Abstract
Patients with Coronary Artery Disease (CAD) are at high risk of death. CAD is the third leading cause of mortality worldwide. However, there is a lack of research concerning CAD patient mortality prediction; thus, more accurate prediction modeling is needed to predict the mortality of patients diagnosed with CAD. This paper demonstrates performance improvements in predicting the mortality of CAD patients. The proposed framework is a modification of the work used for the prediction of 30-day readmission for ICU patients with heart failure. Our framework demonstrates better performance with an Area Under the ROC Curve (AUC) score of 0.871 for the Neural Network (NN) model compared to traditional baseline machine learning models that we developed. Our framework uses the medical history of patients, the time related to the variables, and patients’ demographic information for prediction. This framework has the potential to be used by medical teams to make more accurate decisions for treatment and care for patients with CAD, increasing their life expectancy.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The dataset is publicly available: https://physionet.org/content/mimiciii/1.4/
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced are available online at: https://physionet.org/content/mimiciii/1.4/