D1056-d1065 (2019).
38. Chen, E.Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).
39. Kuleshov, M.V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90-7 (2016).
40. Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc 1, e90 (2021).
41. Engelen, S.E., Robinson, A.J.B., Zurke, Y.X. \& Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat Rev Cardiol 19, 522-542 (2022).
42. Cuffe, M.S. et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. Jama 287, 1541-7 (2002).
43. Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 325, 1468-75 (1991).
44. Massie, B. et al. Long-term oral administration of amrinone for congestive heart failure: lack of efficacy in a multicenter controlled trial. Circulation 71, 963-71 (1985).
45. Zhang, W. \& Colman, R.W. Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A. Blood 110, 1475-82 (2007).
46. Thompson, P.D., Zimet, R., Forbes, W.P. \& Zhang, P. Meta-analysis of results from eight randomized, placebo-controlled trials on the effect of cilostazol on patients with intermittent claudication. Am J Cardiol 90, 1314-9 (2002).
47. Rizzo, M., Corrado, E., Patti, A.M., Rini, G.B. \& Mikhailidis, D.P. Cilostazol and atherogenic dyslipidemia: a clinically relevant effect? Expert Opin Pharmacother 12, 64755 (2011).
48. Bedenis, R. et al. Cilostazol for intermittent claudication. Cochrane Database Syst Rev 2014, Cd003748 (2014).
49. Sudo, T. et al. Potent effects of novel anti-platelet aggregatory cilostamide analogues on recombinant cyclic nucleotide phosphodiesterase isozyme activity. Biochem Pharmacol 59, 347-56 (2000).
50. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 50, 1514-1523 (2018).
51. McHutchison, C. et al. Cilostazol for Secondary Prevention of Stroke and Cognitive Decline: Systematic Review and Meta-Analysis. Stroke 51, 2374-2385 (2020).
52. Patrono, C. \& Baigent, C. Role of aspirin in primary prevention of cardiovascular disease. Nat Rev Cardiol 16, 675-686 (2019).
53. Holmes, M.V. et al. Novel genetic approach to investigate the role of plasma secretory phospholipase A2 (sPLA2)-V isoenzyme in coronary heart disease: modified Mendelian randomization analysis using PLA2G5 expression levels. Circ Cardiovasc Genet 7, 14450 (2014).
54. Holmes, M.V. et al. Secretory phospholipase A(2)-IIA and cardiovascular disease: a mendelian randomization study. J Am Coll Cardiol 62, 1966-1976 (2013).
55. Guardiola, M. et al. PLA2G10 Gene Variants, sPLA2 Activity, and Coronary Heart Disease Risk. Circ Cardiovasc Genet 8, 356-62 (2015).
56. Ait-Oufella, H. et al. Group X secreted phospholipase A2 limits the development of atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol 33, 466-73 (2013).
57. Rosenson, R.S. et al. Effects of 1-H-indole-3-glyoxamide (A-002) on concentration of secretory phospholipase A2 (PLASMA study): a phase II double-blind, randomised, placebo-controlled trial. Lancet 373, 649-58 (2009).
58. Trigueros-Motos, L. et al. ABCA8 Regulates Cholesterol Efflux and High-Density Lipoprotein Cholesterol Levels. Arterioscler Thromb Vasc Biol 37, 2147-2155 (2017).
59. Wang, C.Y. et al. A Novel Nonsense Mutation of ABCA8 in a Han-Chinese Family With ASCVD Leads to the Reduction of HDL-c Levels. Front Genet 11, 755 (2020).
60. Motazacker, M.M. et al. Evidence of a polygenic origin of extreme high-density lipoprotein cholesterol levels. Arterioscler Thromb Vasc Biol 33, 1521-8 (2013).
61. Zeng, T. \& Li, Y.I. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol 23, 103 (2022).
62. Döring, Y. et al. Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity. Circulation 136, 388-403 (2017).
63. Ghobrial, I.M. et al. A Phase Ib/II Trial of the First-in-Class Anti-CXCR4 Antibody Ulocuplumab in Combination with Lenalidomide or Bortezomib Plus Dexamethasone in Relapsed Multiple Myeloma. Clin Cancer Res 26, 344-353 (2020).
64. McDermott, D.H. et al. Plerixafor for the Treatment of WHIM Syndrome. N Engl J Med 380, 163-170 (2019).
65. McDermott, D.H. et al. A phase III randomized crossover trial of plerixafor versus G-CSF for treatment of WHIM syndrome. J Clin Invest 133(2023).
66. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7(2018).
67. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336-7 (2010).
68. O’Connor, L., Brage, S., Griffin, S.J., Wareham, N.J. \& Forouhi, N.G. The cross-sectional association between snacking behaviour and measures of adiposity: the Fenland Study, UK. British journal of nutrition 114, 1286-1293 (2015).
69. Willer, C.J., Li, Y. \& Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190-1 (2010).
70. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 44, 369-75, s1-3 (2012).
71. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68-74 (2015).
72. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 10, e1004383 (2014).
73. Robinson, J.W. et al. An efficient and robust tool for colocalisation: Pair-wise Conditional and Colocalisation (PWCoCo). bioRxiv, 2022.08.08.503158 (2022).

Author contribution

L.G., J.P.C., A.C.P., and A.S.B. conceptualized the study. E.W. M.P. and C.L. generated pQTL information. S.C.R., T.J., K.A., T.J.A., P.W.F.W., K.C. assisted in preparation of CHD summary statistics. L.G. performed the Mendelian randomization analysis. C.G. performed conditional colocalization analysis on CHD. E.A. performed phenome-wide scans of instrumental variants with conditional colocalization. D.S. performed pathway enrichment analysis. L.G., J.H.Z., and E.A. generated figures. L.G., E.A., A.C.P., and A.S.B. wrote the manuscript. A.S.B. oversaw all analyses. All authors contributed to study design and provided editorial comments.

Competing interests

J.P.C. moved to work with Novartis Institute for Biomedical Research during the completion of this project. E.W. is now an employee of AstraZeneca. A.S.B. reports institutional grants from AstraZeneca, Bayer, Biogen, BioMarin, Bioverativ, Novartis, Regeneron and Sanofi. J. Danesh serves on scientific advisory boards for AstraZeneca, Novartis and the UK Biobank and has received multiple grants from academic, charitable and industry sources outside of the submitted work.

Figure Legends

Figure 1. Overall study summary. We used cis-pQTLs to instrument 1,497 plasma proteins and cis-eQTLs to instrument 15,412 protein-coding genes to perform MR on a GWAS meta-analysis of CHD totaling 296,537 cases. For significant $\left(P<3.22 \times 10^{-6}\right)$ MR results, we additionally performed colocalization using a pairwise conditional and colocalization (PWCoCo) ${ }^{19}$ approach between pQTL or eQTL summary statistics and CHD. Lastly, we annotated results (those that passed both Bonferroni-adjusted P-value for MR and colocalization [PP.H4>0.80] thresholds) according to whether an existing drug according status using the OpenTargets ${ }^{37}$ or DrugBank ${ }^{21}$.

Figure 2. Circos plot from Mendelian randomization and colocalization analysis. Targets that are labeled are Tier 1 and novel results that passed MR $\left(P<3.22 \times 10^{-6}\right)$ and colocalization thresholds (PPH4>0.8). Tier 1 results are defined as those that are not in close proximity $(+250 \mathrm{~kb})$ or correlated ($r^{2}>0.2$ in 1000 Genomes EUR) with any other result that passed MR and colocalization thresholds. Results were defined as novel if they (1) were based on instrumental variants that were not correlated ($r^{2}<0.2$ in 1000 Genomes EUR) or in close proximity ($\pm 250 \mathrm{~kb}$) with genome-wide significant $\left(P<5 \times 10^{-8}\right)$ variants for CHD reported in Aragam et al. ${ }^{14}$ or Tcheandjieu et al. ${ }^{18}$ or Supplementary Table 2 of Aragam et al. ${ }^{14}$ which includes CHDassociated variants previously reported in the literature and (2) were not previously reported in Zheng et al. ${ }^{19}$ or Richardson et al. ${ }^{27}$ Targets with existing drug according to either OpenTargets ${ }^{37}$ or DrugBank ${ }^{21}$ are labeled in red, targets without a current drug are labeled in black.

Figure 3. Phenome-wide scan and colocalization results for PDE3A. Results are shown for scans in MR Base ${ }^{66}$ of rs7488772, the instrumental variant for PDE3A in adipose subcutaneous tissue. (a) results for all genetic associations with $P<1 \times 10^{-5}$ (aligned by CHD-increasing allele; positive betas are shown in blue and negative betas in red; if the same trait is estimated in more than one dataset, this plot shows the one with the smallest p-value) and conditional colocalization PPH4 ≥ 0.8 (if a trait colocalizes with more than one variant after conditional analysis, this plot shows the highest PPH4), and (b) LocusZoom ${ }^{67}$ plots for selected cardiometabolic traits. Results from colocalization analyses using marginal summary statistics are labeled as 'unconditioned'. Results from conditional colocalization show the conditioning variant in the plot title.

Figure 4. Results for PLA2G5 and PLA2G2A. (a) Mendelian randomization results for PLA2G5 and PLA2G2A in all tissues where an instrument exists. Only results for PLA2G5 in aortic artery tissue (highlighted in blue) passed the P -value significance threshold and was tested for colocalization. All results are from eQTL except for PLA2F2A / blood plasma which are derived from pQTL. Regional association statistics for (b) gene expression of PLA2G5 in aortic artery tissue from GTEx and (c) coronary heart disease. (a) and (b) show the pairwise correlation (1000G European ancestry) for each variant with rs12408798, the instrumental variant used in the present study. (a) and (b) colocalize at PPH4=0.98. (d) Local association plot of the PLA2G5 region for coronary heart disease, showing the correlation for rs525380, the instrumental variant for PLA2G5 expression used in the previous study Holmes et al. ${ }^{53}$ The association for rs525380 and CHD was $P=0.20$ in Holmes et al. ${ }^{53}$ and $P=0.009$ in the present study.

Figure 5. Phenome-wide scan and colocalization results for $\boldsymbol{A B C A 8}$. Results are shown for scans in MR Base ${ }^{66}$ of rs34931250, the instrumental variant for ABCA8. (a) results for all genetic associations with $P<1 \times 10^{-5}$ (aligned by CHD-increasing allele; positive betas are shown in blue and negative betas in red; if the same trait is estimated in more than one datasets, this plot shows the one with the smallest p-value) and conditional colocalization PPH4 ≥ 0.8 (if a trait colocalizes with more than one variant after conditional analysis, this plot shows the highest PPH4), and (b) LocusZoom plots for selected cardiovascular traits. Results from colocalization analyses using marginal summary statistics are labeled as 'unconditioned'.

Methods

Selecting genetic instruments

First, we selected conditionally-independent cis-pQTLs for plasma proteins reported in Pietzner et al. (www.omicscience.org) ${ }^{8}$ Briefly, protein levels were measured by SomaLogic Inc (Boulder, Colorado, US) with the SomaScan® V4 platform in 10,708 European-ancestry individuals from the Fenland cohort ${ }^{17,68}$. This technique uses DNA-aptamers called SOMAmers, oligonucleotide strands that fold and bind to proteins with high specificity, and association analyses were performed for 5,210 SOMAmers. We removed pQTLs with minor allele frequency (MAF) <0.01, trans-pQTLs and SOMAmers that measured more than one protein.

For eQTL instruments, we downloaded a file provided by the Genotype-Tissue Expression (GTEx) Consortium version 8^{12} (https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8_eQ TL_independent.tar) that included all conditionally independent cis-eQTLs for expression of all genes in 49 tissues. We excluded eQTLs for non-protein-coding genes (i.e. those that do not have a UniProt ID), $P>5 \times 10^{-8}$ and MAF<0.01. We also removed eQTLs, pQTLs or genes that lie within the human leukocyte antigen (HLA) region (chr6:29691116-33054976), due to the complicated LD structure in that region.

Generation of outcome summary statistics

To generate outcome summary statistics for CHD, we meta-analyzed results from three nonoverlapping sources: The Million Veteran Program (MVP) ${ }^{18}$, CARDIoGRAMplusC4D Consortium ${ }^{14}$, and the FinnGen biobank ${ }^{15}$. MVP is an ongoing biobank recruiting from 63

Veterans Affairs (VA) facilities across the United States ${ }^{13}$. In MVP, we utilized a GWAS that consisted of European ancestry individuals. The CARDIoGRAMplusC4D Consortium is a GWAS meta-analysis on CHD from many contributing studies, primarily of European ancestry ${ }^{14}$. FinnGen is a consortium of biobanks within Finland that includes participants linked to electronic health data. For FinnGen, we downloaded summary statistics for the I9_ISCHHEART outcome (gs://finngen-public-data-r3/summary_stats/finngen_r3_I9_ISCHHEART.gz) from release 3, which defined CHD as ICD-10 I20-I25. We meta-analyzed summary statistics from the three data sources using METAL software ${ }^{69}$ with fixed-effects and inverse-variance weighting.

Mendelian Randomization

We used the TwoSampleMR R package (https://github.com/MRCIEU/TwoSampleMR) to estimate MR effects between instruments and CHD. Inverse variance-weighted MR with fixedeffects was used for instruments with more than one variant, and the Wald ratio method for instruments with one variant. For instruments with more than one variant, we additionally assessed heterogeneity across the variant-level MR estimates and reported the Cochran Q P value.

Conditional Colocalization

Significant MR associations can arise from a strong association between an instrumental variant and an outcome that is not causal, but in LD with a peak variant (i.e. an MR estimate can be due to confounding by LD and not due to a shared causal variant). To address this, we performed colocalization between the pQTL or eQTL summary statistics and CHD for all results that passed the MR P-value threshold. Additionally, when performing colocalization, false negatives can arise from interference of a strong independent signal, because conventional colocalization methods
traditionally assume one causal variant within the tested region. To address this, we performed pairwise conditional colocalization ${ }^{19}$, which requires conditional summary statistics for each region. Conditional analyses for pQTL data from Pietzner et al. ${ }^{8}$ were conducted using GCTACOJO^{70} and a reference panel of genotypes from the Fenland cohort. GCTA-COJO is a stepwise model selection procedure to select independently associated SNPs using the LD structure to account for the correlation between SNPs. For eQTLs, we generated summary statistics using raw genotype data from European ancestry participants following the procedure outlined by the GTEx Consortium. Briefly, after filtering the genotypes (MAF <0.01, HWE <0.000001, and no ambiguous SNPs), GWAS between variants and gene expression was performed adjusting for the top 5 principal components, PEER factors, sequencing platform and sex. Conditional analysis for gene expression were performed with raw genotype data by iteratively adjusting for the most strongly associated variant in a region. Conditional analysis for CHD summary statistics were performed using GCTA-COJO with a $1000 \mathrm{G}^{71}$ European ancestry reference panel.

Pairwise colocalization was performed using the COLOC R package ${ }^{72}$ on regions $\pm 200 \mathrm{~kb}$ around the instrumental variant with at least 50 SNPs matching across the two datasets. The prior probability of each SNP that is causal to only one of the traits (PPH3) was set to 1×10^{-5} and causal to both traits (PPH4) was set to 1×10^{-6}. A posterior probability of a shared causal variant (PPH4) of $\geq 80 \%$ for any of the conditional iterations was considered strong evidence of colocalization.

Drugs against identified targets

Targets that passed MR and colocalization thresholds were annotated with information on drugs against targets from by OpenTargets ${ }^{20}$ and DrugBank ${ }^{21}$. We used DrugBank release 5.1.10, (https://go.drugbank.com/releases) and restricted to known pharmacologically active drug-target pairs.

Assessment of horizontal pleiotropy

Valid instrumental variants for MR must meet the exclusion restriction requirement, which assumes that the variant only affects the outcome through the instrumented exposure. A variant is an invalid instrument if it alters expression of other genes or proteins that affect the outcome through distinct biological/causal pathways (horizontal pleiotropy). In the case that results for multiple genes/proteins in a region colocalize with the same CHD signal, it can be difficult to disentangle which is truly influencing CHD risk. Therefore, we considered a variant that influences expression of nearby genes through shared regulation as possibly introducing horizontal pleiotropy and grouped results into regions based on instrumental variants that are in close proximity $(+250 \mathrm{~kb})$ or correlated ($r^{2}>0.2$ in 1000 Genomes EUR). Because we tested all protein-coding genes in GTEx, results that are the only significant signal in a region are less likely to exhibit horizontal pleiotropy. Therefore, we allocated results into tiers based on the number of results within a genomic region, where Tier 1 results are the sole result within a region to pass MR and colocalization thresholds, and Tier 2 results contain multiple signals within a region.

Phenome-wide scans of instrumental variants

For some results that passed both MR and colocalization thresholds, we performed Phenome-wide association scan with colocalization (PheWAS) of instrumental variants. Associations between
instrumental variants with disease and traits can mimic on-target effects of therapeutic targeting observed in trials. This can provide confidence that instrumental variants are correctly mimicking on-target effects of a drug. Additionally, a PheWAS analysis can identify possible harmful effects of protein modulation or provide mechanistic insights. Therefore, we queried instrumental variants for associations with diseases and traits in the MRbase PheWAS platform ${ }^{66}$, a database that allows for PheWAS across a wide range of publicly available datasets. For PheWAS associations with P $<1 \times 10^{-5}$ we also performed pairwise conditional colocalization between eQTL and traits regional summary stats, to help ensure those associations are not due to confounding by LD. For this, we utilized the PwCoCo v. 1.0 (https://github.com/jwr-git/pwcoco/tree/pwcoco-v1.0) tool ${ }^{73}$, using LD information from the UK Biobank after restricting the analysis sample to 367,641 unrelated European-ancestry participants. We set the prior probabilities that each SNP was causal to either of the traits (PPH3) and causal to both traits (PPH4) to 1×10^{-5} and 1×10^{-6}, respectively. We considered a posterior probability of a shared causal variant (PPH4) of $\geq 80 \%$ as strong evidence of colocalization. For inspection with LocusZoom ${ }^{67}$ (http://genome.sph.umich.edu/wiki/LocusZoom_Standalone), we also exported conditioned genetic associations using the "--out-cond" option in PwCoCo.

Pathway and gene ontology term enrichment analysis

Pathway and functional term enrichment analyses were performed with Enrichr (https://maayanlab.cloud/Enrichr/) ${ }^{38-40}$ by inputting the HGNC symbols for all putative causal targets as a single gene set. Briefly, Enrichr uses the Fisher's exact test to assess whether the putative causal gene set was enriched with genes assigned to a given GO term or KEGG pathway relative to a permuted background gene set. An odds ratio significantly greater than one is
medRxiv preprint doi: https://doi.org/10.1101/2024.06.27.24309406; this version posted June 28, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .
indicative of an enriched term or pathway. Correction for multiple testing ($P_{\text {adj }}$) was conducted using the Benjamini-Hochberg procedure.

Acknowledgements

Scott C. Ritchie was funded by a British Heart Foundation (BHF) Programme Grant (RG/18/13/33946) and by the National Institute for Health and Care Research (NIHR) Cambridge BRC (BRC-1215-20014; NIHR203312) [*] * The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. Emanuele Di Angelantonio holds an NIHR Senior Investigator Award. Stephen Burgess is supported by the Wellcome Trust (225790/Z/22/Z) and the United Kingdom Research and Innovation Medical Research Council (MC_UU_00002/7). John Danesh holds a British Heart Foundation Professorship and an NIHR Senior Investigator Award. Adam Butterworth and Claudia Langenberg were supported by BHF-DZHK grant funding "Prot4CVD: Translational proteomics for cardiovascular diseases: from population prediction to clinical and therapeutic applications" (FKZ 81X2100281). The BHF Cardiovascular Epidemiology Unit was supported by core funding from the NIHR Blood and Transplant Research Unit in Donor Health and Genomics (NIHR BTRU-2014-10024), the NIHR BTRU in Donor Health and Behaviour (NIHR203337), the UK Medical Research Council (MR/L003120/1), the British Heart Foundation (SP/09/002; RG/13/13/30194; RG/18/13/33946) and NIHR Cambridge BRC (BRC-1215-20014). This work was also supported by Health Data Research UK, which is funded by the UK Medical Research Council, the Engineering and Physical Sciences Research Council, the Economic and Social Research Council, the Department of Health and Social Care (England), the Chief Scientist Office of the Scottish Government Health and Social Care Directorates, the Health and Social Care Research and Development Division (Welsh Government), the Public Health Agency (Northern Ireland), the British Heart Foundation and Wellcome. Some analyses were performed using resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the

University of Cambridge Research Computing Service (https://www.csd3.cam.ac.uk), provided by Dell EMC and Intel using tier 2 funding from the Engineering and Physical Sciences Research Council (capital grant EP/P020259/1), and DiRAC funding from the Science and Technology Facilities Council (https://www.dirac.ac.uk).

Figure 1

medRxiv preprint doi: https://doi.org/10.1101/2024.06.27.24309406; this version posted June 28, 2024. The copyright holder for this preprint

Figure 2
a
Trait
Systolic blood pressure
Spinal stenosis
Phospholipids to total lipids ratio in large HDL
Free cholesterol to total lipids ratio in very large HDL
Alanine aminotransferase
Bioavailable testosterone
White blood cell count
Glycated haemoglobin
Albumin
Triglycerides
Neutrophil cell count
Lymphocyte cell count
Blood pressure medication
Hypertension
Vascular/heart problems: High blood pressure
Liver enzyme
Vascular/heart problems: None of the above
High density lipoprotein cholesterol
Ankle spacing width
Free cholesterol to total lipids ratio in medium HDL Phospholipids in large HD
Phospholipids to total lipids ratio in very large HDL
Free cholesterol to total lipids ratio in large HDL
Cholesterol to total lipids ratio in large HDL
Total lipids in large HDL
Free cholesterol to total lipids ratio in very large VLDL
Concentration of large HDL particles
Cholesteryl esters in large HDL
Cholesterol in large HDL
Average diameter for HDL particles
Cholesteryl esters in very large HDL
Phospholipids in very large HDL
Cholesterol in very large HDL
Total lipids in very large HDL
Concentration of very large HDL particles
Free cholesterol in very large HDL
Sex hormone binding globulin
Umbilical hernia
Hernia of abodminal wall
Ventral hernia

b

Glycated haemoglobin: unconditioned

Triglycerides: 12:20470199

Concentration of very large HDL particles: unconditioned

Figure 3

a

Figure 4

Trait
Kidney injury molecule
Statin medication
Phospholipids to total lipids ratio in large VLDL
Triglycerides to total lipids ratio in medium HDL
Total lipids in very small VLDL
Cholesteryl esters in very large VLDL
Cholesteryl esters in large VLDL
Cholesterol in very large VLDL
Triglycerides to total lipids ratio in large $H D L$
Phospholipids in VLDL
Free cholesterol in very large VLD
Phospholipids to total lipids ratio in ID
Cholesterol in very small VLDL
Phospholipids in very large VLDL
Free cholesterol in large VLDL
Concentration of small VLDL particles
Phospholipids in large VLDL
Phospholipids to total lipids ratio in very small VLDL Total lipids in VLDL
Cholesterol in chylomicrons and extremely large VLDL
Free cholesterol in chylomicrons and extremely large VLDL Cholesteryl esters in chylomicrons and extremely large VLDL Free cholesterol to total lipids ratio in very large HDL
Triglycerides in very small VLDL
Low density lipoprotein cholesterol
Concentration of very large VLDL particles
Phospholipids in chylomicrons and extremely large VLDL
Concentration of chylomicrons and extremely large VLDL partic Total lipids in very large VLDL
Apolipoprotein B
Triglycerides
Forced expiratory volume in 1 -second
Free cholesterol in large HDL
Cholesteryl esters to total lipids ratio in large HDL Bioavailable testosterone
Concentration of large HDL particles
Phospholipids in large HDL
Cholesteryl esters to total lipids ratio in very large HDL
Free cholesterol in HDL
High density lipoprotein cholesterol
Apolipoprotein A-I
Free cholesterol in medium HDL
Apolipoprotein A
Concentration of medium HDL particles
Concentration of HDL particles
Total testosterone
Cholesteryl esters in medium HDL
Cholesteryl esters to total lipids ratio in medium HDL

ABCA8 expression in colon sigmoid: unconditioned

Cholesteryl esters in very large VLDL: unconditioned

Concentration of HDL particles: unconditioned

Triglycerides: unconditioned

Cholesteryl esters in medium HDL: unconditioned

Figure 5

