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Abstract. Occupational and residential segregation and other manifestations of social
and economic inequity drive of racial and socioeconomic inequities in infection, severe dis-
ease, and death from a wide variety of infections including SARS-CoV-2, influenza, HIV,
tuberculosis, and many others. Despite a deep and long-standing quantitative and qualita-
tive literature on infectious disease inequity, mathematical models that give equally serious
attention to the social and biological dynamics underlying infection inequity remain rare.
In this paper, we develop a simple transmission model that accounts for the mechanistic
relationship between residential segregation on inequity in infection outcomes. We con-
ceptualize segregation as a high-level, fundamental social cause of infection inequity that
impacts both who-contacts-whom (separation or preferential mixing) as well as the risk of
infection upon exposure (vulnerability). We show that the basic reproduction number, ℛ0,
and epidemic dynamics are sensitive to the interaction between these factors. Specifically,
our analytical and simulation results and that separation alone is insufficient to explain
segregation-associated differences in infection risks, and that increasing separation only
results in the concentration of risk in segregated populations when it is accompanied by
increasing vulnerability. Overall, this work shows why it is important to carefully consider
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the causal linkages and correlations between high-level social determinants - like segre-
gation - and more-proximal transmission mechanisms when either crafting or evaluating
public health policies. While the framework applied in this analysis is deliberately simple,
it lays the groundwork for future, data-driven explorations of the mechanistic impact of
residential segregation on infection inequities.

1 Introduction

Occupational and residential segregation, racial capitalism (1), mass incarceration (2) and
other manifestations of social and economic inequity (3) have been definitively shown to drive
of racial and socioeconomic inequities in infection, severe disease, and death from a wide variety
of infections including SARS-CoV-2 (4,5), seasonal and pandemic influenza (6), tuberculosis
(7,8), STIs (9) and many others.

Despite a deep and long-standing quantitative and qualitative literature on infectious disease
inequity, mathematical models that give equally serious attention to the social and biological
dynamics underlying infection inequity have been in short supply. This has had serious con-
sequences for the ability of public health authorities to anticipate and respond to infection
inequality: For example, a suite of mathematical modeling tools was ready to be pressed into
action at the beginning of the COVID-19 pandemic. But the absence of models ready to ad-
dress the inequities in SARS-CoV-2 infection, severe disease and death that emerged almost
immediately highlighted a large and dangerous blindspot in pandemic preparedness, as well as
in the day-to-day application of transmission models in infectious disease epidemiology (3).

While the uptick in equity-oriented modeling in the wake of the pandemic is a positive develop-
ment (10), it is essential that these models treat social mechanisms with the same theoretical
and empirical rigor that they bring to biological ones (11). Otherwise, we risk encoding old
assumptions with deep roots in scientific racism, e.g. about increased susceptibility of Black
people to infection and death from a range of infections due to genetic inferiority, poor adap-
tation to urban environments (7), and more recently, an assumed high prevalence of comorbid
infections related to stigmatized health behaviors (12) rather than differential exposure asso-
ciated with segregation and other forms of discrimination (14).

The increased influence and high visibility of infectious disease modeling as a field during
COVID-19 also creates the risk of ‘engineer’s syndrome’ in which perceived success in solving
one set of problems increases our confidence - and hubris - with respect to solving other ones
for which our existing tools are ill-suited. The risk of harm from this - even if well-intended
- is very real: In addition to providing an inaccurate characterization of population-wide and
group-specific disease dynamics, models informed primarily by bias-inflected ‘common sense’
about the causes of infection inequity risk further stigmatizing the communities they purport
to be characterizing and, by implication, are trying to help (16).
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1.1 Modeling the fundamental causes of infection inequity

A principled applciation of fundamental cause theory (FCT) (17) to the problem of infectious
disease transmission has been suggested by multiple authors as a useful theoretical anchor for
mathematical models of infectious disease inequity (3). In this framework, phenomena such as
socioeconomic inequality, social stigma (19), structural racism (20), and residential segregation
(21) function as high-level ‘fundamental’ causes of infection inequity that orchestrate the down-
stream, more-proximal processes of exposure, infection, illness, and death (17). The present
analysis represents an effort to employ the ‘systems of exposure’ approach to FCT advocated
for by Riley (22) and others in the context of infectious disease transmission modeling.

Residential segregation provides a good starting point for developing better equity-oriented
transmission models for a number of reasons: 1) Segregation is a well-recognized driver of
health inequity, 2) There is a deep social science literature on the topic, and 3) Segregation is
understood to have impacted both risks of transmission and access to care, testing, and other
relevant services during COVID-19 pandemic. In addition, from an intervention perspective,
residential segregation is an important and modifiable dimension of race/ethnic and economic
inequity (23) in infection risk that can be addressed by activism and public policy.

Despite a dearth of fully-fledged models linking residential segregation to infection inequity,
mechanistic linkages between segregation and infection inequity have been explored in great
depth by many other authors. For example, in his paintstaking dissection of racial inequity
in Tuberculosis infection and mortality in Jim Crow era Baltimore, the medical historian
Samuel Kelton Roberts (7) illustrated the multiplex connections between institutionalized
segregation and racism and TB infection and death. This included not only differential rates
of exposure and treatment by the medical establishment, but also the wholesale manipulation
of the housing code to exclude the types of dwellings Black residents were consigned to from
regulations to limit crowding, and improve ventilation and fire safety.

In an influential paper, Acevedo-Garcia (24) framed these relationships in terms of the mea-
sures of residential segregation typically used in social demography and hypothesized rela-
tionships between various measures of residential segregation and the mechanisms by which
segregation impacts infectious disease transmission. In the conceptual model originally out-
lined in (24) the world is broken into two groups: an advantaged majority and a disadvantaged
minority. This generic framing is important. Although residential segregation in the United
States is often imagined in racial or socioeconomic terms, in the context of infectious disease
transmission, we posit that the literature on residential segregation should inform our think-
ing about patterns of contact and infection risk in any setting where there are two or more
interacting populations with differing rates of within and between-group contact.

Owing to the long history of institutionalized segregation in the United States from the Jim
Crow era to 20th-century redlining and racial covenants, and their ongoing present-day im-
pacts (25), in the U.S. residential segregation is often reflexively conceptualized primary in
terms of race and ethnicity. However, segregation can - and does - occur globally along many
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other dimensions including religion (26) or at the intersection of class and race (27). In con-
texts of large-scale, institutionalized segregation, such as the Jim Crow-era United States,
apartheid-era South Africa (28) or present-day occupied Palestine, patterns of high-intensity
intra-group exposure are driven by concrete policies and physical infrastructure. But these
mechanisms may also be more informal, reflecting the persistent physical and social residues
of institutionalized discrimination.

1.2 Residential segregation as a bundle of risks

In the essay Race as a Bundle of Sticks, Sen & Wasow (23) outline a theoretical and method-
ological approach to capturing the causes of racial differences in political behavior from a
constructivist perspective, i.e. one in which the ‘effects’ of race as not located in the racial cat-
egory itself (i.e. the ‘essentialist’ perspective) but instead in the constellation of socio-structural
processes that are attached to race. Our goal is to apply this line of thinking to residential
segregation.

The diagram in Figure 1 (adapted from (24)), illustrates how high-level causes like structural
racism and discrimination produce residential segregation. Segregation is then hypothesized
to drive infection inequity via its impact on multiple more proximal mechanisms impacting
the on-the-ground transmission proces. In this analysis we examine the individual and joint
implications of two of the most critical dimensions of residential segregation on the social
patterning of acute infection risk. Specifically, we focus on:

1. Spatial separation: This is often used as a proxy measure of who-contacts-whom.
For example, individuals living in the same neighborhood are often assumed to contact
each other at a higher rate than those living in different neighborhoods. During the
COVID-19 pandemic, mobility data were used to illustrate in more detail the relationship
between residential location and exposure risk in the community. For the purposes of
this theoretical analysis, we will conflate spatial location and group-specific contact.

2. Vulnerability: Our operationalization of vulnerability is meant to capture an increased
risk of infection upon exposure for individuals belonging to a marginalized or disadvan-
taged group that is subject to segregation. This stylized representation is meant to
reflect increased intensity of exposure, e.g. owing to living in crowded or poorly venti-
lated housing, working in high-exposure settings (e.g. home healthcare, food service),
and potentially increased susceptibility to infection due to exposure to environmental
contaminants, household and workplace environments characrerized by crowding and
poor ventilation, or due to comorbid health conditions that may increase vulnerability.

The specific goal of the modeling exercise in this paper is to understand how these high-level
social mechanisms, working separately and in concert with each other, drive inequity in in-
fection outcomes. Capturing the interaction between vulnerability and separation is essential.
This is because a key tenet of FCT is that the intermediary mechansisms driving inequality in

4

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309541doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309541
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Flow diagram relating the indirect impact of residential segregation on infection
inequity via specific dimensions of segregation. Solid and dashed lines represent hy-
pothesized mechanisms included and not included in the present model, respectively.

disease outcomes will necessarily be correlated with each other because they share a common
upstream cause, i.e. structural racism. In other words, we should generally expect increased
vulnerability to accompany a higher degree of spatial separation, even when one doesn’t di-
rectly cause the other. For this reason, the point of studying their independent effects on
group-specific and population-wide risks is to understand the relative contribution of each
sub-mechanism to the total effect of residential segregation on infection inequity.

We develop a more comprehensive understanding of the relationships between these basic
mechanisms and infection inequity by interrogating a mathematical model connecting the
mechanisms illustrated in Figure 1. It is important to recognize, however, that the model
discussed in this analysis represents a small subset of the processes that generate differential
infection outcomes, not to mention rates of severe disease and death(13).

2 Methods

In this section, we will first describe the mechanistic transmisison model at the heart of our
analysis, and then the analytic and simulation-based tools we will use to analyze the behavior
of this model.

2.1 Transmission Model

We adapted the model used by Ma et al. (5) to analyze race-ethnic differences in early COVID-
19 mortality in the New York City area. This model is based on the preferential mixing model
originally described by Hethcote (29). In our version of this model, we define a parameter 𝜖
which varies from 0 to 1 and represents the proportion of time an individual spends mixing
randomly with all members of the population (including members of their own group) as
opposed to with only members of their own group. In our implementation of this model,
𝜖 = 0 is equivalent to a homogeneously mixed population and 𝜖 = 1 is analogous to a fully
segregagted one, i.e. where thereis no crossover in contact beteween the population groups.
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Spatial separation. The preferential mixing parameter, 𝜖 can be understood as being anal-
ogous to the index of dissimilarity, which is often used to measure the intensity of residential
segregation. Dissimilarity is typically understood as a measure of evenness in the distribution
of individuals (or their attributes) across geographic areas. A low value of dissimilarity, e.g. 0,
indicates that no one needs to move to a new location in order to facilitate mixing proportional
to the size of each population group. By contrast, a dissimilarity value close to 1 indicates that
nearly all of the individuals in one of the groups would have to move to another location in
order to acheive an even, proportional distribution of individual attributes across locations.

Vulnerability. The relative vulnerability of the minority group as compared to the majority
group is represented by the parameter 𝜌, which scales the force of infection experienced by
members of the disadvantaged group upwards. This parameter is allowed to take on values ≥
1, with larger values representing increased vulnerability to infection.

We explored two specifications of vulnerability: One in which individuals are only more vul-
nerable to exposures to other members of the minority group, and another in which minority
group members are more vulnerable to all exposures regardless of their source (i.e. minority or
majority group). Because there were only very small quantitative differences in our measured
outcomes for these different model specifications, we focus here on the latter model - increased
vulnerability to all contacts - for the sake of clarity. Equation 1 shows how the mechanisms
of spatial separation and vulnerability are combined to calculate the force of infection.

Equation 2 below defines a susceptible-infected-susceptible (SIS) differential equation system
in which the rates of infection for each group are a function of the preferential mixing parameter
(𝜖) and relative vulnerability to infection (𝜌):

Table 1: Key model parameters

Parameter Description Values
𝛽 Transmission rate > 0
𝛾 Recovery rate > 0
𝜌 Relative vulnerability ≥ 1
𝜖 Preferential mixing [0,1]

First, we will write the force of infection for each group (𝜆1 & 𝜆2) as follows:

𝜆1 = 𝛽𝜌𝑆1 (𝜖 𝐼1
𝑁1

+ (1 − 𝜖)𝐼1 + 𝐼2
𝑁 )

𝜆2 = 𝛽𝑆2 (𝜖 𝐼2
𝑁2

+ (1 − 𝜖)𝐼1 + 𝐼2
𝑁 )

(1)

We can then include these in an SIS model framework, assuming equal durations of infectious-
ness for each group:

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309541doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309541
http://creativecommons.org/licenses/by-nc/4.0/


𝑑𝑆1
𝑑𝑡 = −𝜆1 + 𝛾𝐼1

𝑑𝑆2
𝑑𝑡 = −𝜆2 + 𝛾𝐼2

𝑑𝐼1
𝑑𝑡 = 𝜆1 − 𝛾𝐼1

𝑑𝐼2
𝑑𝑡 = 𝜆2 − 𝛾𝐼2

(2)

We utilize an SIS-type system to capture trasnmission dynamics of a stylized endemic infection
in which reinfection is possible. This is not meant to represent a specific pathogen, which would
have a more complex natural history, but instead to provide a way of thinking about how
the mechanisms associated with segregation impact the behavior of this commonly-employed
system.

3 Results

In this section, we first derive an expression for the basic reproduction number (ℛ0) as a
function of the key parameters of the model described in Equation 2. We then utilize numerical
and analytic results from the model to understand how different parameter combinations result
in differing distributions of infection between the minority (𝐼1) and majority (𝐼2) groups. All
symbolic analysis was conducted using sympy (30) in Python 3.11. Numerical simulation from
differential equation models was completed using scipy (31). Figures were generated using
plotnine 0.12.4 (32) for Python.

3.1 Deriving ℛ0 as a function of prferential mixing and differential vulnerability

In this section, we walk through the steps outlined by Brouwer (33) to derive an expression
for ℛ0 for this model using the next-generation method presented in (34) and others. We
will walk briefly through the steps outlined in (33), but interested readers should refer to this
manuscript for a detailed explanation.

Next generation method

We first note that ℱ = [𝜆1
𝜆2

] is the vector of rates at which previously uninfected people enter

the infectious compartments. Per the next generation method, we calculate the Jacobian of
ℱ as a function of 𝐼1 and 𝐼2 near the disease-free equilibrium.
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𝐹 = [𝜌𝛽𝑆1 (𝜖 1
𝑁1

+ (1 − 𝜖) 1
𝑁1+𝑁2

) 𝜌𝛽𝑆1 ((1 − 𝜖) 1
𝑁1+𝑁2

)
𝛽𝑆2 ((1 − 𝜖) 1

𝑁1+𝑁2
) 𝛽𝑆2 (𝜖 1

𝑁2
+ (1 − 𝜖) 1

𝑁1+𝑁2
)]

(𝑆1=𝑁1,𝑆2=𝑁2)

= [𝜌𝛽 (𝜖 + (1 − 𝜖) 𝑁1
𝑁1+𝑁2

) 𝜌𝛽 ((1 − 𝜖) 𝑁1
𝑁1+𝑁2

)
𝛽 ((1 − 𝜖) 𝑁2

𝑁1+𝑁2
) 𝛽 (𝜖 + (1 − 𝜖) 𝑁2

𝑁1+𝑁2
)]

= [𝜌𝛽 (𝜖 + (1 − 𝜖)𝜋) 𝜌𝛽(1 − 𝜖)𝜋
𝛽(1 − 𝜖)(1 − 𝜋) 𝛽 (𝜖 + (1 − 𝜖)(1 − 𝜋))]

(3)

where we define 𝜋 ∶= 𝑁1/(𝑁1+𝑁2) as the fraction of the population in Group 1. The (𝑖, 𝑗) entry
of the 𝐹 matrix is the rate at which an individual in group 𝑗 creates infections in group 𝑖. The
matrix 𝑉 , which here denotes the Jacobian of the recovery rates at the disease-free equilibrium,

is given simply by 𝒱 = [𝛾 0
0 𝛾]. The next generation matrix is defined as 𝐾 = 𝐹𝑉 −1, and the

entries (𝑖, 𝑘) of 𝐾 denote the expected number of new infections in group 𝑖 given an infected
individual in group 𝑘. Here,

𝐾 = [𝜌𝛽 (𝜖 + (1 − 𝜖)𝜋) /𝛾 𝜌𝛽(1 − 𝜖)𝜋/𝛾
𝛽(1 − 𝜖)(1 − 𝜋)/𝛾 𝛽 (𝜖 + (1 − 𝜖)(1 − 𝜋)) /𝛾] (4)

The basic reproduction number is defined as the spectral radius of 𝐾. For a two-group model,
we have:

ℛ0 = 1
2 (𝐾11 + 𝐾22) + 1

2
√(𝐾11 + 𝐾22)2 − 4 (𝐾11𝐾22 − 𝐾12𝐾21) (5)

For our model, we can write:

ℛ0 =𝛽
𝛾 (1

2 (𝜌𝜖 + 𝜌(1 − 𝜖)𝜋 + 𝜖 + (1 − 𝜖)(1 − 𝜋))

+ 1
2( (𝜌𝜖 + 𝜌(1 − 𝜖)𝜋 + 𝜖 + (1 − 𝜖)(1 − 𝜋))2

− 4 ((𝜌(𝜖 + (1 − 𝜖)𝜋)) (𝜖 + (1 − 𝜖)(1 − 𝜋)) − (𝜌(1 − 𝜖)𝜋) ((1 − 𝜖)(1 − 𝜋))) )
1/2

).

(6)

Although this expression appears quite complicated, we can build some intuition by looking
at some simplifying scenarios. First, suppose we have 𝜌 = 1 and 𝜖 = 0. In this instance,
there is no vulnerable group, and the groups are well mixed. Then, it is not surprising that
ℛ0 simplifies to 𝛽/𝛾. If 𝜌 = 1 but 0 < 𝜖 ≤ 1, we have a situation with assortative mixing

8

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309541doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309541
http://creativecommons.org/licenses/by-nc/4.0/


but no vulnerability, and ℛ0 again simplifies to 𝛽/𝛾. On the other hand, if we have 𝜌 > 1
but 𝜖 = 0, so that one group is more vulnerable, but the groups are well mixed, ℛ0 simplifies
to 𝛽(𝜌𝜋 + (1 − 𝜋))/𝛾 meaning that the basic reproduction number is an average of the basic
reproduction numbers in the two groups, weighted by population size. Thus, it is the particular
interaction of the vulnerability, social separation, and relative population size that leads to
the formulation of ℛ0.

It may be helpful to understand this interaction by looking at concrete example. Let us assume
a situation in which the groups mix roughly in proportion to their population share (𝜖 = 0) and
that group 1 has no extra vulnerability (𝜌 = 1). Let’s assume that the baseline transmission
rate is 𝛽 = 1.5, the recovery rate is 𝛾 = 1, and group 1 is 𝜋 = 1/4 of the population. The next
generation matrix now looks like this:

𝐾 = [0.38 0.38
1.13 1.13] .

These values mean that one infection, regardless of group (as the columns are identical),
will result in an expected 0.38 infections in Group 1 and 1.13 infections in Group 2. Here,
ℛ0 = 1.5 and the eigenvector of K correpsonding to ℛ0, (0.25, 0.75), indicates that infections
are generated proportionally to the population sizes of the groups.

Now, let’s assume that Group 1 is twice as vulnerable as Group 2 (𝜌 = 2). Then,

𝐾 = [0.75 0.75
1.13 1.13] .

Now, one infection is expected to generated 0.75 infected people of group 1 instead of 0.38.
Now, ℛ0 = 1.88 and the eigenvector of K correpsonding to ℛ0, (0.40, 0.60), indicates that
more infections are generated in group 1 than is proportional.

Now, let’s further assume that mixing is highly assortative (𝜖 = 0.9). Then, the balance of
new infections swings dramatically so that most new infections are within group 1.

𝐾 = [2.78 0.68
0.13 1.46] .

This change further increases ℛ0 = to 2.83, with an eigenvector of (0.92, 0.08) indicating that
over 90% of new infections occur among group 1.

Figure 2 shows these these relationships in more detail, over a wider range of parameter values.
Specifically, it illustrates how the value of ℛ0 changes for different values of 𝜌 and 𝜖 and how
these differences impact the relative distributions of infection at equilibrium for the minority
and majority groups respectively.
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Figure 2: ℛ0 and relative risk of infection at equilibrium as a function of preferential
mixing intensity (𝜖) and vulnerability to infection (𝜌). The top left-hand
panel illustrates the scaling of the population-level parameter ℛ0 as a function of
increasing segregation. The top right-hand panel illustrates scaling of the relative
risk of infection for the minority group vs. majority group as a function of increasing
segregation. The bottom two panels represent the absolute prevalence in each group
as a function of the model parameters. Each colored line represents a different value
of the vulnerability parameter 𝜌. The fixed parameters are 𝛽 = 1.5, 𝛾 = 1, 𝑁1 = 250
and 𝑁2 = 750.
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Figure 3: Phase diagrams illustrating several risk-inequity equilibrium scenarios un-
der highly segregated contact (𝜖 = 0.91). Each panel in the figure illustrates
the phase diagram for a different combination of the baseline transmission rate (𝛽)
and the vulnerability parameter (𝜌). The point in each panel shows the long-run
equilibrium values of the prevalence of infection among the minority group (I1) and
majority group (I2). Gray arrows indicate the direction and rate of change at each
set of initial conditions. The diagonal line represents a scenario of equality in infec-
tion: values below the diagonal represent greater risk in the minority group, while
values below indicate greater risk for the majority group.
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3.2 Characterizing the stability of inequity

One way to think about the role of residential segregation in an infectious disease system is
that it creates an equilibrium of inequity that a disease system returns to after some kind of
perturbation. This may occur in a situation such as an emerging infection in which initial
exposure is broad-based, but over time a transient period of shared risk converges towards a
state of more stable, long-run inequity. Figure 3 illustrates what this may look for different
combinations of input parameters.

For the panels in the left-hand column, risk is shared equally, with either only the disease-
free equilibrium available, equal per-capita prevalence (represented by the solid diagonal line).
The right-hand panels show a scenario of increased vulnerability (𝜌 > 1) for the minority
group. These show two important scenarios: In the topmost column, the outbreak goes from
subcritical to critical for the entire population, but the long-run risk is greater for the minority
than the majority group. In the bottom panel, an increase in vulnerability has a small effect on
prevalence for the majority but a large one for the minority, illustrating the way that changes
in vulnerability increase inequity for a given intensity of isolation and baseline transmission
risk.

3.3 Modeling residential segregation as a fundamental cause of infection
inequities

Until this point, we have examined the impacts of the two dimensions of residential segregation
outlined by Acevedo-Garcia (24) on infection inequity as independent parameters. However, if
we conceptualize the abstract process of segregation as a high-level fundamental cause which
drives these intermediary mechaisms, we should expect them to be correlated with each other.
In other words, fundamental cause theory would predict that, because they are both a function
of high-level structural discrimination, spatial separation and vulnerability to infection should
both increase as the intensity of the socio-legal regime of residential segregation increases.

In this section, we complete our analysis of segregation as a fundamental cause of infection
inequity by introducing a correlation between preferential mixing, 𝜖 and vulnerability, 𝜌, as
outlined in Figure 1. To do this, we introduce the parameter 𝜏 which represents the value of
𝜌 when 𝜖 = 1, i.e. vulnerability under maximal preferential mixing.

𝜌(𝜖) = 1 + (𝜏 − 1)𝜖 (7)

In the formulation in Equation 7, 𝜌 = 1 when 𝜖 = 0, up to 1 + 𝜏 when 𝜖 = 1, i.e. there is
no difference in vulnerability in the no-segregation scenario and it reaches its maximum under
full separation. It is important not to interpret the relationship in Equation 7 as a causal one,
i.e. in which physical separation induces greater vulnerability. Instead, we can think of the
effect of 𝜏 as inducing a correlation reflecting a scenario in which greater physical separation
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is associated with greater vulnerability to infection among the minority population, reflecting
the reality that separate is inherently unequal. Equation 8 shows the next-generation matrix
for this model. Notably, the infection risk for the minority group is now proportional to 𝜖2

when 𝜏 > 1.

𝐾 = [(1 + (𝜏 − 1)𝜖)𝛽 (𝜖 + (1 − 𝜖)𝜋) /𝛾 (1 + (𝜏 − 1)𝜖)𝛽(1 − 𝜖)𝜋/𝛾
𝛽(1 − 𝜖)(1 − 𝜋)/𝛾 𝛽 (𝜖 + (1 − 𝜖)(1 − 𝜋)) /𝛾 ] (8)

Equation 9 shows ℛ0 resulting from applying the two-group approach in Equation 5 to the
elements of Equation 8. In comparison to the derivation of ℛ0 in Equation 6 where 𝜖 and 𝜌
were allowed to vary independently, in the fundamental cause version of our model, ℛ0 = 𝛽/𝛾
only when 𝜏 = 1 or when 𝜏 > 1 and 𝜖 = 0, i.e. there is no segregation. While the expression
in Equation 9 is complex, the most important intuitive takeaway from it that ℛ0 is now a
non-linear, increasing function of the parameter governing preferential mixing, 𝜖.

ℛ0 =𝛽
𝛾 (1

2 ((1 + (𝜏 − 1)𝜖)𝜖 + (1 + (𝜏 − 1)𝜖)(1 − 𝜖)𝜋 + 𝜖 + (1 − 𝜖)(1 − 𝜋))

+ 1
2( ((1 + (𝜏 − 1)𝜖)𝜖 + (1 + (𝜏 − 1)𝜖)(1 − 𝜖)𝜋 + 𝜖 + (1 − 𝜖)(1 − 𝜋))2

− 4 (((1 + (𝜏 − 1)𝜖)(𝜖 + (1 − 𝜖)𝜋)) (𝜖 + (1 − 𝜖)(1 − 𝜋)) − ((1 + (𝜏 − 1)𝜖)(1 − 𝜖)𝜋) ((1 − 𝜖)(1 − 𝜋))) )
1/2

).

(9)

This is illustrated in Figure 4 which shows that in this setup, ℛ0 grows super-linearly with 𝜖,
and that the pace of this rise is faster for higher levels of 𝜏 . This figure also shows that the
relative risk of infection for the minority group grows rapidly with 𝜖 for all 𝜏 > 1. Notably,
however, with increasing segregation intensity, the burden of infection in the majority, advan-
taged group, eventually slows or declines, even as population-wide ℛ0 grows dramatically. This
finding echoes those from (5) and illustrates the critical importance of understanding these
dynamics from both a population-wide (ℛ0) and between-group distributional perspective.
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Figure 4: ℛ0 and relative risk of infection at equilibrium as a function of segregation
intensity in fundamental cause model. The top left-hand panel illustrates the
scaling of the population-level parameter ℛ0 as a function of increasing segregation.
The top right-hand panel illustrates scaling of the relative risk of infection for the
minority group vs. majority group as a function of increasing segregation. The
bottom two panels represent the absolute prevalence in each group as a function of
the model parameters. Note the curvilinear relationship between prevalence in the
majority group with increasing segregation. Each colored line represents a different
value of the maximum vulnerability, 𝜏 . For this figure, the parameters 𝛽 = 1.5,
𝛾 = 1, 𝑁1 = 250 and 𝑁2 = 750 are fixed.

4 Discussion

In the analysis above, we have formalized the mental model relating residential segregation to
infection inequities originally laid out by Acevedo-Garcia (24). The most important insight
from interrogating this conceptual model is that spatial separation and vulnerability act in-
teractively in the production of infection inequities associated at a high level with residential
segregation. Specifically, as the degree of vulnerablity increases, the share of new infections
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among the minority group at any level of isolation grows, again illustrating how these mecha-
nisms may work together to generate stark inequities in infection outcomes.

Figure 2 illustrates the role that preferential mixing and differential vulnerability may play in
shifting risks away from the majority to the minority group: As population-wide risk increases
with growing ℛ0, the share of new infections among the minority group grows rapidly. Notably,
for small differences in 𝜌, this relationship is non-linear and rapidly grows with preferential
mixing (𝜖).
When we examined vulnerability and separation as linked, correlated mechanisms driven by a
high-level fundamental cause, structural racism, we see that it is easy to recreate the strong
relationship between geographic separation and inequality that we might expect to see in
the real world. However, our results show how examining this association alone can mask
the role of differential vulnerability a key effect of segregation on infeciton inequities: As
illustrated in Figure 2, even in the absence of spatial separation, differences in vulnerability to
infection directly related to segregation, i.e. housing quality and crowding, healthcare access
and comorbid illnesses, can generate large inequities in rates of infection. This is important,
because the stereotypical understanding of residential segregation as a process resulting in
extreme physical separation does not apply in all contexts.

For example, the alley houses inhabited by many African American residents of Jim Crow Bal-
timore (7) directly abutted the homes of comparatively better-off White residents. In addition,
many alley house residents worked as servants and came into regular, direct, and sustained con-
tact with the White residents of the street-facing homes. Conventional segregation measures,
such as isolation and dissimilarity are likely to miss this type of relationship (35), and a simple
regression of infection inequity on such a metric would likely show a null association. Similarly,
a mathematical model in which the impacts of segregation are primarily operationalized via
differential contact between and within groups would have little to say about these risks. By
contrast, a multi-dimensional conceptualization of residential segregation as a ‘bundle of risks’,
like the one we have presented here, can easily accomodate this understanding.

With that said, the model we examined in this analysis is - deliberately - a drastic simpliciation
of a complex set of socio-biological problems. First, while the problem we discuss is highly
spatial in nature, our model does not explicitly represent spatial relationships between groups
or individuals. This was intentional, but necessarily limits the applicability of our model and
findings to real-world data. Future elaborations on this modeling framework that include
explicit spatial relationships will be important for understanding the generality of our key
findings. In addition, our analysis focuses in on only one part of the picture of infection
inequity. While segregation-associated drivers of exposure and infection are key drivers of
infection inequity (13), differential risks of severe disease, death, and long-term sequelae of
infection (e.g. long Covid) are also critically important manifestations of infection inequity
which much be addressed by mathematical models.

Going forward, exploration of more-detailed theoretical and empirical models is critical for
facilitating a deeper and principled integration of the theory and methods of infectious disease
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modeling with those of the social sciences. A particular area of need is for a more thorough
theoretical and data-driven accounting of the nature of vulnerability in the context of infectious
disease transmission. While in this analysis we have kept the concept of vulnerability broad
and schematic, more detailed attention is necessary to make this concept useful for modeling,
policy, and intervention.

This need is particularly urgent given the widespread use of summary metrics, such as the
Social Vulnerability Index, to explain spatial, socioeconomic and racial differences in infection
outcomes. While increased recognition of social vulnerability as a correlate of infection in-
equity is positive, when metrics such as SVI are treated as omnibus, black-box metrics, they
can end up obscuring rather than drawing attention to the mechanisms that drive inequity
in infection, illness and death (36). Figure 5 is a sketch of what a more comprehensive treat-
ment of vulnerability in empirical and theoretical models of infection inequity might look like.
Specifically, this conceptual model provides a view of how structural racism impacts specific
dimensions of vulnerability and the downstream impacts of these sub-mechanisms on infection
risk, severe disease, and death.

At the same time, the key insight of fundamental cause theory - that the effects of the high-
level, structural causes is to put affected populations ‘at risk of risk’, and that this key function
persists even when the intervening mechanisms change - underscores why it is important
to resist the temptation to enumerate all possible intervening mechanisms linking structural
racism and socioeconomic inequality to disparate infection outcomes. At the end of the day,
it is the high-level fundamental causes that orchestrate most of the intermediary mechanisms,
and an over-focus on these mechanisms can lead to ever-increasing model detail at the expense
of the clear insights provided by FCT.
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Figure 5: Expanded set of relationships between racism, residential segregation,
vulnerability, and inequity in infection and death. This diagram illustrates
specific factors that may be associated with vulnerability to infection and to poor
infection outcomes, and their relationship to structural racism.
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