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Abstract

The historically fragmented biomedical data ecosystem has moved towards harmonization under the

findable, accessible, interoperable, and reusable (FAIR) data principles, creating more opportunities for

cloud-based research. This shift is especially opportune for scientists across diverse domains interested

in implementing creative, nonstandard computational analytic pipelines on large and varied datasets.

However, executing custom cloud analyses may present difficulties, particularly for investigators lacking

advanced computational expertise. Here, we present an accessible, streamlined approach for the cloud

compute platform CAVATICA that offers a solution. We outline how we developed a custom workflow in

the cloud, for analyzing whole genome sequences of case-parent trios to detect sex-specific genetic effects

on orofacial cleft risk, which required several programming languages and custom software packages. The

approach involves just three components: Docker to containerize software environments, tool creation

for each analysis step, and a visual workflow editor to weave the tools into a Common Workflow Language

(CWL) pipeline. Our approach should be accessible to any investigator with basic computational skills,

is readily extended to implement any scalable high-throughput biomedical data analysis in the cloud,

and is applicable to other commonly used compute platforms such as BioData Catalyst. We believe

our approach empowers versatile data reuse and promotes accelerated biomedical discovery in a time of

substantial FAIR data.

Keywords: Cloud computing, FAIR data.
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Introduction

Cloud computing has long held the promise of facilitating large-scale bioinformatic analyses due to its

ability to house and assess big data1. But as data expanded in the cloud, many available biomedical

datasets were siloed and some were separated into distinct Data Coordinating Centers (DCCs), each

with their own niche: GTEx for tissue-specific gene expression2, Gabriella Miller Kids First (GMKF)3 for

childhood cancer and structural birth defects, exRNA for extracellular RNA4, and many more. These

data silos presented an interoperability bottleneck for analyses in the cloud5. Academia, industry, and

publishers recognized the incompatibility of much of the biomedical data landscape and together pub-

lished the findable, accessible, interoperable, and reusable (FAIR) data principles which aimed to improve

data access and sharing6. While there is still room for improvement, FAIRness was largely a success

as many data resources have embraced the principles and there continue to be increasing FAIRification

efforts7. One program especially facilitating this effort is the National Institute of Health’s (NIH) Com-

mon Fund Data Ecosystem (CFDE), an endeavor to harmonize multiple DCCs under a single umbrella8.

Although increased data ecosystem interoperability would seemingly imply expedited biomedical discov-

ery, researchers have faced significant friction in the cloud, especially for those interested in carrying out

specialized analyses.

Biomedical cloud data analysis platforms, also called data commons9, are providers that aim to facilitate

analysis by centralizing data storage and analytic tools to carry out workflows in the cloud. Many

standard software packages (such as VCFtools10 for analyses of sequencing data) are commonly made

available by such providers, however due to the nonstandard nature of custom analyses, many tools

(defined as distinct processing steps in an overall workflow) needed for their execution are often not

pre-installed by the platforms11. This has become especially true as providers continue to differentiate

into niches with certain data and tools, leaving no singular platform versatile to every analysis. Thus,

1

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.27.24309340doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.27.24309340
http://creativecommons.org/licenses/by-nd/4.0/


one platform that may include a needed specialized tool for a given pipeline may be incompatible

with the rest of a researcher’s workflow or data11, often leaving investigators reliant on local or high

performance computing (HPC) clusters to carry out custom steps. The mixture of local, HPC, and

cloud architecture to execute nonstandard workflows has led to an unwieldy technique where researchers

scatter to adapt workflows (or portions of workflows) to architecture-specific complexities and gather

results back together post-hoc. The issue pervades biomedical research; thus, the FAIR Principles for

Research Software (FAIR4RS) have been established to improve the landscape of biomedical software

analysis by making analytic tools more accessible and shareable12. Therefore, there is an urgenct need

for streamlined approaches to build comprehensive, customized workflows in the cloud that ensure the

accessibility and implementation of specialized analytic tools.

We here describe such an approach, employing a CAVATICA workflow on FAIR data from the NIH Com-

mon Fund’s GMKF Pediatric Research Program (”Kids First”). On our local HPC we had previously

downloaded WGS data from case-parent trios, ascertained on children with non-syndromic orofacial cleft

(OFC) at birth, to assess and meta-analyze sex-specific effects on OFC risk using custom software avail-

able in the Bioconductor package trio13. The previously analyzed data sets were trios of participants

with European, Central/South American, and Asian ancestry. Recently, a large number of case-parent

trios of Filipino origin were sequenced through GMKF and uploaded onto CAVATICA. To avoid copying

the data to our cluster we containerized our computational pipeline, ported it to CAVATICA, generated

the workflow, executed the code, and returned the results for inclusion into the meta-analysis, which

significantly increased the overall sample size. The approach is solely based on software containers, plus

tool and workflow creation in the cloud. In this manuscript we detail the respective steps and offer

guidance to enable investigators with basic computational skills to migrate, develop, and conduct their

custom analyses in the cloud. Our approach is language and software package agnostic and is applicable

to other commonly used compute platforms such as BioData Catalyst with access to the Database of

2
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Genotypes and Phenotypes (dbGaP) data sets. The Summary Statistics of dbGaP Data webpage shows

that the cumulative counts of approved data access requests is approaching 100,000 in the year 2024,

making our approach very timely to avoid thousands of local copies of the data being generated. We

discuss the CAVATICA infrastructure that enables the development and housing of biomedical research

studies and emphasize the platform’s adherence to common software development practices such as

version control, documentation, and debugging for code review14. In addition, we offer suggestions on

how to minimize time and cost during workflow development and execution. We illustrate our work-

flow approach through our case study, investigating sex-specific genetic effects on OFC risk, and show

how the CAVATICA analysis on the Filipino trios contributed to identifying a genetic marker exhibiting

sex-specific effects at a genome-wide significance level.

Results

A CAVATICA research study centers around a Project Space that provides an intuitive entry point to

house a particular investigation. For our analysis we first crafted a custom workflow to clean the genomic

data, and then another workflow to carry out a genome-wide association study to identify sex-specific

loci underlying OFC risk. Here, we describe our case study in more detail, and the necessary steps for

other investigators to create their own our custom analytic workflows to assess FAIR data in the cloud.

The Case Study

OFCs are the most common congenital craniofacial anomalies and the second most common birth defect

worldwide. OFCs can be categorized into non-syndromic malformations, which occur in isolation, and

syndromic malformations, which occur with another malformation or as part of a recognized malfor-

mation syndrome. Isolated or non-syndromic OFCs (including cleft lip, cleft palate, and cleft lip with

3
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cleft palate) vary between the sexes and birth prevalence rates differ across populations. OFCs are

commonly categorized into two anatomically and embryologically distinct entities based on embryologic

and epidemiologic patterns: cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP)15.

In particular, non-syndromic CL/P, the phenotype we analyze here, occurs more frequently in males

than females (male to female ratio approximately 2:1)16. To elucidate the underlying mechanisms for

differential risk to CL/P between the sexes, we analyzed whole genome sequences from case-parent

trios generated through the GMKF Program. We performed genotypic transmission disequilibrium tests

(gTDTs) using our in-house Bioconductor package trio13 to test for interactions between autosomal

SNPs and sex.

The GMKF trios were sequenced at the Broad Institute and Variant Call Format (VCF) files were

disseminated by the GMKF Data Resource Center (DRC). In the past, dissemination usually meant

investigators obtaining a copy of the data using a file transfer protocol and storing the data locally. We

had previously downloaded and analyzed WGS data from trios of European (289 trios), Central/South

American (259 trios) and Asian (124 trios) ancestry on our local computing cluster. To avoid the

practice of making data copies, we decided to analyze a more recently released set of trios of Filipino

ancestry (370 trios) directly in its cloud environment on CAVATICA. The first step of every such analysis

is to run quality control (QC) procedures on the VCF files to obtain the analyzable data. We used

VCFtools10 to remove multi-allelic sites and indels, filter sites with labels other than ‘PASS’, and to

remove variants and individual genotypes with low mean depth and low quality scores (see Methods

for details). We then created binary PLINK17 files (.bed, .bim and .fam) from these cleaned VCFs to

integrate the pedigree information, and removed variants with low minor allele frequency (MAF) and

those significantly deviating from Hardy Weinberg Equilibrium (HWE), statistics calculated from the

parental genotypes. Trios with one or more samples found during QC to exceed a missingness threshold

or producing a large number of Mendelian errors and were removed from the analysis. Relatedness
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of subjects was verified using identity-by-descent estimates for all pairs of individuals calculated from

linkage disequilibrium (LD) pruned common variants. In all, we identified 16 trios to be dropped from

the original 370 based on quality control.

A total of 354 Filipino ancestry trios with 7,866,804 variants passing all QC criteria were analyzed on

CAVATICA using the gTDTs with a SNP main effect and a SNP×sex interaction term. The full analysis

including functional annotation of variants will be published elsewhere (manuscript in preparation), we

here simply show one example how the CAVATICA cloud analysis on the Filipino trios contributed to

identifying a genetic marker exhibiting sex-specific effects at a genome-wide significance level. In brief:

the 1df test for the SNP× sex interaction was nominally significant for SNP rs2715199 (located on chr2

at position 87,896,956, build hg38, A/G alleles) in all populations with the same direction of effect (e.g.,

the parameter for the interaction in the gTDT conditional logistic regression model). In the European

trios the effect was estimated to be 1.59 (p = 4.6 ×10−3, MAF = 5%), in the Central/South American

trios the effect was estimated to be 1.32 (p = 9.9 ×10−3, MAF = 7%), and in the Asian trios the

effect was estimated to be 2.80 (p = 4.3 ×10−2, MAF = 3%). The strongest association however

was observed in the Filipino trios, where the effect was estimated to be 3.24 (p = 5.2 ×10−6, MAF =

5%). In the resulting meta-analysis of the four populations using inverse variance weighting of effects,

implemented in the program METAL18, the interaction parameter estimate was 1.78 with a p-value of

5.7 ×10−8. After genomic-control correction19, this SNP achieved a genome-wide significant difference

between the sexes of p = 1.1 ×10−8.

The QC related tools on CAVATICA (Figure 1) are described below with technical detail. The actual

command line code and the scripts used in the tools are available from the manuscript GitHub page.

• Basic QC Filtering | VCFTools

Removing multi-allelic sites and indels, filtering sites with labels other than ‘PASS’, and removing

5
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Figure 1: A CWL schematic of the QC pipeline in the workflow visual editor. Teal colored circles

represent CAVATICA tools. Grey circles represent input and output files. Lines indicate the connection

between files and tools.

variants and individual genotypes with low mean depth and low quality scores. The input is the

multi-sample VCF file released by the sequencing center containing all complete trios. The cleaned

output file, labeled in the grey circle as Basic QC-ed vcf is used in the subsequent calculation

of other QC statistics and also as input for the gTDT analysis pipeline.

• PLINK File Creation | PLINK

Creating binary PLINK files (.bed, .bim and .fam) to integrate the pedigree information into the

QC steps for this family-based association study.

• Summary Stats | PLINK

Calculating variant statistics such as missing genotype calls per variant across all samples, and

variant MAF and HWE (calculated from the parents only). Variants that exhibit high genotype

missingness, low MAF, or are significantly out of HWE are not included in the association analysis.

Also calculating percent missing genotype calls for each sample. The output .lmiss and .imiss

files contain the information to determine which samples are dropped due to their high genotype

6
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missingness.

• Variant Filtering | PLINK

Generating updated PLINK files after removing trios with at least one sample showing high geno-

type missingness, and filtered on variant missingness, MAF and HWE. The input file Drop High

Missingness Samples.txt was derived from the .lmiss and .imiss files.

• Mendelian Error | PLINK

Calculating the percentage of Mendelian errors in the trios (proband genotypes that are incom-

patible with parental genotypes under Mendelian inheritance, assuming no de novo events) and

generating a list of trios to be dropped from the gTDT analysis due to high error rates.

• LD Pruning Part 1| PLINK

Deriving LD blocks of SNPs from the PLINK files, to be used in the following pruning step.

• LD Pruning Part 2 | PLINK

Creating pruned binary PLINK files from LD block information for subsequent quality control.

• PLINK File Merge | PLINK

Merging together pruned single-chromosome PLINK files into a whole-genome PLINK file.

• Heterozygosity | PLINK

Calculating sample SNP heterozygosity rates to detect potential issues such as sample contami-

nation.

• IBS | PLINK

Calculating identity-by-descent estimates between pairs of samples to verify relatedness as given

in the pedigree files.

The gTDT related analysis tools on CAVATICA (Figure 2), described in more detail:
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Figure 2: A CWL schematic of the gTDT analysis pipeline in the workflow visual editor. Teal colored

circles represent CAVATICA tools. Grey circles represent input and output files. Lines indicate the

connection between files and tools.

• Variant Level QC | VCFTools

Reading the VCFs generated after basic QC, removing the trios failing QC, updating variant

statistics (missingness, MAF and HWE) after removing these trios, and removing variants based

on these updated statistics.

• gTDT | R + Bioconductor

Executing the gTDT with a SNP × sex interaction as implemented in the trio Bioconductor

package. For this sex-specific case-parent trio analysis, the tool also reads the sex and pedigree

information available in the metadata.

• MAF Percentage | VCFTools

Extracting the MAF information for the output file.

• MAF Column Creation | R + SplitStackShape

Selecting either the REF or ALT allele as the minor allele based on observed allele frequencies,

8
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and creating the MAF column for the output file.

• Column Extraction | BCFTools

Extracting information using BCFTools20 for the final results output file, including chromosome,

genomic position, rs number, REF and ALT alleles.

• Merge | R + Bioconductor

Merging all pieces of information into the final results output file.

Creating Custom Workflows

We here present the fundamental concepts (Figure 3) needed to carry out a specialized cloud computing

analysis with big data in CAVATICA, such as the one described above. We also offer narrated videos

on a companion website that help to demonstrate how to implement various steps. The videos are not

hosted on the manuscript’s GitHub page due to file size limitations, instead a link to the companion

website has been added.

Figure 3: A schematic of the process to carry out custom cloud workflows. Details of the process and

data access considerations are described in detail in the Methods section.

9
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Docker

Software containers comprise the necessary software and dependencies for a given computational job

into light-weight, portable environments. They have gained traction over virtual machines which re-

quire more computational resources21. Docker arguably has become the industry standard for software

containerization. It streamlines container development with three key components: the i) Dockerfile,

which holds the instructions to construct a ii) Docker Image, which is a snapshot of the software and

dependencies that will be run in the iii) Docker Container, which is the associated executable environ-

ment. It is important to note that Docker Images are immutable, ensuring enduring reproducibility in

computational research22. Here is the typical structure of a custom Dockerfile:

FROM baseimage # to inherit from a pre-existing image

COPY ./files /path/in/container # to copy in needed files

WORKDIR /folder # to set a working directory

RUN <command_to_install_package> # to add on a computational package

CMD ["executable"] # to run a command

Docker is open source, allowing published Docker Images from the software development community to

be freely pulled from the DockerHub. Docker is also modular, which means that images with only parts

of the required software can be added to fulfill all software requirements. In our application, we used

several Docker Hub Images built on top of others to port our polylingual, multi-software pipeline onto

CAVATICA. Specifically, we used Docker Hub Images for VCFTools and BCFTools. However, there was

no pre-existing Docker Container with the Bioconductor package trio for the gTDT analysis, which we

had previously carried out locally in the statistical environment R. Thus, we crafted our own Dockerfile

on top of the Bioconductor base image, as shown below. Naturally, this method is extendable to any

10
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Bioconductor package.

FROM bioconductor/bioconductor_docker:devel-amd64

RUN R -e "install.packages(’data.table’)

RUN R -e ’BiocManager::install("VariantAnnotation", force = TRUE)’

RUN R -e ’BiocManager::install("trio")’

The Dockerfile is then transformed into a portable Docker Image and pushed to CAVATICA’s Docker

Registry. The companion website contains a video how to create such a Docker Image and push it

to CAVATICA. In the below, ”name” is equal to the Docker registry repository a user must create in

CAVATICA.

docker login pgc-images.sbgenomics.com

docker build -t name . --platform="linux/amd64"

docker tag name pgc-images.sbgenomics.com/username/name

docker push pgc-images.sbgenomics.com/username/name

The complex computational requirements necessitated by custom workflows can be resolved through

Docker. In CAVATICA, each tool is execucted within a Docker Container, a notable difference from

the popular prior methodology of a comprehensive Docker Container to containerize an entire pipeline.

By tackling containerization on a more granular level, CAVATICA allows for more control over tool and

workflow creation.

11
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Tools

A CAVATICA tool is a fundamental building block of a complex analysis workflow, serving as a standalone

executable for a distinct processing step in the overall pipeline. Each tool is executed within a specified

Docker Container that includes its required software. A tool is depicted graphically in CAVATICA’s

workflow Visual Editor as a teal circle with input and output ports (Figures 1 and 2). Researchers

can choose from publicly available pre-installed tools, or they may choose to create their own. The

companion website to this manuscript contains videos that reinforce the descriptions here on how to

create a custom CAVATICA tool and how to create a CAVATICA tool from pre-installed software.

To customize tools for specific analyses, investigators first start by naming the tool which then gives

them access to the editor for creation. The editor has a fill-in interface to craft commands and spec-

ifications. Researchers must select a Docker Image that contains the proper software dependencies,

construct an executable bash command, include file scripts when needed, and configure inputs and out-

put specifications. There also exists an option to save output and error logs generated during runtime

for debugging. The tool editor implements software development standard practices that any integrated

development environment (IDE) would, such as version control similar to Git, debugging aid and error

logs, and extensive documentation opportunities. Here, we highlight as an example the tool that ran

our custom gTDT analysis, termed gTDT | R + Bioconductor (Figure 2). The script gTDT.R, which

is available on our GitHub page, was added as a supplementary executable file to the tool. Each input

and output file in the bash command corresponds to a grey circle in the visual editor. For example, Ped

txt is an input for the gTDT | R + Bioconductor tool (teal circle). Once constructed, the tool’s

command line code reads:

Rscript ./gTDT.R input_ped.ext input_sex.ext input_vcf.ext > stdout.out

Importantly, standalone tool development presents the opportunity to combat the often costly tweaking

12
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of bioinformatic pipelines (”tinkering”) in the cloud. To reduce cost while testing our workflow adapta-

tion to the cloud, we leveraged a few computational principles: i) verifying the efficacy of each tool as

a standalone step, ii) conducting testing with minimally sized data, and iii) leveraging memoization, an

optimization technique for the re-running of computational jobs that re-uses results for the aspects of a

task that remain unedited. Through this approach, we streamlined tool validation with minimal pricing.

For our full gTDT analysis (Figure 2) we created six distinct tools as described above, each of which

has their Dockerfile and source code published on our GitHub. We tested each tool with our three ”tin-

kering” steps and confirmed the efficacy of each. While standalone execution helps with development,

running an entire analysis one step at a time creates inefficiencies: intermediate, derived files clutter

storage and the execution of many tasks takes significant manual labor and time. Therefore, crafting

together these modular steps into a polylingual workflow becomes necessary for efficient research.

CWL Workflow System

Workflow Systems are implemented to weave together distinct tools into an overall analytic pipeline. In

CAVATICA, the standard system is the Common Workflow Language (CWL), a workflow language with

comprehensive polylingual workflow support, portability, and compliance with regulatory requirements23.

While CWL is often cited as having low ease of use as a workflow manager24, CAVATICA eases this

concern through a visual drag-and-drop editor such that workflows can be crafted without the explicit

use of the tedious syntax of the underlying CWL code. Users add custom made or publicly available

tools to the editor and connect tools through their input and output ports, creating lines between

tools that represent the flow of files within the pipeline (Figures 1 and 2). The workflows editor

also maintains software development standards such as version control, documentation, and extensive

debugging. Leveraging memoization is an especially important step here, as researchers can avoid re-

running an entire complex pipeline by reusing the results of unchanged workflow tools. The companion

13
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website has a video how to create such a CAVATICA workflow from the individual tools.

While carrying out a workflow task users must select initial input files, and when there are multiple files

for the same input that would necessitate multiple runs, a ”Batch Task” may be created. In doing so,

multiple runs of the workflow are initialized and will be parallelized over each file. For example, the

22 single autosome multi-sample VCF files were processed simultaneously. CAVATICA automatically

schedules jobs without the need for investigators to write bash logic to optimize workflow execution.

Users can select the ”Stats and Logs” panel of their workflow execution to inspect information on tools

in runtime alongside their time and computational resource allocation. In the ”Instance Metrics” panel,

users can assess closely the Central Processing Unit (CPU) and Random Access Memory (RAM) load

their tasks demand. By observing where the computational resources of their chosen instance type (a

virtual server for cloud computing) exceed the demands of a given task, users can optimize time and

cost by selecting a more suitable instance. Amazon Web Services (AWS) offers a variety of instances

with different CPU/RAM ratios that can be selected for a given tool, enabling researchers to achieve

more granular optimization. In all, the visual editor and options available allow for efficient workflow

development and execution.

Discussion

In this manuscript we presented a generic approach for specialized CAVATICA cloud analyses and il-

lustrated the approach by analyzing whole genome sequences of case-parent trios to detect sex-specific

genetic effects underlying OFC risk. We note that our approach is also applicable to other platforms

such as BioData Catalyst, and we hope that the guidance offered in this manuscript will enable other

investigators with basic computational skills to implement and execute their own analytic pipelines in

the cloud. In particular, we believe our approach adheres to the FAIR data principles by promoting data
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reuse for new biomedical discovery.

The development process - once understood - was quick in its implementation and efficient in its

execution. We used standard software development approaches for code development and porting.

Version control was especially critical in saving progress for each modular step; we found that the ability

to return to a specific time point during development was both useful and an ease of mind for the

case of post-modification workflow breakdown. We implemented the discussed methodology to ”tinker”

without excessive time or cost by periodically testing each single-step tool with minimal data sizes. This

allowed us to re-run tools during the debugging process. Leveraging the CWL workflow system and the

automatic job scheduler allowed us to carry out complex workflows with ease, keeping the costs low for

a highly scalable analytic pipeline.

Developing this approach admittedly involved a somewhat steep learning curve and overcoming some

hurdles. Developing cloud computing with a polylingual workflow logic requires a solid knowledge of the

fundamentals for software containment, tool creation, and workflow language systems. A new user might

become frustrated when encountering a lack of documentation about the computing infrastructure and

the file system. In particular with our videos on the companion website we hope we will be able to

flatten that learning curve for other investigators. Once understood, we believe the implementation of

any study can become very much streamlined. Our goal was to lower the entry point for cloud research

by empowering researchers from diverse scientific backgrounds to craft cloud-based custom pipelines

and to investigate novel hypotheses with varied datasets.

Another hindrance we faced was the lack of support files for our gTDT analysis, for example pedigree

and phenotype files with the sex of the probands. As is unfortunately quite common in the biomedical

data ecosystem, we had to contact the principal investigator of the study to obtain these metadata. We

strongly believe that DCC integration should include a more comprehensive file support system with all

study information readily available and accessible, in accord with the FAIR data principles, to allow for
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diverse biomedical analyses. The well known issue of metadata non-standardization within the field is

arguably among the largest obstacles for true FAIR data usage.

Metadata standardization will also be critical to harness the full potential the access to multiple large

data resources offers. The approach presented in this manuscript is extendable to other SevenBridges

technologies such as the Cancer Genome Cloud containing the The Cancer Genome Atlas and BioData-

Catalyst with access to dbGaP data sets. The analytic techniques are interoperable, and any CAVATICA

pipeline can be executed in CGC or BDC, and vice versa. We hope that the guidance we offer will be

useful for investigators who wish to develop or migrate specialized analyses for specific use cases on the

cloud.

In all, with the abundance of FAIR data and increased interoperability between diverse data sets and

types from different DCCs, we are enthusiastic about the potential for novel scientific hypotheses to be

raised and tested within many large datasets now cloud-accessible. We believe there could be a real

paradigm shift especially for ”non-standard” analyses, which are typically carried out in-house on local

machines or HPC computing.

Methods

The Genotypic Transmission Disequilibrium Test with an Interaction

The allelic transmission disequilibrium test (aTDT) proposed by Spielman25 is commonly used in the

analysis of case–parent trio data to test for an association of a genotype and a disease. The aTDT

quantifies whether an allele at a genetic locus was preferentially transmitted from the parents to the

affected offspring. In contrast, the genotypic transmission disequilibrium test (gTDT) considers for each

family all four possible pairs of parental alleles at a locus and compares the genotypes observed for the

affected probands to the pseudo-controls, i.e. the unobserved genotypes of the other Mendelian children.
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Conditional logistic regression is then applied to these strata, each consisting of the genotypes of the

affected proband and the three matched pseudo-controls26. The gTDT has several advantages over

the aTDT. It allows to select a specific genetic mode of inheritance and can be more powerful than

the aTDT27. The gTDT further generates parameter estimates and standard errors (in addition to just

p-values in the aTDT) which allows for more straightforward meta-analyses, in particular when results

from family and population based studies are to be combined28. Lastly, the gTDT allows testing for

interactions between SNPs and other covariates such as sex to assess effect modifications.

The main drawback of the gTDT compared to the aTDT is its potentially much higher computational

burden since iterated weighted least squares are commonly employed to obtain the parameter estimates

in the conditional likelihood29, which can be prohibitive when tens of millions of variants have to

be assessed. We previously showed however that Mendel’s laws however impose a structure on the

genotypes in the gTDT that allows us to derive exact closed-form solutions for the parameter estimates

of the conditional logistic regression models when testing for an additive, a dominant, or a recessive

effect of a SNP, and we also showed that such analytic parameter estimates exist when considering

interactions between SNPs and binary covariates such as sex30. Our procedure, implemented in the

freely available Bioconductor package trio, is based on a simple counting / tabulation procedure and

avoids iterative numeric optimization, reducing computing time by two orders of magnitude. This

software package allowed us to analyze tens of millions of markers for their association with oral clefting

in our meta-analysis, and to assess whether genetic effects differ between the sexes.

For the QC procedures, we used VCFtools to remove multi-allelic sites and indels, filter sites with labels

other than ‘PASS’, remove variants with mean depth values less than 10X or quality value less than

20, and remove genotype calls with less than 10X depth or quality less than 20. We then created

binary files (.bed, .bim and .fam) from these cleaned VCFs to integrate the pedigree information of

the affected probands using PLINK. We excluded the variants with more than 20% missingness, minor
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allele frequency below 1%, and those significantly deviating from Hardy Weinberg Equilibrium with a

p-value less than 10−6. Trios were excluded from the analysis if they had at least one sample with more

than 2% missing genotypes, showed ambiguous relatedness based on pairwise IBD estimates, or had an

excessive number of Mendelian errors.

Project Spaces on CAVATICA

A CAVATICA project space integrates five key components of biomedical data research which are com-

monly handled with disparate tools in local environment or a high performance computing cluster. The

components are referred to on CAVATICA as ”Dashboard”, ”Files”, ”Apps”, ”Tasks” and ”Data Studio”

(Figure 4).

Figure 4: A CAVATICA Project Space is the portal to a research project. Here, files are stored, member

permissions are managed, tools and workflows are created, and computational tasks are executed.
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Dashboard

The Dashboard represents a comprehensive view of a team’s research. It includes a Markdown ”Descrip-

tion” panel to describe the project aims. With the ”Manage Users” subsection, the project administrator

can control the user privileges (copy, write, execute). This extends the simplicity of user-access manage-

ment techniques from other more commonly known cloud-based collaborative software, such as Google

Documents. A final section shows the status of task executions.

Files

The Files section allows for a variety of methods for data uploading, and users can choose to upload

data from diverse sources. Importing is facilitated from the Global Alliance for Genomics and Health

(GA4GH) Data Repository Service (DRS) Application Program Interface (API). Through this technique,

file manifests can be derived for example from DCC data and uploaded. The process is light-weight,

as it leverages each file’s Uniform Resource Identifier (URI) hyperlink, which allows for file storage

through an access link to the original source without having to copy the data. URIs are both unique

and immutable, which help them identify the data location and access protocol31. Researchers may

also choose to import datasets from local computers via direct upload and from HPC Clusters via the

SevenBridges’ File Transfer Protocols (FTPs). The data ecosystem on CAVATICA maintains FAIR

principles: F) every file has a persistent identifier (PID) and the capacity to include extensive metadata

specifications, A) these files are retrievable by their PID within any project space on the platform, I) data

is easily integrated from diverse sources and types for novel investigations, and R) files are optimized for

reuse and data URIs allow for original data to be reused numerous times. More details on data access

are given in the separate section ”Data Access on CAVATICA” below.
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Apps

A CAVATICA app falls under one of two categories: a tool or workflow. Within the ”Apps” section, the

user may choose to import an already existing app, create a new app, or modify an already built app.

A tool is a distinct processing step while a workflow is a combination of multiple tools woven together.

The app creation protocol maintains software development standards: version control, documentation,

and debugging. Through app creation, users can craft polylingual CWL workflows customized for any

analysis pipeline.

Tasks

Tasks in CAVATICA are computational jobs that execute either a tool or a workflow. Each is accompanied

by information about its status (”Draft”, ”Queued”, ”Running”, ”Aborted”, ”Failed”, ”Completed”),

its job initiator, its execution date, its duration, and its price. Task management is maintained by

CAVATICA infrastructure which acts as a Portable Batch System (PBS) that eliminates the need for

bash scripting for execution. While drafting a task, a user can choose to use spot instances to reduce the

cost of the task, implement memoization to re-use pre-computed tasks where applicable, and run batch

tasks to compute multiple files in parallel. During the execution of a task, researchers can investigate

the ”Stats and Logs” page to see the time and resource allocation of a tool or overall workflow. In this

space, researchers also may see error logs to aid in the debugging of their code. Finally, there is an

”Instance Metrics” panel to assess computation load on the CPU, RAM, input / output loading (IO),

and more.
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Data Studio

The Data Studio houses JupyterLab and RStudio as computational environments within which users can

initiate sessions to directly interact with their data, derived files, or their results. During this session,

researchers may develop analytic scripts in Python or R, respectively, that later can be crafted into a

tool or implemented in an overall workflow. The data and visualizations produced from these scripts

within the native Data Studio environment may also be downloaded into the Project Space.

Data Access on CAVATICA

Access to data is critical for the success of any research project. Here we describe the mechanisms in

place to ensure secure and compliant data handling on CAVATICA. The platform integrates with multiple

data repositories and follows stringent protocols to manage user access. The data access mechanisms

on CAVATICA support a wide range of genomic research activities and uphold the required standards

of data security and compliance.

CAVATICA employs the Researcher Auth Service (RAS) to streamline access to controlled datasets.

RAS is a federated authentication service that verifies researchers’ identities and their right to access

specific datasets, especially those containing human genetic information. This system ensures that

all data access on CAVATICA complies with the ethical standards and privacy regulations required by

research governance. RAS on CAVATICA is coordinated via the NIH eRA Commons system, a system

for tracking roles of researchers and governing data access permissions. Through integration with the

dbGaP, CAVATICA also allows researchers to access these genomic and phenotypic data. Access to

dbGaP is controlled and requires users to have appropriate authorization, which is facilitated through

the RAS. This ensures that sensitive data is only accessed by qualified individuals.

CAVATICA facilitates interoperability to enhance the utility of data across various platforms and tools.

21

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.27.24309340doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.27.24309340
http://creativecommons.org/licenses/by-nd/4.0/


By adhering to common standards and protocols including those set by GA4GH, CAVATICA ensures

that data imported from or exported to other platforms can be integrated without compatibility issues.

This approach supports a collaborative and efficient research environment where data can be shared

and utilized across different systems and studies. One of the core components of this interoperability

is CAVATICA’s DRS, a GA4GH standard. The DRS provides a uniform API for accessing data objects

across cloud environments, regardless of the data’s location. This means that researchers can retrieve

data from GMKF and other compliant platforms using a consistent set of tools and protocols. This is

particularly beneficial for projects that span multiple data types and sources, as it reduces the complexity

and overhead associated with data management. Furthermore, using a DRS enabled file provides a

symbolic link to that data’s original storage location in the cloud, and checks access requests for every

call against user permissions. This means data already stored elsewhere in the cloud are not billed

against the user’s project. When data are accessed, the platform performs analysis in the same local

cluster where the data are stored, further enhancing security.

The DRS server also facilitates the movement of data within the platform and ensures that data uploaded

to projects on CAVATICA are readily available on other platforms such as the Cancer Genomics Cloud

(CGC) and BiodataCatalyst (BDC). In addition, CAVATICA also hosts a range of datasets that are

accessible through its Data Explorer tool, including datasets from GMKF and The Cancer Genome

Atlas (TCGA). This feature allows researchers to search, filter, and access datasets based on various

parameters such as disease and data type. The Data Explorer is a tool for researchers to quickly find

the necessary data for their research projects, streamlining the process of data discovery and access.
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Data availability

The Filipino WGS trio data are available in the Genomics of Orofacial Clefts in the Philippines workspace

on CAVATCA and on dbGaP under study accession number phs002595.v1.p1. Approval for this study

was given by the following Ethics Committees: University of the Philippines, Manila, Research Ethics

Board (FWA00018728); the University of Iowa Institutional Review Board (FWA00043007, IRB approval

ID# 200812719); the University of Pittsburgh Institutional Review Board (FWA00006790, IRB approval

ID# STUDY19080127). Informed consent was obtained for all participants using a certified translation

into Tagalog of the English consent form approved by the study coordinating center at the University

of Pittsburgh.

Code availability

All relevant code is freely available from the first author’s manuscript GitHub page.
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