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Abstract 

Dementia often has an insidious onset with considerable individual differences in disease 

manifestation. Nonlinear mixed-effects models with latent time shifts have been proposed to 

investigate the long-term disease progression and individual disease stages. The latent time shift 

is a horizontal shift in time that aligns patients along a global timeline for disease progression. 

However, these models ignore informative dropout due to dementia or death, which may result in 

biased estimates of the longitudinal parameters. To account for informative dropout due to 

dementia or death, we propose a multivariate nonlinear joint model with latent time shifts. This 

joint model uses a multivariate nonlinear mixed-effects model with latent time shifts to model 

the correlated longitudinal markers of cognitive decline, and simultaneously, a proportional 

hazards model to incorporate dropout due to dementia or death. We investigate two association 

structures between the longitudinal process and the time to event process: the current value 

structure and the shared random effect structure. We compare the proposed joint model with 

separate models that ignore informative dropout across various simulation settings. The proposed 

joint models with correctly specified association structures show the best performance. Even the 

models with misspecified association structures outperform the separate models that does not 

consider informative dropout. We conclude that our proposed joint model with latent time shifts 

offers more accurate and robust estimates than the latent time disease progression models that 
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neglect informative dropout. Future research will involve incorporating competing risks and 

other parametrizations of the longitudinal model into this joint model framework.  
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1 Introduction 

Dementia is characterized by a decline in mental ability that impairs memory, thinking, and 

decision-making abilities, which significantly affects people’s daily activities [1]. It is reported 

that dementia serves as the leading cause of dependence and disability among the elderly 

worldwide [2]. Modeling disease progression using cognitive decline preceding dementia onset 

is challenging since dementia often has an insidious onset with considerable individual 

differences in disease manifestation [3]. Methods have been proposed to describe the progression 

of dementia including linear or non-linear mixed-effects models [4-7]. However, traditional 

timescales used in these models such as time to diagnosis, time since inclusion, or chronological 

age face challenges in accurately depicting the progression of dementia [8]. Specifically, the use 

of time to diagnosis can be unreliable and subjective, and it confines the analysis to only those 

participants who have developed dementia, consequently leading to a reduction in sample size. 

Time since inclusion lacks biological meaning and exhibits heterogeneity due to varying clinical 

stages at which participants are enrolled in the study. Chronological age introduces considerable 

individual heterogeneity as disease manifests at different ages for different people. Besides, the 

substantial individual differences in disease manifestation pose challenges in accurately staging 

patients.  

Due to the limitations of traditional timescales, the true longitudinal trajectory for disease 

progression may be obscured using these timescales. Therefore, disease progression models that 

utilize a latent disease time have been proposed [3, 9-11]. The latent disease time is retrieved 

from the data using time-warping functions by estimating a subject-level latent time shift for 

individual heterogeneity in disease stages. The subject-level latent time shift realigns participants 

along a global timeline in the population by assuming that participants experience overall the 
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same disease progression. Compared with the mix-effects models based on traditional timescales, 

the disease progression models offer the following benefits. First, the latent disease time serves 

as a continuous representation of the disease stage by re-ordering the participants according to 

disease severity, which may provide a more accurate staging of participants compared to coarse 

disease-stage groups [3]. Second, these models aid in characterizing the temporal order of the 

occurrence of different cognitive changes since all cognitive measures can be compared on the 

global timescale. Third, these models can effectively recover the true long-term disease 

progression trajectory from short-term observations [9]. However, the disease progression 

models differ in how they parameterize latent time shifts, the shapes of mean disease progression 

trajectories, and the number of cognitive measures they can model simultaneously. Donohue et 

al. (2014) proposed a semiparametric model and iterative estimation procedure to estimate the 

long-term disease trends based on short-term data [10]. Li et al. (2019) developed a latent time 

joint mixed model using Bayesian estimation [9]. Multiple longitudinal outcomes were 

simultaneously modeled, and the nonlinear disease progression trends were accommodated by a 

nonlinear transformation prior to the trajectory modeling. Based on Li et al. (2017), Lespinasse 

et al. (2023) further used the partially observed clinical diagnosis information to help anchor the 

estimation of latent time shifts [8]. Raket et al. (2020) directly modeled a nonlinear longitudinal 

cognitive trajectory on its original scale by a parametrized family of exponential functions and 

included covariate effects on disease stage, rate of decline and deviation from the mean [11]. 

Based on Raket et al. (2020), Kühnel et al. (2021) simultaneously modeled multivariate 

longitudinal trajectories that may differ in sensitivity across disease stages by proposing a 

multivariate continuous-time disease progression (MCDP) model [3].  
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 One common limitation in these existing disease progression models is their inability to 

accommodate informative dropout. In longitudinal studies tracking dementia progression, 

dropout is often caused by the occurrence of dementia or death [12]. When the probability of a 

subject dropping out depends on their unobserved longitudinal measurements, e.g., cognitive 

decline, this type of dropout process is identified as nonrandom or informative, or missing not at 

random (MNAR) [13]. However, the latent disease progression models usually assume that the 

missing data are missing at random (MAR), which indicates that the missingness can be fully 

accounted for using the observed data. In order to obtain valid inference, a model for the joint 

distribution of the longitudinal and missingness processes should be considered. Selection 

models, pattern-mixture models, and joint models, also known as shared parameter models, have 

been proposed to handle informative dropouts [14-17]. Cuer et al. (2020) compared these three 

strategies for informative missingness [18]. Compared with selection models, pattern-mixture 

models and joint models allow researchers to test the mechanism of missing data. In addition, 

joint models treat time-to-dropout as continuous and considers dropouts related to different 

clinical events. Joint models provide a framework to jointly model both longitudinal and 

missingness processes by postulating a mixed effect model for the longitudinal outcome and a 

survival model for the time-to-event outcome (e.g., time to dropout due to dementia or death) 

[19]. Both processes in the joint model framework are linked by a set of random effects that are 

assumed to capture the associations between these two outcomes. A joint model is also essential 

in scenarios where the objective is to assess the association between longitudinal and time-to-

event processes [19]. Various types of joint models have been proposed in terms of estimation 

approaches (e.g., frequentist or Bayesian [20]), the number of longitudinal outcomes (e.g., 

univariate or multivariate [21]), the association structures between longitudinal and survival 
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processes (e.g., current value or shared random effects [19]), the parametrization of the 

longitudinal sub-model (e.g., linear or nonlinear [22]), and the types of time-to-event outcomes 

(e.g., single event, multiple events, or recurrent events [23]).  

 To demonstrate the capability of joint models to handle informative missingness, 

researchers have compared joint models with mixed-effects models that treat informative 

missingness as MAR, and with separate models of longitudinal and missingness processes 

without accounting for the association between them. Among these studies, joint models 

employing the shared random effect association structure have been used, where dropouts are 

assumed to be directly related to the random effects from the longitudinal process [24-27]. 

Another commonly used association structure is the current value structure, where dropouts are 

linked to the true unobserved values of the longitudinal trajectories [18, 28-32]. Notably, Vonesh 

et al. (2006) investigated both association structures, comparing them with separate models 

under various assumptions of missing mechanism [17]. All studies showed that joint models 

improve over linear mixed models or separate models regarding  bias and model fit. In addition, 

it has been shown that linear mixed models tend to provide overly optimistic estimates for 

longitudinal outcomes, while joint models are able to recover the true longitudinal estimates with 

low bias [26-28]. When dropouts occur due to different reasons, joint models with competing 

risks have been developed to account for various types of dropouts. Elashoff et al. (2008) and 

Williamson et al. (2008) assessed joint models with competing risks based on the shared random 

effect structure against separate models that ignore dropouts [25, 33]. Gueorguieva et al. (2012) 

further extended the previous two studies to allow for interval-censored dropout times and 

incorporated a joint model treating all dropouts equally into the comparative analysis [26]. 

Results indicated that the joint model with competing risks due to different reasons outperformed 
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the joint model with a common dropout reason. The difference between two joint models was 

more pronounced in the scenario where one type of dropouts was informative, and the other one 

was non-informative.  

In this project, we aim to describe a multivariate nonlinear joint model with latent time 

shifts. Specifically, the joint model combines a model to consider a nonlinear latent time disease 

progression with multiple longitudinal measures and a proportional hazards model to consider  

informative dropout using Bayesian methods. To demonstrate the ability of our proposed model 

to account for informative dropout, we also aim to compare the proposed joint models based on 

different association structures with the disease progression model that ignores informative 

dropout. Furthermore, we apply our proposed joint model to the Framingham Heart Study (FHS) 

Offspring Cohort data.  

2 Methods 

Our proposed joint model is an extension of the multivariate continuous-time disease progression 

(MCDP) model proposed by Kühnel et al. (2020) [3]. The MCDP model is a multivariate 

nonlinear mixed-effects model that aligns patients according to their predicted disease 

progression along a global latent timescale. Compared to other disease progression models that 

utilize latent disease time, the MCDP model demonstrates superior performance in terms of more 

accurate predictive postbaseline trajectories and individual patient staging based on predicted 

subject-level latent time shifts. Therefore, the estimated disease progression trajectories in the 

MCDP model more accurately reflect the true evolution of cognitive measures preceding 

dementia and enhance predictions of individual disease progression. Overall, our proposed joint 

model is composed of three components: (i) the MCDP model for longitudinal cognitive 

measures (longitudinal sub-model); (ii) a proportional hazards model for the missingness 
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process, i.e., the time to dementia or death (survival sub-model); (iii) an association structure that 

links processes (i) and (ii).  

2.1 Longitudinal sub-model: MCDP 

Let 𝑌!"(𝑡"#) be the value of the 𝑘th longitudinal cognitive measure at time 𝑡"# for subject 𝑖, where 

𝑖 = 1, 2, . . . , 𝑁, 𝑘 = 1, 2, … , 𝐾, and 𝑗 = 1,2, … , 𝑛!". The following parameters in bold indicate 

vectors. For participant 𝑖, let 𝒁𝒊 be a vector of length 𝑝 for baseline covariates and 𝑿𝒊 be a vector 

of length 𝑞 for covariates that have an influence on disease stages. The MCDP model can be 

formulated as  

 
𝑌!"5𝑡"#6 = 𝑚!"5𝑡"#6 + 𝜖!"(𝑡"#)	

= 𝜇!5𝑡"# + 𝑿𝒊𝑻𝜷 + 𝛿"6 + 𝒁𝒊𝑻𝜻𝒌 + 𝑏!" + 𝜖!"(𝑡"#) 
(1) 

where 𝑚!"5𝑡"#6 denotes the true unobserved value of 𝑌!"5𝑡"#6 without the random error 𝜖!"5𝑡"#6, 

with 𝜖!"5𝑡"#6~𝑁(0, 𝜎!'). 𝜇! is a function for the mean disease progression in the population. An 

individual’s deviation from the mean disease progression can be divided into two parts: the 

horizontal shift 𝑿𝒊𝑻𝜷 + 𝛿" and the vertical shift 𝒁𝒊𝑻𝜻𝒌 + 𝑏!" + 𝜖!"(𝑡"#). 

Horizontal shift 

The horizontal shift refers to the latent time shift that moves subjects backward or forward in 

time according to their true disease stages, so subjects are realigned along a global timeline. The 

latent time shift is composed of a fixed effect 𝑿𝒊𝑻𝜷 for individual differences in disease stage that 

can be ascribed to covariates 𝑿𝒊, and a random effect 𝛿" that represents the unobserved random 

variation in disease stage with 𝛿"~𝑁(0, 𝜎('). The timescale formed by the shifted time points 

𝑡"# + 𝑿𝒊𝑻𝜷 + 𝛿", also referred to as the ‘disease time’ or ‘disease age’, constitutes a global 

timescale for disease progression in the population. If the original timescale 𝑡"# is chronological 
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age and (𝑿𝒊𝑻𝜷 + 𝛿") < 0,  a participant’s disease age is younger than his/her chronological age 

(Figure 1). That is, the participant’s disease stage is earlier than the average disease stage for 

his/her actual chronological age. The subject-specific latent time shift is assumed to be consistent 

across all 𝐾 outcomes for each participant. Previous studies revealed that the common individual 

disease stage assumption is feasible in the presence of multiple outcomes that may differ in 

sensitivity across disease stages [3]. The horizontal latent time shift is visualized in Figure 1.  

Vertical shift 

The vertical shift represents a deviation from the mean disease progression and is composed of 

three parts: a fixed effect 𝒁𝒊𝑻𝜻𝒌, which accounts for the deviation that can be attributed to 

covariates 𝒁𝒊; a random intercept 𝑏!", which captures the subject-level unobserved random 

deviation; and a random error term 𝜖!"(𝑡"#). The random intercept 𝑏!" resembles the random 

intercept in the traditional linear mixed-effects model. We assume the vector of random effects 

across 𝐾 longitudinal measures, denoted as 𝒃𝒊 = (𝑏)" , 𝑏'" , … , 𝑏*")′, follows a multivariate normal 

distribution: 𝒃𝒊~𝑀𝑉𝑁(0, Σ+). (𝜎+)' , 𝜎+'' , … , 𝜎+*' ), is the variance vector on the diagonal of Σ+. 

We further assume independence among the random latent time shift 𝛿", the random intercept 𝒃𝒊, 

and the random error term 𝜖!"(𝑡"#). 

Mean disease progression 

To model the mean disease progression trajectory for the 𝑘th longitudinal outcome, we use a 

nonlinear form for 𝜇!: 

 𝜇!(𝑡) = 𝑙! ⋅ exp O
𝑡

𝑒𝑥𝑝(𝑔!)
S + 𝜈! (2) 

where 𝜈! is an intercept parameter describing the left asymptote; 𝑙! is a scaling parameter for the 

exponential function, which can be interpreted as the mean deviation from 𝜈! at time 𝑡 = 0. 𝑔! is 
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a scaling parameter for time. The decision to use an exponential mean curve is based on the 

observation that cognitive decline in dementia is typically monotonic over the long run. Besides, 

cognitive decline is generally characterized by an escalating rate of deterioration over the course 

of disease progression, which is consistent with the shape of an exponential curve [3]. 

2.2 Survival sub-model: proportional hazards model 

During follow-up, a subject may drop out of the study due to dementia or death. We use a 

parametric proportional hazards model for the time to dropout due to dementia or death. The 

model is as follows 

 ℎ"(𝑡) = ℎ-(𝑡)exp	(𝜸𝑻𝑿𝒊 +𝑊(𝒃𝒊, 𝛿" , 𝑡),𝜶) (3) 

where ℎ-(𝑡) is the baseline hazard. It has been shown that an unspecified baseline hazard in the 

joint model is likely to result in the underestimation of the standard errors of the parameter 

estimates [34]. To avoid this issue, we use a parametric Weibull baseline hazard. It can be 

extended to other parametric forms such as exponential or piecewise constant. 𝜸 is the vector of 

coefficients for covariates 𝑿𝒊. 𝑊(𝒃𝒊, 𝛿" , 𝑡) is a function of random effects from the longitudinal 

sub-model (i.e., random intercepts 𝒃𝒊 and random time shift 𝛿") and time 𝑡, which represents the 

association structure between the longitudinal and survival (e.g., missingness or dropout) 

processes. 𝜶 denotes the associated coefficients for 𝑊(𝒃𝒊, 𝛿" , 𝑡). Specifically, we consider two 

commonly used forms for 𝑊(𝒃𝒊, 𝛿" , 𝑡): the current value structure and the shared random effect 

structure. In addition, to facilitate model comparison we include the separate models that ignores 

the association between the longitudinal and survival processes, where 𝜶=0. 

Current value association structure (CV) 
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This association structure assumes that the true unobserved value for longitudinal measures at 

time 𝑡, denoted as 𝑚!"(𝑡), is predictive of the event risk at the same time 𝑡 [21]. Therefore, we 

have 𝑊(𝒃𝒊, 𝛿" , 𝑡) = 5𝑚)"(𝑡),𝑚'"(𝑡), … ,𝑚*"(𝑡)6
,. Equation (3) can be rewritten as  

 ℎ"(𝑡) = ℎ-(𝑡)exp	(𝜸𝑻𝑿𝒊 + Σ!.)* 𝛼!𝑚!"(𝑡)) (4) 

where 𝛼! measures the association between 𝑚!"(𝑡) and the risk for the event of our interest (e.g., 

dropout due to dementia or death), indicating that each one-unit increase in the current value of 

𝑚!"(𝑡) at time 𝑡 is associated with an exp	(𝛼!)-fold increase in the hazard of the event at the 

same time 𝑡. This particular association structure is often employed in scenarios where the 

primary focus is on survival time. After removing the error term,  the longitudinal sub-model is 

considered a time-dependent covariate in the survival process [34]. 

Shared random effect association structure (RE) 

In real-world scenarios, it’s not always realistic to assume a current value association structure. 

The shared random effect association structure (RE) postulates that the risk for the event of our 

interest is directly associated with the random effects in both horizontal and vertical shifts from 

the longitudinal sub-model, i.e., the random time shift 𝛿" and the random intercepts 𝒃𝒊. We have 

𝑊(𝒃𝒊, 𝛿" , 𝑡) = (𝛿" , 𝑏)" , 𝑏'" , … , 𝑏*"),. Equation (3) can be rewritten as  

 ℎ"(𝑡) = ℎ-(𝑡)exp	(𝜸𝑻𝑿𝒊 + 𝛼-𝛿" + Σ!.)* 𝛼!𝑏!") (5) 

where 𝛼- and 𝛼! 	measure the strength of the association between the event risk and the random 

latent time shift as well as  the random intercepts, respectively. Consider two individuals with 

similar demographics but different disease stages as an example. If we assume 𝛼- > 0 and 𝛼! >

0, the individual with an earlier disease stage (i.e., a smaller random latent time shift 𝛿") or 

exhibit a smaller baseline value (i.e., smaller 𝑏!") is at a lower risk of the event at a given time 𝑡 

after adjusting for other factors. Typically, this structure is utilized in scenarios where the 
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primary focus is the longitudinal process with informative dropout, or in situations where both 

the longitudinal and survival processes are of equal interest [34].  

Separate models 

Note that if we set 𝛼! = 0, 𝑘 = 1,2, … , 𝐾, in the current value association structure, or 𝛼- =

𝛼! = 0, 𝑘 = 1,2, … , 𝐾, in the shared random effects association structure, the survival sub-model 

is reduced to a standard proportional hazards model, i.e.,  

 ℎ"(𝑡) = ℎ-(𝑡)exp	(𝜸𝑻𝑿𝒊) (6) 

Since this model fails to accommodate the association between the longitudinal and survival 

processes, the joint model is reduced to the separate models of the longitudinal and survival 

processes. That is, the longitudinal and survival processes are modeled independently in the 

separate models. The estimates from the longitudinal MCDP model in the separate models are 

equivalent to those obtained from a standard MCDP model that ignores informative dropout. 

2.3 The joint model overview  

We use Figure 2 to illustrate our proposed nonlinear joint model framework assuming there are 

two longitudinal cognitive measures (𝐾 = 2). The random effects including the random latent 

time shift, denoted as 𝛿", and the random intercepts, denoted as 𝑏)" and 𝑏'". These parameters 

play important roles in constructing the joint model. First, the random effects capture the 

correlation between the longitudinal measures. Second, the longitudinal and survival processes 

are linked directly through the random effects in the shared random effect model. In contrast, the 

random effects have an indirect effect on the hazard via the true unobserved values of the 

longitudinal measures, 𝑚)"(𝑡) and 𝑚'"(𝑡), in the current value model 

2.4 Estimation of the joint model 

2.4.1 Likelihood 
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Let 𝑇"∗ be the true time to dropout due to dementia or death for subject 𝑖, and 𝐶" the censoring 

time, which corresponds to dropout due to other reasons. Let 𝑇" = min	{𝑇"∗, 𝐶"} denote the 

observed time. Δ" = min	{𝑇"∗, 𝐶"} is the indicator for death. Let 𝝍 denote the full parameter 

vector. 𝛿" and 	𝒃𝒊 are the random latent time shift and the vector of random intercepts. The 

likelihood is constructed under the assumption that both the longitudinal and survival processes 

are independent given the random effects. Therefore, the likelihood conditional on the random 

effects is as follows: 

 d𝑝(𝒀𝒊, 𝑇" , Δ"|𝛿" , 𝒃𝒊, 𝝍)
0

".)

=d𝑝(𝒀𝒊|𝛿" , 𝒃𝒊, 𝝍)𝑝(𝑇" , Δ"|𝛿" , 𝒃𝒊, 𝝍)
0

".)

 (7) 

For the longitudinal part, we have  

 𝑝(𝒀𝒊|𝛿" , 𝒃𝒊, 𝝍) =d
1

(2𝜋𝜎!')
1!"
'
exph−

𝛴#.)
1!" k𝑌!"5𝑡"#6 − 𝑚"!5𝑡"#6l

'

2𝜎!'
m

*

!.)

 (8) 

For the survival part, we have  

 𝑝(𝑇" , 	Δ"|𝛿" , 𝒃𝒊, 	𝝍) = ℎ"(𝑇"|𝛿" , 𝒃𝒊, 	𝝍)2"𝑆"(𝑇"|𝛿" , 𝒃𝒊, 	𝝍) (9) 

where ℎ"(𝑡) is the hazard function described in Equations (4) to (6). 𝑆"(𝑇"|𝛿" , 𝒃𝒊, 	𝝍) =

exp	(−∫-
,"ℎ"(𝑠|𝛿" , 𝒃𝒊, 𝝍)𝑑𝑠), which represents the survival function. Note that we use Gauss-

Kronrod quadrature [35] with 15 nodes for numerical approximation of integration when the 

survival sub-model is a current value model. Specifically, 𝐻"(𝑡) = ∫ ℎ"(𝑠)𝑑𝑠
3
- ≈

3
'
Σ4.)
5 𝑤4ℎ"(

36)78#9
'

), in which 𝑤4 is the standardized weight for quadrature node 𝑞 with 𝑞 ∈

{1,2, … , 𝑄}. We set 𝑄 = 15. 𝑠4 is the location for quadrature node 𝑞. 

2.4.2 Bayesian Inference 
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We use a Bayesian approach based on Markov Chain Monte Carlo (MCMC) methods for the 

parameter estimation of the joint model. For the Bayesian approach, the random effects, 

including the random latent time shift and random intercepts, are treated as model parameters. 

The joint posterior probability distribution is analogous to: 

 𝑝(𝝍, 𝒃, 𝛿) ∝d𝑝(𝒀𝒊|𝛿" , 𝒃𝒊, 𝝍)𝑝(𝑇" , Δ"|𝛿" , 𝒃𝒊, 𝝍)
0

".)

𝑝(𝒃𝒊|𝝍)𝑝(𝛿"|𝝍)𝑝(𝝍) (10) 

where 𝑝(𝝍) is the joint prior distribution for the full parameter vector 𝝍. 𝑝(𝛿"|𝝍) and 𝑝(𝒃𝒊|𝝍) 

are the distributions for the random latent time shift and random intercepts with normal 

distributions, respectively.  

We use weakly informative priors 𝑝(𝝍) on all the model parameters to allow the data to 

determine the estimation of parameters. For the fixed effects in the longitudinal sub-model, i.e., 

𝑔! , 𝑣! , 𝜷, 𝜻𝒌, we assign normal priors with a large variance, i.e., 𝑁(0, 100). Note that for the 

scaling factor 𝑙!, we use a uniform prior with an upper limit of 0, denoted as 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 0), 

to ensure that all cognitive trajectories are oriented to be decreasing (𝑙! < 0), consistent with 

real-world scenarios. The fixed parameters in the survival sub-models, denoted as 𝜸 and 𝜶, are 

also assigned weakly informative normal priors 𝑁(0, 100). We use a Half-Cauchy (0, 2.5) prior 

for the standard deviation of the random effects, including 𝜎( for the latent time shift, 𝜎+! 	for the 

random intercepts, and 𝜎! for the random errors across longitudinal measures, 𝑘 = 1,2, … , 𝐾. 

The variance-covariance matrix for the random intercepts (Σ+) is decomposed into a correlation 

matrix (Ω+) and two diagonal matrices (Λ+) with standard deviation terms on the diagonal using 

Cholesky decomposition, i.e., Σ+ = Λ+Ω+Λ+. We employ the “Lewandowski-Kurowicka-Joe 

(LKJ) priors” [36] with a shape parameter equal to 2, i.e., the parameterization of the LKJ 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309549doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309549
http://creativecommons.org/licenses/by-nd/4.0/


 

correlation matrix density in terms of its Cholesky factor, for estimating the correlation matrix 

Ω:.  

The model parameters are estimated using the R interface of Stan with the R package 

“rstan” [37]. Stan utilizes a No-U-Turn Sampler version of Hamiltonian Monte Carlo (HMC) 

algorithm which optimizes the exploration of the target distribution based on Hamiltonian 

dynamics [38]. It has been shown that HMC has the capacity to handle complex nonlinear 

estimation tasks that might prove challenging for Gibbs sampling [39]. To assess model 

convergence, we use the potential scale reduction statistic 𝑅� calculated by Stan [40]. 𝑅� values < 

1.1 for all parameters indicate successful model convergence.  

Model comparison is evaluated using the Widely Applicable Information Criterion 

(WAIC) [41], also known as the Watanable-Akaike for Bayesian model selection. WAIC is a 

useful tool for estimating pointwise out-of-sample prediction accuracy within the Bayesian 

framework. It is calculated based on the log-likelihood evaluated at the posterior simulations of 

the parameter values. Compared to the deviance information criterion (DIC), which is another 

commonly used measure in Bayesian methods, WAIC is generally more stable and is considered 

an improvement over DIC [42]. A smaller value of WAIC indicates a better model fit.  

3. Simulation study design 

Under various scenarios, we evaluated and compared the joint models based on the shared 

random effect and current value structures. We also compared the joint models with the separate 

models.  

3.1 Data generation 

We generated a cohort with n=1000 subjects.  We also generated a baseline time variable 𝑡"-  

from a uniform distribution 𝑈(−5, 5) to be the centered age around 60 years (i.e., the real age 
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subtracted by 60) at the baseline. Each participant was examined every four years until the 20th 

year in the follow-up. The longitudinal measures were observed until the occurrence of an event 

or at the 20th year of the follow-up period. We employed the MCDP model to generate these two 

longitudinal measures, 𝑌)"5𝑡"#6 and 𝑌'"5𝑡"#6, based on the following two equations: 

 𝑌)"5𝑡"#6 = 𝑚)"5𝑡"#6 + 𝜖)"(𝑡"#)	

= 𝑙)	. exp	(
𝑡"# + 𝛽𝑋)" + 𝛿"
exp	(𝑔))

) + 𝑏)" + 𝜖)"(𝑡"#) 

(11) 

 𝑌'"5𝑡"#6 = 𝑚'"5𝑡"#6 + 𝜖'"(𝑡"#)	

= 𝑙'	. exp	(
𝑡"# + 𝛽𝑋)" + 𝛿"
exp	(𝑔')

) + 𝑏'" + 𝜖'"(𝑡"#) 

(12) 

We considered one binary covariate 𝑋)" that was generated from Bernoulli (0.5). 𝑋)" had an 

impact on the latent time shift and no covariates were included in the vertical shift since our 

focus was on examining the trajectories of the fitted longitudinal measures over time. The 

correlation between two longitudinal measures were captured by both the random latent time 

shift and the random intercepts. We assume that the random latent time shift followed a normal 

distribution, i.e., 𝛿"~𝑁(0, 𝜎('), and the random intercepts had the following distribution 

 
(𝑏)" , 𝑏'"),~𝑀𝑉𝑁(k

0
0l , �

𝜎+)' 𝜌+𝜎+)𝜎+'
𝜌+𝜎+)𝜎+' 𝜎+''

�) (13) 

We simulated the dropout times due to dementia or death under three association 

structures described in the Methods section: the shared random effects structure, the current 

value structure, and the separate models. When the current value structure was implemented, the 

event times were generated based on the following equation 

 ℎ"(𝑡) = 𝑏𝑡+;)exp	(𝛾- + 𝛾)𝑋)" + 𝛾'𝑋'" + 𝛼)𝑚)"(𝑡)) (14) 
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In addition to the binary covariate 𝑋)", which was shared with the longitudinal sub-model, we 

also included a continuous covariate 𝑋'" generated from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚	(−5, 5). We incorporated the 

true unobserved value of the first longitudinal measure at time 𝑡 to capture the association 

between two processes. In the survival sub-model, the true unobserved value of the second 

longitudinal measure was excluded to avoid multicollinearity assuming two longitudinal 

measures were moderately or highly correlated. After specifying the proportional hazards model, 

the event times were then generated using an inverse cumulative hazard function transformation 

[43]. Specifically, we first simulated a variable 𝑢"~𝑈𝑛𝑖𝑓𝑜𝑟𝑚	(0,1) for participant 𝑖. Next, we 

obtained the true event time 𝑇"∗ by solving for the equation 𝑢" = 𝑆"(𝑡), where 𝑆"(𝑡) is survival 

function in Equation (9). We then defined the censoring time, 𝐶", as the time to the maximum 

follow-up duration for participant 𝑖. Lastly, the observed event time was 𝑇" = min	{𝑇"∗, 𝐶"}. For 

participant 𝑖, the longitudinal measures, 𝑌)"5𝑡"#6 and 𝑌'"5𝑡"#6, occurred after 𝑇" were dropped. 

In the context where the shared random effect structure was our primary interest, the 

event times were generated based on the following equation 

 ℎ"(𝑡) = 𝑏𝑡+;)exp	(𝛾- + 𝛾)𝑋)" + 𝛾'𝑋'" + 𝛼)𝛿" + 𝛼'𝑏)") (15) 

We incorporated the random latent time shift 𝛿" and the random intercept 𝑏)" from the first 

longitudinal measure to capture the association between two processes. Like the current value 

data structure, we mitigated multicollinearity by excluding the random intercept 𝑏'" from the 

second longitudinal measure in the survival sub-model. The event times can be generated 

following the procedures outlined in the current value structure or directly from a Weibull 

distribution based on the hazard function as specified in Equation (15). 

 In contrast with the previous two association structures, we also considered a scenario 

where the dropout times were not related to the longitudinal measures, implying non-informative 
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missingness. The non-informative dropout times were generated from the following proportional 

hazards model with the independent association structure between the longitudinal and survival 

processes (survival sub-model in the separate models) 

 ℎ"(𝑡) = 𝑏𝑡+;)exp	(𝛾- + 𝛾)𝑋)" + 𝛾'𝑋'") (16) 

where only 𝑋)" and 𝑋'" were included as covariates. The event times generation procedure was 

the same as the shared random effect structure. 

3.2 Simulation scenarios 

Our simulated dataset mimicked the Offspring cohort in the FHS to allow for reasonable 

generalization. We generated 6 scenarios and summarized all parameter settings in Table 1. 

Three association structures described in the previous section were considered to reflect various 

potential real-world conditions about the relationships between the longitudinal and survival 

processes. Scenario 1 (the shared random effect structure) indicated that a participant at a later 

disease stage and smaller baseline cognitive values was more likely to dropout. Scenario 2 (the 

current value structure) implied that a higher hazard for dropout was associated with lower 

unobserved current values of longitudinal cognitive measures. In Scenario 3 (separate structure), 

the dropout times were only dependent on the observed covariates 𝑋)" and 𝑋'", unrelated to the 

values of longitudinal measures. Scenarios 4, 5, and 6 were based on the shared random effect 

association structure, resembling Scenario 1. In Scenario 4, we evaluated the impact of a smaller 

sample size on model performance by setting n=500. In Scenario 5, the event rate was increased 

from 30% to 50% by varying the baseline hazard parameters. In Scenario 6, the latent time shift 

was assumed to have a longer span. For each scenario, 200 datasets, each with 1000 subjects 

(except Scenario 5 with n=500), were generated and analyzed.  

3.3 Analysis models 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309549doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309549
http://creativecommons.org/licenses/by-nd/4.0/


 

For each scenario, we used the following three models to analyze the data. We used the MCDP 

model described in Equations (11) and (12) as the longitudinal sub-model, while we consider 

three different survival sub-models: (i) Model 1 (MCDP+RE): the shared random effect 

association structure in Equation (14); (ii) Model 2 (MCDP+CV): the current value association 

structure in Equation (15); (iii) Model 3 (separate models): the separate analysis of longitudinal 

and survival processes in Equation (16); In Bayesian estimation, we used weakly informative 

priors described in the Methods section and obtained 6000 MCMC sample iterations from each 

of the 3 parallel chains with the first 4000 iterations as a warm-up phase. Convergence was 

evaluated through the potential scale reduction statistic 𝑅�. 

4. Simulation results 

The objectives of our simulation study were threefold. First, to show our proposed joint models 

are capable of realigning participants along a global disease time. Second, to demonstrate our 

proposed joint models effectively account for informative dropout by retrieving the true mean 

disease progression trajectory. Third, to illustrate that the estimated latent time shifts from our 

proposed joint models were more accurate than those derived from the MCDP model in the 

separate models, which ignores informative dropout. In the simulation results, we focused on the 

following parameters of the interest: the scaling parameters for the exponential curve 𝑙), 𝑔), 𝑙', 

and 𝑔', the time shift parameters 𝛽 and 𝜎(, as well as the association parameters 𝛼= and 𝛼> 

estimated in the shared random effect and current value models. 

Scenario 1. Shared random effect data structure (Table 2) 

Figure 3 showed an example of one simulated dataset of 1000 subjects who were followed up to 

20 years with up to six longitudinal measures. The two panels in the “Observed” column 

represented the simulated individual trajectories for two longitudinal measures on the original 
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timescale without considering latent time shifts. No clear trajectory patterns were observed since 

the true mean trajectories were obscured on the original timescale. After applying the MCDP 

model in the separate models and our proposed joint models (panels in the “Separate”, 

“MCDP+RE”, and “MCDP+CV” columns in Figure 3), the participants were realigned 

according to a global disease timeline, allowing the true disease progression trajectories to be 

reflected in the realigned data.  

The simulation results (Table 2) confirmed that the shared random effect association 

structure (MCDP+RE) gave rise to the best performance, consistent with our simulating model. 

In terms of predicted accuracy based on WAIC values, the MCDP+RE model achieved the 

lowest WAIC (4486 versus 4726 for MCDP+CV and 4993 for MCDP+IND). Both models that 

addressed informative missingness (MCDP+RE and MCDP+CV) outperformed the model that 

ignored informative missingness (separate models).  

Regarding bias and coverage probability, most of the parameters in the MCDP+RE model 

showed low bias of smaller than 5%, with coverage probabilities around the nominal rate of 

95%. The largest bias of 8% was observed in 𝑙', the scaling parameter for the exponential curve, 

but the point estimate ( 𝑙'� = −0.0216) was close to the true value of 0.02 with an acceptable 

coverage probability of 92%. This slightly larger bias was mainly attributed to its relatively small 

effect size.  

Compared to the MCDP+RE model, the joint model with the current value association 

structure (MCDP+CV) produced larger bias and worse coverage probabilities in the longitudinal 

sub-model. Specifically, the scaling parameters for the exponential function were overestimated 

in terms of absolute values (percent bias: 19% for 𝑙), 6% for 𝑔), 29% for 𝑙', and 7% for 𝑔'). The 

time shift parameters were also overestimated, resulting in 7% bias in the fixed effect 𝛽 and 9% 
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bias in the standard deviation 𝜎( 	of the random effect. The bias indicated larger average 

differences between individual actual chronological ages and estimated disease ages in the 

MCDP+CV model versus the MCDP+RE model. The MCDP+CV model incorporated the true 

unobserved value of longitudinal measures, leading to different survival parameter 

interpretations compared with the MCDP+RE model. Therefore, the bias and coverage 

probabilities for the survival parameters in the MCDP+CV model were not available. The 

simulated true data indicated that participants with a later disease stage (i.e., larger latent time 

shift) and smaller baseline cognitive measures (i.e., smaller random intercept) had a higher 

hazard for dropout. The estimated association parameter ( 𝛼=� = −1.2, 95% CI: -1.37 to -1.03) in 

the MCDP+CV model indicated that a higher dropout risk was linked to lower current values of 

longitudinal measures, suggesting participants with these characteristics were likely at a later 

disease stage and had lower baseline cognitive values. Therefore, despite the misspecified 

survival sub-model, the MCDP+CV model allows for retrieving the directionality of the 

association between two processes. 

In contrast to the previous two models, the separate models failed to account for 

informative dropout and yielded the largest bias in the estimated longitudinal parameters (percent 

bias: 48% for 𝑙), 11% for 𝑔), 55% for 𝑙', 8% for 𝑔', 10% for 𝛽, and 14% for 𝜎(). The 

overestimated 𝜎( in the separate models indicated the largest span of latent time shift among the 

three models.  

 Figure 4 depicted the mean longitudinal trajectories fitted by three models in two 

longitudinal measures. The MCDP+RE model produced trajectories that aligned with the true 

mean trajectories, indicating superior model fit. The estimated trajectories in the separate models 

displayed the flattest curve, resulting in the greatest deviation from the true trajectories. The 
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underestimated downward trend from the separate models provided a misleadingly optimistic 

view of disease progression, as it failed to account for informative dropout associated with 

worsening cognitive conditions. The MCDP+CV model, which addressed informative 

missingness through a misspecified association structure, produced intermediate estimates. The 

resulting fitted mean trajectories positioned the MCDP+CV model between the other two 

models. 

 In order to examine whether our proposed joint models produced more accurate disease 

stages through latent time shifts, we compared three models using three evaluation metrics: root-

mean-square errors (RMSE), median absolute deviations (MAD), and Spearman correlations 

between estimated and true subject-level latent time shifts across all simulated datasets. 

MCDP+RE and the separate models yielded distinct evaluation metrics based on their 

distributions, while MCDP+CV produced intermediate results (Figure 5). Specifically, the 

MCDP+RE model yielded the most accurate estimation of latent time shifts with the smallest 

RMSE and MAD (average RMSE: 4.87 for MCDP+RE versus 5.47 for MCDP+CV and 5.84 for 

separate models; average MAD: 3 for MCDP+RE versus 3.4 for MCDP+CV and 3.77 for 

separate models). Besides, the estimated latent time shifts in the MCDP+RE model demonstrated 

the highest correlations with the true values (average correlation of 0.82 for MCDP+RE versus 

0.73 for MCDP+CV and 0.77 for separate models).  

Scenario 2: current value data structure (Table 3) 

When dropout times were related to the longitudinal process through true unobserved current 

values of longitudinal measures, the MCDP+CV model achieved the best predictive accuracy 

based on the smallest WAIC value (4700 versus 4727 for MCDP+RE and 4936 for separate 
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models). The MCDP+RE model also outperformed the separate models. In addition, the 

MCDP+CV model yielded unbiased estimates, with all model parameters’ bias smaller than 5%.  

 Misspecifying the association structure using the MCDP+RE model slightly biased the 

longitudinal parameter estimates (percent bias: 12% for 𝑙) and 12% for 𝑙'). Notably, the 

estimated span of latent time shift was slightly smaller than that in the MCDP+CV model (8.3 

versus 8.6). Despite the misspecified association structure, the direction of the association 

between two processes was captured by the MCDP+RE model. The association parameters 

( 𝛼=� = 0.11, 𝛼>� = −0.84) indicated that a larger latent time shift and a smaller random intercept 

in the cognitive measure—both associated with lower cognitive values—were correlated with an 

increased risk of dropout. This finding aligned with the negative association between the dropout 

times and longitudinal measures in the true data.  

 Like in Scenario 1, the separate models generated the most biased estimates in the 

longitudinal measures (percent bias: 13% for 𝑙), 16% for 𝑙') with an overestimated deviation of 

latent time shifts (4% bias for 𝜎().  

 In Figure 4, the estimated mean cognitive trajectories from the MCDP+CV model 

overlapped with the true trajectories. In contrast, the MCDP+RE model produced slightly steeper 

curves, indicating an overcorrection for informative dropout. The separate models generated 

trajectories with a slower acceleration in their rate of decline compared to the joint models, 

providing overoptimistic estimates. In Figure 5 for the evaluation of latent time shifts, most parts 

of the distributions overlapped, suggesting only minor differences among the models. 

Nevertheless, the latent time shifts estimated from the MCDP+CV model were the most accurate 

(average RMSE: 5.33 versus 5.37 and 5.48; average MAD: 3.07 versus 3.12 and 3.22; average 

correlation: 0.78 versus 0.78 and 0.77).  
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Scenario 3: separate data structure (Table 4) 

When dropouts were not informative, WAIC values were comparable across all three models 

(4661 for separate models, 4661 for MCDP+RE, and 4658 for MCDP+CV). All three models 

produced unbiased estimates, with percent bias smaller than 2%. Notably, the association 

parameters in the models that treat dropouts as informative were close to 0. In addition, the mean 

trajectories estimated by all three models closely matched the true trajectories, as shown in 

Figure 4. Furthermore, the evaluation metrics for the latent time shift were nearly identical 

across the three models (Figure 5). These findings suggested that all models performed well, 

irrespective of assumptions about informative missingness.  

Other scenarios 

Scenarios 4, 5, and 6 adopted the shared random effect data structure as used in Scenario 1 but 

had smaller sample size (n=500 versus 1000 in Scenario 4), deviation of the random latent time 

shift (𝜎( = 4 versus 𝜎( = 8.5 in Scenario 5), and event rate (50% versus 30% in Scenario 6). 

According to Tables 5, 6, and 7, reducing sample size, limiting the span of latent time shift, or 

increasing event rate caused more biased estimates for all three models compared with Scenario 

1. The conclusions regarding model comparison from Scenario 1 also applied to Scenarios 4, 5, 

and 6. Notably, lowering the span of latent time shift minimized the difference between the joint 

models with misspecified structure (MCDP+CV) and the separate models (Figures 6 and 7). In 

addition, a larger proportion of informative dropout more clearly differentiate the performance of 

the correctly specified model (MCDP+RE) from the other two models (Figures 6 and 7), with 

the best performance from MCDP+RE. 

5. Real data application 
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In this section, we used longitudinal data from neuropsychological tests (NP tests) along with 

dementia and death data in the Framingham Heart Study (FHS) Offspring cohort to demonstrate 

our methods. Specifically, we applied our proposed joint models and the separate models to the 

FHS data and compared their model performance using WAIC and mean disease progression.  

5.1 Data description 

The FHS is a multigenerational cohort study initiated in 1948  by enrolling 5209 residents from 

Framingham, Massachusetts, in the Original cohort [44]. In 1971, 5214 participants who were 

offspring of the Original cohort and the spouses of these offspring were included in the Offspring 

cohort [45]. The participants in the Offspring cohort have undergone up to 10 examinations, 

which were scheduled every four to six years. Beginning in 1999, the surviving participants in 

the Offspring cohort were invited to join an ancillary study, where they were administered a 

battery of neuropsychological (NP) tests every five or six years [2]. Participants identified as 

having potential cognitive impairment were invited to undergo additional, annual neurologic and 

NP tests. A dementia review panel with at least one neurologist and one neuropsychologist 

determined whether the participants had dementia, as well as the dementia type and the date of 

onset by reviewing every case of possible cognitive decline based on the participants’ cognitive 

information such as neurologic and NP tests, medical records, and neuroimaging studies [2, 46]. 

NP tests are used to measure participants’ cognitive changes over time. The NP test 

measures cover four domains in the FHS: memory, attention and executive function, 

visuoperceptual, and language [47]. In this research project, we mainly focus on memory and 

language domains. The memory domain includes the following tests: Wechsler Memory Scale 

(WMS) Logical Memory – Immediate Recall, WMS Logical Memory – Delayed Recall, WMS 

Visual Reproductions – Immediate Recall, WMS Visual Reproductions – Delayed Recall, WMS 
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Paired Associates – Immediate Recall, and WMS Paired Associates – Delayed Recall. The 

language domain includes Boston Naming Test 30 item version, Wide Range Achievement Test-

3 (WRAT-3) Reading subtest, and Wechsler Adult Intelligence Scale (WAIS) Similarities subtest. 

For each participant at each visit, we computed a memory score by averaging the individual's Z 

scores from NP tests within the memory domain. Similarly, we calculated a language score by 

averaging the Z scores from NP tests in the attention and executive function domain.(Figure 9). 

Of the 5124 Offspring cohort participants, 2992 had at least one NP test in the memory 

domain, while 2971 had at least one NP test in the language domain. We excluded participants 

with missing education information from our analysis: 471 out of 2992 participants for the 

memory domain, and 466 out of 2971 participants for the language domain. In addition, we 

restricted the data to participants who had at least three visits with NP tests in both memory and 

language domains, leaving 1128 participants. Of the 1128 participants, we excluded 11 

participants who had dementia onset before the age of 60  at baseline. Our final sample included 

1117 participants with 4162 observations. Of the 1117 participants in our final sample, 86 were 

diagnosed with dementia and 231 died during follow-up. 

5.2 Model specification 

In this section, we consider three scenarios regarding informative dropout  in the survival sub-

model: (i)  dropout due to dementia only (event rate: 7.7%); (ii)  dropout due to death only (event 

rate: 20.7%); (iii) dropout due to either dementia or death (combined)(event rate: 28.4%). 

Competing risks and semi-competing risks are beyond the scope of this chapter and will be 

further investigated in depth in the next chapter. In the longitudinal part of the joint model, we 

fitted the MCDP model for the z-scores in the memory and language domains. The timescale is 

age that is  centered at 60 years. Covariates include sex and education in years. We assume that 
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two cognitive measures, i.e., memory z-scores and language z-scores, are  linked through the 

latent time shift and the random intercepts. The MCDP model is shown as follows: 

 

𝑀𝑒𝑚𝑜𝑟𝑦"5𝑡"#6 = 𝑚)"5𝑡"#6 + 𝜖)"(𝑡"#)	

= 𝑙)	. exp �
𝑡"# + 𝛽𝑠𝑒𝑥" + 𝛿"

exp(𝑔))
� + 𝑣) + 𝜁)𝑒𝑑𝑢" + 𝑏)" + 𝜖)"(𝑡"#) 

(17) 

 

𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒"5𝑡"#6 = 𝑚'"5𝑡"#6 + 𝜖'"(𝑡"#)	

= 𝑙'	. exp �
𝑡"# + 𝛽𝑠𝑒𝑥" + 𝛿"

exp(𝑔')
� + 𝑣' + 𝜁'𝑒𝑑𝑢" + 𝑏'" + 𝜖'"(𝑡"#) 

(18) 

where 𝛽 is the fixed effect of sex, which is assumed to have an impact on the estimation of the 

latent time shift. 𝛿" is the random part in the latent time shift that follows a normal distribution: 

𝛿"~𝑁(0, 𝜎('). Education has an influence on the mean cognitive levels with coefficients 𝜁) and 𝜁' 

for the memory and language z-scores, respectively. 𝑏)" and 𝑏'" are random intercepts for the 

memory and language z-scores, respectively, that follow a multivariate normal distribution: 

O𝑏)"𝑏'"
S~𝑁(k00l , 	(

𝜎+)' 𝜌𝜎+)𝜎+'
𝜌𝜎+)𝜎+' 𝜎+''

).  

 The models are constructed by combining the MCDP model with either of the following 

three survival sub-models. Time in the survival sub-model is age at the occurrence of the event 

of our interest (i.e., death, dementia, or the composite survival outcome for both death and 

dementia) subtracted by 60 years to be consistent with the timescale in the longitudinal part. The 

following sub-models with three different association structures are considered: 

Shared random effect association structure (RE) 

 ℎ"(𝑡) = 𝑏𝑡+;)exp	(𝛾- + 𝛾)𝑠𝑒𝑥" + 𝛾'𝑒𝑑𝑢" + 𝛼)𝛿" + 𝛼'𝑏)") (19) 

Current value association structure (CV) 

 ℎ"(𝑡) = 𝑏𝑡+;)exp	(𝛾- + 𝛾)𝑠𝑒𝑥" + 𝛾'𝑒𝑑𝑢" + 𝛼)𝑚)"(𝑡)) (20) 
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Separate models 

 ℎ"(𝑡) = 𝑏𝑡+;)exp	(𝛾- + 𝛾)𝑠𝑒𝑥" + 𝛾'𝑒𝑑𝑢") (21) 

Both sex and education are included as covariates. All other settings are the same as in our 

simulation study. Convergence was assessed using the potential scale reduction statistic 𝑅� [40]. 

Models were compared based on their WAIC values. 

5.3 Results 

We applied latent time shifts in our proposed joint models and the separate models and observed 

that trajectories for cognitive measures were re-aligned along a new global disease timeline 

(Figure 8). For the memory domain, the realigned mean disease progression trajectories showed 

a more pronounced downward trend compared with those on the original timescale. The 

modification in the mean disease progression trajectories for the language domain was less 

distinct, but the slight upward trend observed in the original data was mitigated after the 

application of latent time shifts.  

Parameter interpretations 

The parameter estimates of the four proposed joint models, including posterior means and 95% 

credible intervals (CI), as well as WAIC values were displayed in Tables 8-10. In all three 

scenarios, the WAIC values favored the MCDP+RE model, followed by the MCDP+CV model, 

indicating the real data likely exhibited a shared random effect data structure between the 

longitudinal and survival processes. Therefore, the following parameter interpretations were 

mainly based on the MCDP+RE model when both dementia and death were combined as a 

composite time-to-event outcome (Table 10). Longer education duration was associated with 

higher cognitive measures in both the memory and language domains ( 𝜁) = 0.32, 95% CI: 0.28 

to 0.37; 𝜁' = 0.15, 95% CI: 0.12 to 0.19). On average, women had a smaller disease age 
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compared to men given the same actual chronological age (𝛽 = −2.11, 95% CI: -3.79 to -0.49). 

The standard deviation for the random latent time shift was estimated to be 8.45 years, implying 

substantial differences between actual chronological age and disease age for the FHS 

participants. Consequently, participants with similar actual chronological ages during follow-up 

may exhibit considerable variation in disease stages. The random intercepts showed a moderate 

positive relationship between the baseline values of the two cognitive domains, with an estimated 

correlation coefficient 𝜌+ of 0.57. 

In the survival sub-model, women had a smaller hazard of developing dementia or death 

than men after the adjustment for other factors (HR=0.58, 95% CI: 0.41 to 0.81). Longer 

education duration lowered the risk of dementia or death, although this association was not 

significant (HR=0.98, 95% CI: 0.92 to 1.03). In addition, the significant positive association 

between the random latent time shift and the hazard of dementia or death confirmed that 

dropouts due to dementia or death represented informative missingness. Specifically, for two 

participants with the same actual chronological age, sex, and education level, the one with a 

greater disease age faced a higher hazard of informative dropout (HR=1.17, 95% CI: 1.13 to 

1.21). There was no evidence of a significant association between the random intercept and the 

hazard of dementia or death (HR=0.93, 95% CI: 0.65 to 1.36). When the data was modeled by 

the MCDP+CV model, the significant negative association between the current value of 

cognitive measures and the hazard of dropout also indicated informative missingness in the 

longitudinal measures, consistent with the findings in the MCDP+RE model.  

Model comparison 

The WAIC values suggested that the models that account for informative missingness 

outperformed the separate models, with the MCDP+RE model showing the best predictive 
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accuracy in all three scenarios. The MCDP+RE model showed the most pronounced decreasing 

trend for both cognitive domains in all three scenarios (Figure 9), while the other two models 

produced more optimistic estimates with slower rates of decline in their trajectories. Note that 

when either dementia or death was considered as the only survival outcome, three models 

demonstrated similar mean trajectories for disease progression. Incorporating both dementia and 

death as outcomes caused the mean disease progression trajectories in the MCDP+RE model to 

diverge more substantially from the other two models, due to an increase in the event rate. These 

findings were consistent with the simulation results. 

6. Discussion 

In this project, we developed a joint model that integrates a multivariate nonlinear disease 

progression model with latent time shifts. To evaluate the model’s capacity to handle informative 

dropout in longitudinal data, we compared joint models with two association structures and the 

separate models that ignore informative missingness under a range of simulation scenarios. 

Specifically, we considered the joint models that account for informative dropout by modeling 

the associations between the longitudinal and dropout processes, i.e., the shared random effect 

structure and the current value structure. We also conducted the separate models that ignored 

informative dropout, where the longitudinal and dropout processes were modeled independently. 

Our simulation showed that all three models incorporating latent time shifts can realign 

individual trajectories along a new global disease timeline. In addition, our proposed joint 

models can effectively account for informative dropout in the longitudinal data compared to the 

disease progression model in the separate models. Specifically, in the presence of informative 

dropout, the joint models with correctly specified association structures outperformed the others, 

providing the lowest bias and the most precise estimates of mean disease progression trajectories 
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and latent time shifts. Even the joint model with a misspecified association structure captured the 

relationship between two processes and yielded intermediate results, offering advantages over 

separate models. Compared to the joint models, the separate models tended to provide over-

optimistic estimates with respect to mean disease progression. Although varying the sample size, 

the span of latent time shifts, or the event rate could influence model performance, the 

improvement of joint models over separate models consistently remained robust. When dropout 

was unrelated to the longitudinal data, i.e., non-informative, all joint and separate models 

performed similarly, showing unbiased results.  

 The application using NP test scores and time to dementia or death in the FHS Offspring 

cohort confirmed our simulation findings regarding model comparison. WAIC values suggested 

that the relationship between longitudinal cognitive measures and time to dementia or death may 

resemble a shared random effect association structure. The significant non-zero association 

parameters in the joint models confirmed that dropouts due to dementia or death were 

informative, aligning with the findings from WAIC values. Furthermore, we showed sex 

influenced the latent time shift and the risk of dementia or death, while education was associated 

with the average cognitive levels.  

  Our findings were consistent with prior studies. First, most of the previous studies on 

joint models, both linear and nonlinear, showed that joint models outperformed separate models 

in the presence of informative dropout [24-28, 30, 32], which was consistent with our key 

findings. Second, the mix-effects model in the separate models that ignored informative dropout 

showed over-optimistic estimates for the disease progression trend, corresponding to conclusions 

drawn in previous studies [26-28]. It was shown that subjects who dropped out due to 

excessively high or low longitudinal measures were downweighed during the estimation 
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procedure, so they contributed weakly to the likelihood function in the mixed-effects models. For 

example, mixed-effects models for cognitive decline might overestimate the rate of disease 

progression over time. This overestimation occurs because participants with lower cognitive 

scores, who are more likely to drop out, have a reduced influence on the model's estimation 

process due to informative missingness. Therefore, failing to simultaneously consider the 

dropout process can lead to biased. Third, applications of joint models in the dementia studies 

revealed that the hazard of dementia or death was associated with the true unobserved values of 

cognitive measures [29, 30]. This finding corresponded to the results in our joint models with the 

current value structure. 

 Our study has some limitations. First, the MCDP model assumes an exponential curve for 

longitudinal cognitive measures, which represents a monotonic decreasing trend over time. 

However, this assumption may not apply to short-term observations, as participants can show 

cognitive improvements within months [48]. Patients can revert from mild cognitive impairment 

(MCI) to normal cognition and then transition back to MCI in the short term. Consequently, the 

assumption of a monotonic exponential curve fits our data, which were collected every four to 

five years, but may not generalize well to short-term scenarios. Second, we considered time to 

dementia or death as a composite survival outcome instead of modeling them as competing or 

semi-competing risks. Previous studies showed the competing risks joint model that 

distinguishes between two causes of dropout may outperform the standard joint model that treats 

all the dropouts due to different causes equally in general [26, 30, 32]. However, this 

improvement is most pronounced only when two types of dropouts have substantially different 

relationships with the longitudinal measures, e.g., one type of dropout is informative and the 

other one is non-informative, or two competing risks are both informative but oppositely 
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associated with the longitudinal measures. In our application, both dropouts are informative and 

exhibit the same directionality for their associations with the longitudinal process. Thus, ignoring 

competing risks in the joint model estimation has minimal influence on our conclusions.  

 Our study has come strengths. First, our proposed joint model is an extension of a 

previously proposed multivariate nonlinear mixed-effects model with latent time shifts for 

disease progression [3]. To the best of our knowledge, this is the first integration of such a 

disease progression model into a joint model framework. Previous disease progression models 

with latent time shifts treat missing data as MAR, leading to potential biased results. Our 

proposed joint model corrects the bias by using the latent time shifts as a tool to simultaneously 

model the dropout process. Second, we compared different association structures within the joint 

model framework with the separate models of longitudinal and dropout processes across various 

data structure scenarios. Few prior studies compared the performance of multivariate nonlinear 

joint models using both shared random effect and current value association structures. Third, 

previous disease progression models with latent time shifts were primarily applied to specific 

disease cohorts, like the Alzheimer's Disease Neuroimaging Initiative (ADNI) [3, 9, 49]. In 

contrast, we evaluated our model using a community cohort, offering new insights into dementia 

progression, including Alzheimer's disease, within a general population. 

 Our study can be extended in the following ways. First, our proposed joint model can be 

further adapted to account for different shapes of dementia progression curves, such as sigmoid 

or quadratic functions, for conducting sensitivity analyses [10]. Other models have postulated a 

changepoint during disease progression as an alternative to describe the accelerated rate of 

cognitive decline at a later disease stage [50-52]. Second, our model can be extended to 

distinguish dropouts due to dementia, death, and other causes by treating them as competing 
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risks or semi-competing risks. Joint models with distinct reasons for dropout not only correct 

bias in the longitudinal process but also assess the impact of longitudinal process on each 

dropout type [26, 30, 32]. Third, in aging research, dementia onset is usually treated as interval-

censored [12, 53]. Our joint model can be extended to account for interval censoring, which may 

help reduce bias in estimating both longitudinal and dropout processes. For example, 

Gueorguieva et al. (2012) considered interval-censored dropout times in a joint model for 

competing risks and distinguished various dropout causes [26]. 

 In conclusion, we incorporated a multivariate nonlinear mixed-effects model for disease 

progression with latent time shifts into a joint model framework. To handle informative 

missingness in the longitudinal data, we evaluated and compared different association structures 

within the joint models. In addition, we compared the joint models with the separate models that 

ignored informative dropout. We demonstrated the improvement of joint models over separate 

models across various scenarios. Future extensions could explore alternative parametrizations of 

the longitudinal sub-model and incorporate competing risks with interval censoring into the 

survival sub-model. 
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Tables and Figures 

Table 1. Parameter settings for all 6 scenarios in the simulation study. 
Parameters Scenario 1 Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Longitudinal   
N sample 
size 

1000 1000 1000 500 1000 1000 

𝑙) -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 
𝑔) 2.15 2.15 2.15 2.15 2.15 2.15 
𝑣) 0.3 0.3 0.3 0.3 0.3 0.3 
𝑙' -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 
𝑔' 2.1 2.1 2.1 2.1 2.1 2.1 
𝑣' 0.15 0.15 0.15 0.15 0.15 0.15 
𝛽 -2 -2 -2 -2 -2 -2 
𝜎(  8.5 8.5 8.5 8.5 8.5 4 
𝜎+) 0.45 0.45 0.45 0.45 0.45 0.45 
𝜎+' 0.5 0.5 0.5 0.5 0.5 0.5 
𝜌+  0.6 0.6 0.6 0.6 0.6 0.6 
𝜎) 0.3 0.3 0.3 0.3 0.3 0.3 
𝜎' 0.2 0.2 0.2 0.2 0.2 0.2 

Survival   
𝑏 4.9 2.9 3.7 4.9 5 4.9 
𝛾- -16 -10 -12 -16 -15 -16 
𝛾) -0.5 -0.2 -0.5 -0.5 -0.5 -0.5 
𝛾' -0.05 -0.05 -0.1 -0.05 -0.05 -0.05 
𝛼) 0.2 -1 NA 0.2 0.2 0.2 
𝛼' -0.1 NA NA -0.1 -0.1 -0.1 

Scenario 1, shared random effect association structure; Scenario 2, current value association 
structure; Scenario 3, separate (independent) association structure; Scenario 4, shared random 
effect association structure with N=500; Scenario 5, shared random effect association structure 
with a higher event rate of 50%; Scenario 6, shared random effect association structure with a 
smaller span of latent time shift of 4. 
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Table 2. Simulation results for Scenario 1 (shared random effect association structure). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
MCDP+RE, the joint model with the shared random effect association structure; MCDP+CV, the 
joint model with the current value association structure; Separate, the separate models of the 
MCDP model and the proportional hazards model. 
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Table 3. Simulation results for Scenario 2 (current value association structure). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
MCDP+RE, the joint model with the shared random effect association structure; MCDP+CV, the 
joint model with the current value association structure; Separate, the separate models of the 
MCDP model and the proportional hazards model. 
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Table 4. Simulation results for Scenario 3 (separate data structure). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
MCDP+RE, the joint model with the shared random effect association structure; MCDP+CV, the 
joint model with the current value association structure; Separate, the separate models of the 
MCDP model and the proportional hazards model. 
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Table 5. Simulation results for Scenario 4 (shared random effect structure with N=500). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
MCDP+RE, the joint model with the shared random effect association structure; MCDP+CV, the 
joint model with the current value association structure; Separate, the separate models of the 
MCDP model and the proportional hazards model. 
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Table 6. Simulation results for Scenario 5 (shared random effect structure with 𝝈𝜹=4). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
MCDP+RE, the joint model with the shared random effect association structure; MCDP+CV, the 
joint model with the current value association structure; Separate, the separate models of the 
MCDP model and the proportional hazards model. 
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Table 7. Simulation results for Scenario 6 (shared random effect structure with 50% event 
rate). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
MCDP+RE, the joint model with the shared random effect association structure; MCDP+CV, the 
joint model with the current value association structure; Separate, the separate models of the 
MCDP model and the proportional hazards model. 
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Table 8. Real data application results when survival outcome is dementia onset. 

 
True, parameter true value; Mean, posterior mean; Lower: lower bound of 95% credible interval; 
Upper: upper bound of 95% credible interval; MCDP+RE, the joint model with the shared 
random effect association structure; MCDP+CV, the joint model with the current value 
association structure; Separate, the separate models of the MCDP model and the proportional 
hazards model. 
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Table 9. Real data application results when survival outcome is death. 

 
True, parameter true value; Mean, posterior mean; Lower: lower bound of 95% credible interval; 
Upper: upper bound of 95% credible interval; MCDP+RE, the joint model with the shared 
random effect association structure; MCDP+CV, the joint model with the current value 
association structure; Separate, the separate models of the MCDP model and the proportional 
hazards model. 
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Table 10. Real data application results when survival outcome is the composite of dementia 
and death. 

 
True, parameter true value; Mean, posterior mean; Lower: lower bound of 95% credible interval; 
Upper: upper bound of 95% credible interval; MCDP+RE, the joint model with the shared 
random effect association structure; MCDP+CV, the joint model with the current value 
association structure; Separate, the separate models of the MCDP model and the proportional 
hazards model. 
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Figure 1. Simulated trajectories with years since baseline and adjusted disease time. The 
three panels illustrate cognitive score trajectories, all using cognitive score as the y-axis. The left 
panel plots trajectories against the original years since baseline (𝑡"#), showing all participant 
data. The middle panel adjusts the x-axis to disease time (𝑡"# + 𝛽𝑋" + 𝛿") and realigned all 
trajectories in the first panel based on this adjusted timeline. Blue and red lines/dots depict 
participants with 𝑋" = 1 and 𝑋" = 0, respectively. The solid black curve in this panel marks the 
predicted mean trajectory using the adjusted disease time. The right panel shows trajectories for 
two specific individuals against disease time. For one individual, his/her blue solid trajectory 
shifts to a dashed trajectory after adjusting for a fixed time shift (𝛽𝑋"), then to a dotted trajectory 
with a further random time shift (𝛿"), 𝑖 = 1. Similarly, the red solid trajectory for another 
individual shifts left to a dotted line after accounting for a random time shift (𝛿") only, 𝑖 = 2. 
Vertical shifts are the deviations of each individual trajectories from the predicted mean 
trajectory, which is not shown in the figures. 
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Figure 2. The joint model framework. 𝑌)" and 𝑌'" are two longitudinal measures. 𝑚)"(𝑡) and 
𝑚'"(𝑡) are the true unobserved values for two longitudinal measures. 𝛿" is the random latent time 
shift and 𝑋" is a vector of covariates. 𝑏)" and 𝑏'" are correlated random intercepts for the first and 
second longitudinal measures. ℎ"(𝑡) denotes the hazard function for the survival process. Both 
longitudinal and survival processes are linked by either random effects (solid blue lines for the 
shared random effect model) or the true unobserved values of longitudinal measures (dashed blue 
lines for the current value model).  
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Figure 3. One simulated example of trajectories on the original time and disease time. The 
eight panels illustrate the simulated trajectories for two cognitive measures. The y-axis in each 
panel denotes the value of cognitive measures, and the x-axis represents the simulated time. The 
two panels in the first column denotes the trajectories aligned on the original timescale. The 
other panels represent the trajectories that are realigned by fitting different models with latent 
time shifts. MCDP+RE, the joint model with the shared random effect association structure; 
MCDP+CV, the joint model with the current value association structure. 
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Figure 4. Mean disease progression trajectories fitted by joint models and separate models 
in Scenarios 1, 2, and 3. The panels in the left, middle and right columns represent the mean 
disease trajectories in Scenario 1, 2, and 3, respectively. The y-axis in each panel represents the 
mean values of cognitive measure, and the x-axis denote the disease time estimated from the 
models. Four curves in each panel show trajectories fitted by different models: MCDP+RE 
(blue), MCDP+CV (orange), separate models (green), true trajectories (red). Note that if a curve 
overlaps with the true trajectory, only the red curve representing the true trajectory is displayed. 
Scenario 1, shared random effect association structure; Scenario 2, current value association 
structure; Scenario 3, separate (independent) association structure; MCDP+RE, the joint model 
with the shared random effect association structure; MCDP+CV, the joint model with the current 
value association structure; Separate, the separate models of the MCDP model and the 
proportional hazards model. 
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Figure 5. Evaluation metrics of latent time shift for three models in Scenarios 1, 2, and 3. 
Each of the 9 panels in this figure displays a density plot for one of the evaluation metrics across 
all simulations. The columns in the figure correspond to different scenarios: the left column 
shows density plots for Scenario 1, the middle column for Scenario 2, and the right column for 
Scenario 3. In each scenario, the top, middle, and bottom panels display the distributions for 
RMSE, MDAE, and correlation, respectively. Scenario 1, shared random effect association 
structure; Scenario 2, current value association structure; Scenario 3, separate (independent) 
association structure; MCDP+RE, the joint model with the shared random effect association 
structure; MCDP+CV, the joint model with the current value association structure; Separate, the 
separate models of the MCDP model and the proportional hazards model; RMSE, root-mean-
square-error; MAD, median absolute deviations.  
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Figure 6. Mean disease progression trajectories fitted by joint models and separate models 
in Scenarios 4, 5, and 6. The panels in the left, middle and right columns represent the mean 
disease trajectories in Scenario 1, 2, and 3, respectively. The y-axis in each panel represents the 
mean values of cognitive measure, and the x-axis denote the disease time estimated from the 
models. Four curves in each panel show trajectories fitted by different models: MCDP+RE 
(blue), MCDP+CV (orange), separate models (green), true trajectories (red). Note that if a curve 
overlaps with the true trajectory, only the red curve representing the true trajectory is displayed. 
Scenario 4, shared random effect association structure with N=500; Scenario 5, shared random 
effect association structure with 𝜎( = 4; Scenario 6, shared random effect association structure 
with 50% event rate; MCDP+RE, the joint model with the shared random effect association 
structure; MCDP+CV, the joint model with the current value association structure; Separate, the 
separate models of the MCDP model and the proportional hazards model. 
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Figure 7. Evaluation metrics of latent time shift for three models in Scenarios 4, 5, and 6. 
Each of the 9 panels in this figure displays a density plot for one of the evaluation metrics across 
all simulations. The columns in the figure correspond to different scenarios: the left column 
shows density plots for Scenario 4, the middle column for Scenario 5, and the right column for 
Scenario 6. In each scenario, the top, middle, and bottom panels display the distributions for 
RMSE, MDAE, and correlation, respectively. Scenario 4, shared random effect association 
structure with N=500; Scenario 5, shared random effect association structure with 𝜎( = 4; 
Scenario 6, shared random effect association structure with 50% event rate; MCDP+RE, the joint 
model with the shared random effect association structure; MCDP+CV, the joint model with the 
current value association structure; Separate, the separate models of the MCDP model and the 
proportional hazards model; RMSE, root-mean-square-error; MAD, median absolute deviations.  
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Figure 8. Cognitive trajectories on the original time and disease time in the FHS. The eight 
panels illustrate the trajectories for the language and memory z-scores in the FHS data. The y-
axis in each panel denotes the value of cognitive measures, and the x-axis represents actual 
chronological age (first column) and disease age (other columns). The two panels in the first 
column denotes the trajectories aligned on the original actual chronological age. The other panels 
represent the trajectories that are realigned by fitting different models with latent time shifts. 
MCDP+RE, the joint model with the shared random effect association structure; MCDP+CV, the 
joint model with the current value association structure; Separate, the separate models of the 
MCDP model and the proportional hazards model; FHS, Framingham Heart Study. 
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Figure 9. Mean disease progression trajectories fitted by joint models and separate models 
in the FHS. The left, middle, and right columns show the mean disease trajectories in scenarios 
where dropout is modeled as informative due to dementia, death, and both dementia and death, 
respectively. The y-axis in each panel represents the mean values of cognitive measure, and the 
x-axis denote the disease time estimated from the models. Three curves in each panel show 
trajectories fitted by different models: MCDP+RE (blue), MCDP+CV (orange), and separate 
models (green). MCDP+RE, the joint model with the shared random effect association structure; 
MCDP+CV, the joint model with the current value association structure; Separate, the separate 
models of the MCDP model and the proportional hazards model. 
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