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Abstract 

Dementia displays a gradual decline in cognitive abilities, often accompanied by an accelerated 

cognitive decline preceding diagnosis. Changepoint models are proposed to identify when 

cognitive decline accelerates and how it progresses. Joint models are developed to further 

account for dropout due to death or dementia. Cognitive decline in dementia patients may lead to 

complications that have an impact on their mortality. However, few joint models consider semi-

competing risks (i.e., dementia and death) by distinguishing transitions between various health 

states, i.e., dementia without death, death after dementia, and death without dementia. We 

proposed a joint model that accounts for both changepoints and semi-competing risks by 

combining a multivariate random changepoint model for cognitive decline with an illness-death 

model that estimates health state transitions. We examined the proposed model with two types of 

random changepoints: one with a smooth change and another with an abrupt change. We also 

explored a shared random effect structure and a current value structure that connect both 

longitudinal and survival processes. Two types of cohorts, i.e., a disease cohort and a community 

cohort, were generated to evaluate the models. Simulation studies showed our proposed models 

could effectively characterize the influence of the longitudinal process on health state transitions. 

In addition, the choice of changepoint formulations, association structures, and cohort types 

impacted model performance. Real data application in the Framingham Heart Study indicated 
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significant associations between changepoints in cognitive trajectories and health states for 

dementia and death. Our method provides a flexible framework to integrate longitudinal 

trajectories with changepoints and semi-competing risks. 
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1. Introduction 

Dementia refers to a category of brain disorders that are severe enough to interfere with daily 

activities. Alzheimer’s disease (AD) is the most prevalent form of dementia. In 2014, 

approximately 5 million adults aged 65 and older were estimated to have dementia. This number 

is projected to rise to nearly 14 million by 2060 [1]. People with dementia have problems with 

memory, attention, communication, reasoning, or visual perception beyond typical age-related 

changes in vision. Previous studies have shown that cognitive decline can occur before all the 

criteria for dementia diagnosis are met with considerable individual differences [2]. During the 

preclinical phase, changes are typically gradual and often challenging to distinguish from the 

minor declines that accompany normal aging. However, as dementia progresses, cognitive 

impairments become more apparent, and the rate of functional decline accelerates [3]. Therefore, 

early detection of cognitive change over the course of aging has been increasingly important in 

the prevention and treatment of dementia. Various statistical models have been proposed to better 

understand the shape of cognitive decline over time. These models also aid in detecting when the 

cognitive trajectories of subjects who develop dementia diverge from normally aging individuals. 

Linear mixed effects models have been applied to examine the cognitive decline and the risk 

factors associated with it. However, most of these models assume a constant rate of decline over 

time, partly due to the lack of sufficient individual-level longitudinal data [4-6]. To account for 

the nonlinear trend in the cognitive decline preceding dementia onset, mixed effects models with 

polynomial functions and changepoint models have been developed. Compared to polynomial 

functions models, changepoint models allow researchers to identify when  cognitive decline 

begins to accelerate [7]. In addition, changepoint models have the flexibility to capture 

variability in longitudinal cognitive measures as a function of age compared to polynomial 
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models [8]. As a result, studies using changepoint models are increasingly popular in aging 

research to estimate cognitive decline acceleration before dementia onset [9].  

Changepoint models with various assumptions have been proposed and applied in several 

medical areas. Hall et al. (2000) proposed a piecewise linear mixed model with a fixed 

changepoint using a profile likelihood approach to analyze longitudinal cognitive function data 

[10]. Subsequently, the piecewise model was extended to include a random changepoint based on 

a Bayesian approach by allowing the changepoint to vary from person to person [7]. Since the 

piecewise model with an abrupt transition around the changepoint may not accurately reflect 

real-world situations, changepoint models that enable a more flexible and smooth transition 

around the changepoint have been proposed. For example, Chiu et al. proposed the bent-cable 

model that specifies a smooth transition zone by adding a quadratic transition function around 

the changepoint [11]. Similarly, Hout et al. (2011) developed a smooth polynomial model by 

using a polynomial function to achieve continuity in the regions around the changepoint [12]. 

Besides, to utilize the patterns of cognitive decline across different domains, bivariate 

changepoint models have also been proposed by introducing a correlation structure between two 

longitudinal measures [7]. Additionally, researchers explored other extensions to handle diverse 

situations, including the use of multiple random changepoints [13, 14].  

In longitudinal cohort studies such as the Framingham Heart Study (FHS), both 

longitudinal repeated measures and time-to-event data are collected for each participant. For 

neurodegenerative disease progression, longitudinal measures include cognitive assessments 

such as neuropsychological (NP) tests and Mini-Mental State Examination (MMSE) scores, and 

time-to-event data include the date of death or dementia diagnosis [15, 16]. Typically, repeated 

measures and time-to-event data are modeled separately. For example, linear mixed effects 
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models or changepoint models are utilized to model cognitive decline, and proportional hazards 

models are used to model time to dementia or death. However, two issues may arise from the 

separate analysis: (i) bias can be caused in the longitudinal models because of informative 

dropout where the probability of dropout depends on the unobserved longitudinal measurements; 

(ii) proportional hazards models can lead to biased results if the observed longitudinal data with 

measurement errors are incorporated as time-varying covariates. To tackle these two issues, joint 

models have been proposed to simultaneously model both longitudinal and time-to-event data 

[17]. There are two scenarios where joint models are selected: (i) when our research focuses on 

the longitudinal process and we need to correct for informative dropout; (ii) when the time-to-

event process is of interest and there is a need to account for the effect of longitudinal data as 

endogenous time-dependent covariates measured with error [17, 18]. Joint models with a 

changepoint in the longitudinal process handle informative dropout due to death or dementia and 

analyze the association between cognitive decline and dementia. Jacqmin-Gadda et al. (2006) 

proposed a joint model that incorporates a piecewise mixed model with a random changepoint 

for cognitive decline and a log-normal model for time to dementia. Both longitudinal and 

survival processes are linked by a  random changepoint [19]. Based on the model proposed in 

Jacqmin-Gadda et al. (2006), Yu et al. (2010) considered two competing risks, i.e., dementia and 

dementia-free death. Specifically, the joint model integrated a Bayesian changepoint model for 

cognition with a mixture survival model for dementia and death [3]. Tapsoba et al. (2011) 

focused on the proportional hazards model in the time-to-event process of the joint model. 

Specifically, the joint model employs a random changepoint model for the longitudinal process 

and simultaneously treats the longitudinal process as a time-varying covariate measured with 

error [20]. Terrera et al. (2011) compared a series of random effects models in the joint model 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309540doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309540
http://creativecommons.org/licenses/by-nd/4.0/


 

 

framework including a linear model, a quadratic model, a fixed changepoint model, and a 

random changepoint model, to gain a better understanding of the association between cognitive 

functions and risk of death [21]. Furthermore, Wang (2021) proposed a joint model framework 

that includes a random changepoint model with a smooth transition and competing risks [22]. In 

this previous work, the researcher explored five different formulations of changepoints in 

longitudinal cognitive measures and addresses interval censoring for competing risks data. 

However, few joint models in the existing literature consider semi-competing risks (e.g., 

dementia and death) by distinguishing transitions between various health states, e.g., dementia 

without death, death following dementia, and death without dementia. 

Semi-competing risks data involve two types of events: a non-terminal event and a 

terminal event. A terminal event (e.g., death) is an event that prevents any subsequent events of 

other types once a participant experiences it; a non-terminal event (e.g., dementia) is an event 

that does not prevent subsequent events. If the terminal event occurs first, it censors the non-

terminal event; however, if the non-terminal event occurs first, the terminal event can still be 

observed [23, 24]. In the competing risks setting, participants can experience only one of the 

several potential terminal events. In contrast, semi-competing risks data provide more 

information because the terminal event can still be observed even after a non-terminal event has 

occurred. Therefore, semi-competing risks data allow for the characterization of the dependence 

between non-terminal and terminal events. Furthermore, semi-competing risks data enable 

modeling of how the non-terminal event influences the hazard of the terminal event, which can 

lead to increased prediction precision for the terminal event [25]. One of the widely used 

approaches in the current literature for the analysis of semi-competing risks data is the illness-

death model [26, 27]. The illness-death model differentiates three types of hazards: hazard of 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309540doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309540
http://creativecommons.org/licenses/by-nd/4.0/


 

 

illness, hazard of death without illness, and hazard of death following illness. In the presence of 

semi-competing risks, participants can transition through a series of health states, e.g., the 

healthy state, the dementia state, and the death state. The hazard functions in the illness-death 

model act as forces transitioning individuals between health states. Joint models have been 

proposed to combine longitudinal models with illness-death models to investigate the effect of 

longitudinal measures on different transitions between health states. When incorporating 

changepoints in the longitudinal process, Dantan et al. (2010) proposed a joint multistate model 

that includes a changepoint and investigates the transition intensities between four health states 

in the survival process [28]. However, they only considered one longitudinal outcome and 

assumed identical transition intensities from three transient states to death. Rouanet et al. (2016) 

developed a joint model combining a mixed effects model, which includes either a quadratic 

trend or a class-specific fixed changepoint, with an illness-death model accounting for interval 

censoring [29]. However, this joint model uses a latent class approach without explicitly 

specifying the relationship between the changepoint and the semi-competing risks.  

In this project, we aim to estimate the changepoint during disease progression for 

dementia while accounting for dropout due to semi-competing risks. Additionally, we explore the 

impact of the longitudinal process on each of the transitions between health states. Specifically, 

our proposed joint model is decomposed into two sub-models: a multivariate random 

changepoint model for the longitudinal data and an illness-death model that estimates the 

transitions between health states for the semi-competing risks data. We further evaluate two 

formulations of random changepoints, one characterized by an abrupt change and the other by a 

smooth change, alongside two types of association structures. 
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2. Methods 

In this section, we propose a joint model for multiple longitudinal measures with changepoints 

and semi-competing risks. Specifically, the joint model is decomposed into two sub-models: a 

multivariate random changepoint model for the longitudinal data and an illness-death model that 

estimates the health transition states for the time-to-event data. Both sub-models are connected 

through a function of random effects. We consider two formulations of random changepoints in 

the longitudinal process and two types of association structures in the survival process. We then 

derive the likelihood function and describe the Bayesian estimation method for the joint model.  

2.1 Longitudinal sub-model: random changepoint model 

2.1.1 General framework for random changepoint model 

In the general framework of changepoint models, we assume that for each participant 𝑖 and each 

longitudinal measure 𝑘, the longitudinal trajectory is characterized by two linear phases 

connected by a transition zone. The random changepoint model can be categorized as different 

types based on the characteristics of the transition zone. Notably, when the transition zone takes 

the form of an abrupt change, we consider the model as a piecewise (Broken-Stick) model [7, 

30]. Otherwise, models that apply smooth functions to the transition zone have been proposed, 

such as Bacon-Watts model, bent-cable model, and smooth polynomial model [12, 31, 32]. The 

general framework of changepoint models can be formulated as the following equations [22] 

𝐸(𝑌!(𝑡)) = )
𝑓"(𝑡),			𝑡		𝑏𝑒𝑓𝑜𝑟𝑒	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛!
𝑓#(𝑡),			𝑡	𝑑𝑢𝑟𝑖𝑛𝑔	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛!
𝑓$(𝑡),			𝑡	𝑎𝑓𝑡𝑒𝑟	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛!

 

where 𝑌!(𝑡) is the value of a longitudinal measure at time 𝑡 for participant 𝑖,  𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛! 

denotes the period of the transition zone. 𝑓"(𝑡) and 𝑓$(𝑡) are two linear functions representing 

the two linear phases before and after the transition zone. 𝑓#(𝑡) represents the trajectory function 
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during the transition zone. We consider two types of random changepoint models, each defined 

by a unique formulation of the transition zone.  

2.1.2 Piecewise (Broken-Stick) model 

Let 𝑌%!(𝑡!&) be the value of the 𝑘th longitudinal measure at time 𝑡!& for subject 𝑖, where 𝑖 =

1, 2, . . . , 𝑁, 𝑘 = 1, 2, … , 𝐾, and 𝑗 = 1,2, … , 𝑛%!. 𝑁 denotes the total number of participants, and 𝐾 

denotes the total number of longitudinal measures. 𝑛%! represents the number of repeated 

measurements of the 𝑘th longitudinal measure for participant 𝑖. Let 𝑍! be a baseline covariate for 

participant 𝑖. The piecewise model can be formulated as  

 𝑌%!?𝑡!&@ = 𝑚%!?𝑡!&@ + 𝜖%!?𝑡!&@	

= 𝛽%'! + 𝛽%"!𝑡!& + 𝛽%#!?𝑡!& − 𝜏%!@𝐼?𝑡!& − 𝜏%!@ + 𝜖%!(𝑡!&) 

(1) 

where 𝑚%!?𝑡!&@ denotes the true unobserved value of 𝑌%!?𝑡!&@.  The random error 𝜖%!?𝑡!&@ is 

distributed as 𝑁(0, 𝜎%#). We assume 𝜖%!?𝑡!&@ is independent of other parameters. 𝐼(. ) denotes the 

indicator function such that 𝑌%!?𝑡!&@ = 𝛽%'! + 𝛽%"!𝑡!& + 𝜖%!(𝑡!&) when 𝑡!& ≤ 𝜏%!, and 𝑌%!?𝑡!&@ =

𝛽%'! + 𝛽%"!𝑡!& + 𝛽%#!(𝑡!& − 𝜏%!) + 𝜖%!(𝑡!&) when 𝑡!& > 𝜏%!. 𝜏%! is the random changepoint for 

subject 𝑖 and longitudinal measure 𝑘. 𝛽%'! represents the subject-specific intercept, 𝛽%"! is the 

subject-specific slope before the changepoint 𝜏%!, and 𝛽%"! denotes the difference in slope before 

and after the changepoint 𝜏%!.  

Each of the 𝐾 random changepoints 𝜏%! included a population-level fixed effect, which 

may depend on a baseline covariate, and an individual-level random effect, 

 𝜏%! = 𝛽%(' + 𝛽%("𝑍! + 𝑏(%! (2) 

where 𝛽%(' is interpreted as the mean of random changepoint when 𝑍! = 0, and 𝛽%(" is the effect 

of covariate 𝑍! on the mean of random changepoint. 𝑏(%! is the individual-level random effect. 

We assume the vector of individual-level random effects in changepoints across 𝐾 longitudinal 
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measures, denoted as 𝒃𝝉𝒊 = (𝑏("! , 𝑏(#! , … , 𝑏(+!)′, follows a multivariate normal distribution with 

mean zero and a 𝐾 × 𝐾 variance–covariance matrix Σ(: 

 𝒃𝝉𝒊 = (𝑏("! , 𝑏(#! , … , 𝑏(+!)′~𝑀𝑉𝑁(0, Σ() (3) 

Similarly, the subject-specific intercepts and slopes in each of the 𝐾 longitudinal 

measures can be decomposed into a fixed part and a random part 

 
S
𝛽%'!
𝛽%"!
𝛽%#!

T = S
𝛽%'
𝛽%"
𝛽%#

T + S
𝑏%'!
𝑏%"!
𝑏%#!

T (4) 

where 𝛽%', 𝛽%", and 𝛽%# represent the fixed intercept, slope before changepoint and slope 

difference before and after changepoint. 𝑏%'! , 𝑏%"!, and 𝑏%#! denote the corresponding individual-

level random effects associated with the fixed effects. Let 𝒃𝒌𝒊 = (𝑏%'! , 𝑏%"! , 𝑏%#!)′ be the vector 

of random intercepts and slopes for the 𝑘th longitudinal measure, then the vector of 𝒃𝒌𝒊 across 𝐾 

longitudinal measures, denoted as 𝒃𝒊 = (𝒃𝟏𝒊, 𝒃𝟐𝒊, … , 𝒃𝑲𝒊)′, follows a multivariate normal 

distribution with mean zero and a 3𝐾 × 3𝐾 variance-covariance matrix Σ0 

 𝒃𝒊 = (𝒃𝟏𝒊, 𝒃𝟐𝒊, … , 𝒃𝑲𝒊)′~𝑀𝑉𝑁(0, Σ0) (5) 

The multivariate piecewise changepoint model assumes that all 𝐾 longitudinal measures 

are correlated via the random changepoints, as well as through the random intercepts and slopes. 

The random changepoints are further assumed to be independent of the random intercepts and 

slopes. The model gives us a straightforward interpretation for the slope parameters. However, 

it's important to note that the abrupt change in trajectory may not always align with real-world 

scenarios, where changes often occur more gradually, such as cognitive decline preceding 

dementia onset [14]. A visualization of the piecewise model is shown in Figure 1.  

2.1.3 Bent-Cable model 
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As an alternative to the piecewise model, the Bent-Cable model assumes a smooth transition 

between two linear phases [32]. Let 𝑌%!(𝑡!&) be the value of the 𝑘th longitudinal measure at time 

𝑡!& for subject 𝑖, the model can be formulated as  

 𝑌%!?𝑡!&@ = 𝑚%!?𝑡!&@ + 𝜖%!?𝑡!&@	

= 𝛽%'! + 𝛽%"!𝑡!& + 𝛽%#!𝑞(𝑡!& , 𝜏%! , 𝛾%) + 𝜖%!(𝑡!&) 
(6) 

where the smooth transition function 𝑞(𝑡, 𝜏%! , 𝛾%) is expressed as  

 
𝑞?𝑡!& , 𝜏%! , 𝛾%@ =

?𝑡!& − 𝜏%! + 𝛾@
#

4𝛾 𝐼?𝜏%! − 𝛾% < 𝑡!& ≤ 𝜏%! + 𝛾%@	

																															+?𝑡!& − 𝜏%!@𝐼(𝑡 > 𝜏%! + 𝛾%) 

(7) 

with 𝐼(. ) as an indicator function such that equation (6) can be rewritten as 

 						𝑌%!?𝑡!&@

=

⎩
⎪
⎨

⎪
⎧ 𝛽%'! + 𝛽%"!𝑡!& + 𝜖%!?𝑡!&@,			𝑡!& ≤ 𝜏%! − 𝛾%

𝛽%'! + 𝛽%"!𝑡!& + 𝛽%#!
?𝑡!& − 𝜏%! + 𝛾@

#

4𝛾 + 𝜖%!?𝑡!&@, 𝜏%! − 𝛾% < 𝑡!& ≤ 𝜏%! + 𝛾% 	

𝛽%'! + 𝛽%"!𝑡!& + 𝛽%#!?𝑡!& − 𝜏%!@ + 𝜖%!?𝑡!&@,			𝑡!& > 𝜏%! + 𝛾%

 
(8) 

In the smooth transition function (7), 𝛾% represents the half width of the transition zone 

around the changepoint 𝜏%!. Using this transition function, we define the transition zone as the 

interval [𝜏%! − 𝛾% , 𝜏%! + 𝛾%]. All the other parameters share the same definitions and 

interpretations as those in the piecewise model. Specifically, 𝛽%'!, 𝛽%"!, and 𝛽%#! are subject-

specific intercept, slope before the changepoint, and slope difference before and after the 

changepoint. 𝜏%! is the subject-specific random changepoint, and 𝜖%!(𝑡) is the random error term. 

The random effects follow the same distributions as defined in the piecewise model.  

When 𝛾% approaches the value of 0, the smooth transition zone shifts to an abrupt change 

at the changepoint, which closely approximates the Bent-Cable model to a piecewise model. The 
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Bent-Cable model adds more flexibility to the piecewise model by defining a smooth transition 

zone. Both the Bent-Cable model and the piecewise model share the same interpretation for the 

intercept, slopes and random changepoint, which facilitates the comparison of these two models. 

Figure 1 illustrates the visualization of both models, clearly depicting their respective features 

and differences. 

2.2 Survival sub-model: illness-death model 

During follow-up, a participant may undergo one or more of three health states (Figure 2): 

healthy state (state 0), dementia state (state 1), and death state (state 2). For example, dementia is 

a non-terminal event and death is a terminal event. Since the occurrence of the non-terminal 

event dementia is subject to the terminal event death, they are considered as semi-competing 

risks [24]. Let 𝑇"! and 𝑇#! be the times to the non-terminal and terminal events. In the survival 

part of our joint model framework, we use an illness-death model [26, 27]. The model is 

designed to capture the dynamics of transitioning between the three distinct health states via 

three hazard functions (Figure 2): ℎ"(𝑡") denotes the hazard of the non-terminal event dementia 

at time 𝑡" given that neither dementia nor death occurred before time 𝑡", ℎ#(𝑡#) represents the 

hazard of the terminal event death at time 𝑡# given that neither events occurred before time 𝑡#, 

and ℎ$(𝑡#|𝑡") is the hazard of death at time 𝑡# conditional on the occurrence of dementia at time 

𝑡". Specifically, we have  

 ℎ"(𝑡"|𝑋"! , 𝑏! , 𝜏!)	

= lim
1→'

1
Δ𝑃?𝑇" ∈

[𝑡", 𝑡" + Δ)j𝑇" ≥ 𝑡", 𝑇# ≥ 𝑡", 𝑋"! ,𝑊"(𝒃𝒊, 𝝉𝒊, 𝑡")@	, 𝑡" > 0 
(9) 

 ℎ#(𝑡#|𝑋#! , 𝑏! , 𝜏!)	

= lim
1→'

1
Δ𝑃?𝑇# ∈

[𝑡#, 𝑡# + Δ)j𝑇" ≥ 𝑡#, 𝑇# ≥ 𝑡#, 𝑋#! ,𝑊#(𝒃𝒊, 𝝉𝒊, 𝑡#)@	, 𝑡# > 0 
(10) 
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 ℎ$(𝑡#|𝑡", 𝑋$! , 𝑏! , 𝜏!)	

= lim
1→'

1
Δ𝑃?𝑇# ∈

[𝑡#, 𝑡# + Δ)j𝑇" = 𝑡", 𝑇# ≥ 𝑡#, 𝑋$! ,𝑊$(𝒃𝒊, 𝝉𝒊, 𝑡#)@	, 𝑡# > 𝑡" > 0 
(11) 

where 𝑋3! is a transition-specific baseline covariate associated with each of the three hazards, 

𝑔=1, 2, 3. 𝑊3 is a transition-specific function of individual-level random effects (i.e., random 

intercepts and slopes 𝒃𝒊 and random changepoints 𝝉𝒊) from the longitudinal process, which 

defines the association structure between the longitudinal sub-model and the survival sub-model 

in our proposed joint model framework. Besides, 𝑊3 also captures the dependence structure 

between 𝑇" and 𝑇#. Different association structures are described in more details in the next 

section. To examine the effects of covariates and functions of random effects on the three 

hazards, we explicitly specified three parametric proportional hazards models: 

 ℎ"(𝑡"|𝑋"! , 𝑏! , 𝜏!) = ℎ'"(𝑡") exp(𝛼"'𝑋"! +𝑊"(𝒃𝒊, 𝝉𝒊, 𝑡")4𝜶𝟏) , 𝑡" > 0 (12) 

 ℎ#(𝑡#|𝑋#! , 𝑏! , 𝜏!) = ℎ'#(𝑡#) exp(𝛼#'𝑋#! +𝑊#(𝒃𝒊, 𝝉𝒊, 𝑡#)4𝜶𝟐) , 𝑡# > 0 (13) 

 ℎ$(𝑡#|𝑡", 𝑋$! , 𝑏! , 𝜏!) = ℎ'$(𝑡#|𝑡") exp(𝛼$'𝑋$! +𝑊$(𝒃𝒊, 𝝉𝒊, 𝑡#)4𝜶𝟑) , 𝑡# > 𝑡" > 0 (14) 

in which ℎ'3 is the transition-specific Weibull baseline hazards, 𝑔=1,2,3. 𝛾3 is the transition-

specific log-hazard ratio regression parameters associated with the baseline covariates 𝑋3!. 𝜶𝒈 is 

a transition-specific vector of association coefficients for the dependence structure between two 

processes, which quantifies the impact of the dynamics of the longitudinal measures on the 

hazards. We further assume a semi-Markov model for the conditional baseline hazard function in 

Equation (14) such that ℎ'$(𝑡#|𝑡") = ℎ'$(𝑡# − 𝑡") [24]. The semi-Markov model assumes  that 

the conditional baseline hazard for death at time 𝑡# is dependent on the time from dementia to 

death given the onset of dementia at time 𝑡", which is also called the ‘sojourn time’. Another 

parametrization for the conditional baseline hazard is the Markov model, which sets 
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ℎ'$(𝑡#|𝑡") = ℎ'$(𝑡#). The Markov model posits that the hazard for death after dementia onset is 

independent of the time of dementia 𝑡". The semi-Markov model offers an advantage over the 

Markov model by incorporating 𝑡" into its hazard function. This inclusion may allow the semi-

Markov model to more effectively capture the relationship between the onset of dementia and the 

risk of death [33]. 

2.3 Association structures 

To characterize the relationship between the longitudinal process and survival process, the 

association function 𝑊3 for 𝑔 ∈ {1,2,3}, can be formulated in various ways, which allows for a 

more tailored and flexible interpretation for the interplay between the two processes. We consider 

the following two different association structures in our joint model framework: the current value 

association structure and the shared random effect association structure [17, 18].  

2.3.1 Current value association structure 

Under the current value parametrization, the association function is equal to the vector of true 

unobserved values of the longitudinal measures, i.e., 

 𝑊3(𝒃𝒊, 𝝉𝒊, 𝑡) = 𝒎𝒊(𝑡) = ?𝑚"!(𝑡),𝑚#!(𝑡), … ,𝑚+!(𝑡)@
4 (15) 

 Equations (12), (13), and (14) can be rewritten as 

 ℎ"(𝑡"|𝑋"! , 𝑏! , 𝜏!) = ℎ'"(𝑡") exp(𝛼"'𝑋"! + Σ%7"+ 𝛼"%𝑚%!(𝑡")) , 𝑡" > 0 (16) 

 ℎ#(𝑡#|𝑋#! , 𝑏! , 𝜏!) = ℎ'#(𝑡#) exp(𝛼#'𝑋#! + Σ%7"+ 𝛼#%𝑚%!(𝑡#)) , 𝑡# > 0 (17) 

 ℎ$(𝑡#|𝑡", 𝑋$! , 𝑏! , 𝜏!) = ℎ'$(𝑡# − 𝑡") exp(𝛼$'𝑋$! + Σ%7"+ 𝛼$%𝑚%!(𝑡#)) , 𝑡# > 𝑡" > 0 (18) 

where 𝛼3% 	(𝑔 = 1,2,3, 𝑘 = 1,2, … , 𝐾) is a measure of the strength of the association between the 

true unobserved value of the 𝑘th longitudinal measure and the hazards for an event at the same 

time. Take the transition from the healthy state to the dementia state (Equation (16)) as an 

example, each one-unit increase on the current value of 𝑚"!(𝑡") at time 𝑡" is associated with an 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309540doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309540
http://creativecommons.org/licenses/by-nd/4.0/


 

 

exp	(𝛼"")-fold increase in the hazards for dementia at the same time 𝑡", on condition that neither 

of dementia nor death occurred before time 𝑡". It’s important to note that although we utilize a 

semi-Markov model for  conditional hazard function, we assume the true value of the 

longitudinal measure at time 𝑡#, denoted as 𝑚%!(𝑡#), is associated with ℎ$(𝑡#|𝑡") due to the lack 

of interpretability for 𝑚%!(𝑡# − 𝑡"). This particular association structure is often employed in 

scenarios where the primary focus is on survival time and the longitudinal process is considered 

a time-dependent covariate, which is measured with error [17]. 

2.3.2 Shared random effect association structure 

In real-world scenarios, it’s not always realistic to assume a current value association structure. 

For example, the hazard for dementia may depend on subject-specific deviations from the 

average intercept, slope, or changepoint of the longitudinal sub-model. Therefore, the shared 

random effect association structure posits that the hazard for an event is dependent on the 

random intercepts, slopes and changepoints of the longitudinal sub-model. We have 

 𝑊3(𝒃𝒊, 𝝉𝒊, 𝑡) = (𝜏"! , 𝒃𝟏𝒊, 𝜏#! , 𝒃𝟐𝒊, … , 𝜏+! , 𝒃𝑲𝒊)4 (19) 

 Equations (12), (13), and (14) can be rewritten as 

 ℎ"(𝑡"|𝑋"! , 𝑏! , 𝜏!) = ℎ'"(𝑡") exp(𝛼"'𝑋"! + Σ%7"+ 𝜁"%𝜏%! + Σ%7"+ 𝜶𝟏𝒌𝒃𝒌𝒊) , 𝑡" > 0 (20) 

 ℎ#(𝑡#|𝑋#! , 𝑏! , 𝜏!) = ℎ'#(𝑡#) exp(𝛼#'𝑋#! + Σ%7"+ 𝜁#%𝜏%! + Σ%7"+ 𝜶𝟐𝒌𝒃𝒌𝒊) , 𝑡# > 0 (21) 

 ℎ$(𝑡#|𝑡", 𝑋$! , 𝑏! , 𝜏!) = ℎ'$(𝑡# − 𝑡") exp(𝛼$'𝑋$! + Σ%7"+ 𝜁$%𝜏%! + Σ%7"+ 𝜶𝟑𝒌𝒃𝒌𝒊) , 𝑡# > 𝑡"

> 0 

(22) 

where 𝜏%! and 𝒃𝒌𝒊 are two parameters shared with the longitudinal process: 𝜏%! is the random 

changepoint and 𝒃𝒌𝒊 is the vector of random intercept and slope. 𝜁3% and 𝜶𝒈𝒌 represent the 

association strength parameters between random effects and the hazard during each of the 

transitions between health states. Let’s consider the transition from the healthy state to the 
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dementia state as exemplified in Equation (20) and assume 𝜁"% < 0 and 𝜶𝟏𝒌 < 0. The shared 

random effect association structure suggests that individuals who encounter a changepoint at a 

later time, or exhibit a higher baseline value, or demonstrate a steeper slope in the 𝑘th 

longitudinal measure, are at a lower risk of developing dementia at time 𝑡" relative to the average 

levels observed in the population. Typically, this structure is utilized in scenarios where the 

primary focus is the longitudinal process with informative dropout, or in situations where both 

the longitudinal and survival processes are of equal interest [17].  

2.4 The joint model framework 

If we assume there are two longitudinal measures (𝐾 = 2), the structure of our proposed joint 

model framework is displayed in Figure 3. The random effects including the random 

changepoints (𝜏"! and 𝜏#!), intercepts and slopes (𝒃𝟏𝒊 and 𝒃𝟐𝒊) are crucial in constructing the 

joint model in the following three aspects. First, the correlation between the longitudinal 

measures is established through these random effects. Second, the longitudinal process and the 

survival process are linked by the random effects. Specifically, the two processes are linked 

directly in the shared random effect model through the random effects, while in the current value 

model, the random effects have an indirect effect on the hazards via the true values of 

longitudinal measures 𝑚"!(𝑡) and 𝑚#!(𝑡). Third, the dependence structure between the non-

terminal and the terminal events are captured by the random effects.  

2.5 Estimation of the joint model 

2.5.1 Likelihood 

The following data are observed for each participant 𝑖. Let 𝒀𝒊 = (𝑌!", 𝑌!#, … , 𝑌!+) be the vector of 

𝐾 longitudinal measures. Let 𝐶! be the right-censoring time for times to events. 𝑇"! and 𝑇#! are 

the times to the non-terminal and terminal events. 𝐿"! = min	{𝐶! , 𝑇"! , 𝑇#!}, 𝐿#! = min	{𝐶! , 𝑇#!}, 
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Δ"! = 𝐼{𝑇"! ≤ min(𝑇#! , 𝐶!)} denotes the indicator of the non-terminal event, and Δ#! = 𝐼{𝑇#! ≤

𝐶!} denotes the indicator of the terminal event. Let 𝑫𝒊 = {𝐿"! , Δ"! , 𝐿#! , Δ#!} be the set of observed 

time to event data. Let 𝝍 be the full parameter vector. 𝝉𝒊 and 𝒃𝒊 are vectors of random 

changepoints and random intercepts and slopes, respectively. The likelihood is constructed under 

the assumption that both the longitudinal and survival processes are assumed independent given 

the random effects. Therefore, the likelihood conditional on the random effects is as follows: 

 
				}𝑝(𝒀𝒊, 𝑫𝒊|𝜏! , 𝒃𝒊, 𝝍)

8

!7"

	

=}𝑝(𝒀𝒊|𝜏! , 𝒃𝒊, 𝝍)𝑝(𝑫𝒊|𝜏! , 𝒃𝒊, 𝝍)
8

!7"

 

(23) 

For the longitudinal part, we have 

 𝑝(𝒀𝒊|𝜏! , 𝒃𝒊, 𝝍)	

=}}𝑝?𝑌%!?𝑡!&@j𝜏%! , 𝑏%! , 𝜓%@
+

%7"

9!"

&7"

	

=}
1

(2𝜋𝜎%#)
9!"
#
exp�−

𝛴&7"
9!" �𝑌%!?𝑡!&@ − 𝑚!%?𝑡!&@�

#

2𝜎%#
�

+

%7"

 

(24) 

For the survival part, we construct the following likelihood 

 𝑝(𝑫𝒊|𝜏! , 𝒃𝒊, 𝝍)	

= ℎ"(𝐿"!)1#"ℎ#(𝐿"!)(";1#")1$"ℎ$(𝐿#! − 𝐿"!)1#"1$" 	

					exp	(−𝐻"(𝐿"!) − 𝐻#(𝐿"!) − Δ"!𝐻$(𝐿#! − 𝐿"!))				 

(25) 

where ℎ3(𝑡) is the hazard function for each of the three transitions in Figure 2, 𝑔 ∈ {1,2,3}. 

𝐻3(𝑡) = ∫ ℎ3(𝑠)𝑑𝑠
=
'  represents the cumulative hazard function. Note that we use Gauss-Kronrod 

quadrature with 15 nodes for numerical approximation of integration when the survival sub-
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model is a current value model. Specifically, 𝐻3(𝑡) = ∫ ℎ3(𝑠)𝑑𝑠
=
' ≈ =

#
Σ>7"
? 𝑤>ℎ(

=@"AB%C
#

), in 

which 𝑤> is the standardized weight for quadrature node 𝑞 with 𝑞 ∈ {1,2, … , 𝑄}. We set 𝑄 = 15. 

𝑠> is the location for quadrature node 𝑞. The specific individual likelihood functions in the 

survival part for four specific scenarios (Figure 4) are given as follows [27]. 

Scenario 1. The participant 𝑖 develop dementia at time 𝐿"! and is censored at time 𝐶! prior to 

death: 

 𝑝(𝑫𝒊|𝜏! , 𝒃𝒊, 𝝍) = ℎ"(𝐿"!)𝑒𝑥𝑝(−𝐻"(𝐿"!) − 𝐻#(𝐿"!) − 𝐻$(𝐶! − 𝐿"!)) (26) 

Scenario 2. The participant 𝑖 is dead at time 𝐿#! following the onset of dementia at time 𝐿"!: 

 𝑝(𝑫𝒊|𝜏! , 𝒃𝒊, 𝝍) = ℎ"(𝐿"!)ℎ$(𝐿#! − 𝐿"!)exp	(−𝐻"(𝐿"!) − 𝐻#(𝐿"!)

− 𝐻$(𝐿#! − 𝐿"!)) 
(27) 

Scenario 3. The participant 𝑖 is dead at time 𝐿"! without developing dementia: 

 𝑝(𝑫𝒊|𝜏! , 𝒃𝒊, 𝝍) = ℎ#(𝐿"!)exp	(−𝐻"(𝐿"!) − 𝐻#(𝐿"!)) (28) 

Scenario 4. The participant 𝑖 is censored at time 𝐶! prior to dementia or death: 

 𝑝(𝑫𝒊|𝜏! , 𝒃𝒊, 𝝍) = exp	(−𝐻"(𝐶!) − 𝐻#(𝐶!)) (29) 

2.5.2 Bayesian Inference 

We use a Bayesian approach based on Markov Chain Monte Carlo (MCMC) methods for the 

parameter estimation of the joint model since the model involves a large number of parameters 

with a complicated joint likelihood. For the Bayesian approach, the random effects, including 

random changepoints, intercepts and slopes, are treated as model parameters. The joint posterior 

probability distribution is analogous to: 

 
𝑝(𝝍, 𝒃, 𝝉) ∝}𝑝(𝒀𝒊|𝜏! , 𝒃𝒊, 𝝍)𝑝(𝑫𝒊|𝜏! , 𝒃𝒊, 𝝍)

8

!7"

𝑝(𝒃𝒊|𝝍)𝑝(𝝉𝒊|𝝍)𝑝(𝝍) (30) 
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where 𝑝(𝝍) is the joint prior distribution for the full parameter vector 𝝍. 𝑝(𝒃𝒊|𝝍) is the joint 

distribution for random intercepts and slopes across longitudinal measures, as is defined in 

Equation (5). 𝑝(𝝉𝒊|𝝍) denotes the joint distribution for random changepoints, as is defined in 

Equation (3).  

We use weakly informative priors, 𝑝(𝝍), on all the model parameters to ensure that the 

estimates reflect what is observed in the data. The fixed intercepts and slopes in the longitudinal 

sub-model, i.e., 𝛽%', 𝛽%", 𝛽%#,	are assigned weakly informative normal priors with a large 

variance. Similarly, the fixed effects in the survival sub-model, denoted as 𝛾3, 𝜁3, and 𝜶𝒈 for 𝑔 ∈

{1,2,3}, are imposed with weakly informative normal priors. The fixed effects in the 

changepoints are assigned bounded uniform priors to prevent  estimation of changepoint values 

from being  biologically implausible: 𝛽%('~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑎', 𝑏'), 𝛽%("~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑎", 𝑏"), 

𝛾~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑎D , 𝑏D). The specification of the parameter values in the priors depends on the data. 

For the residual standard deviations of the longitudinal measures 𝜎%, we use a half Cauchy 

distribution, i.e., 𝜎%~ℎ𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦(0, 2.5).  

We decompose each of the random effects variance-covariance matrix, i.e., Σ( for random 

changepoints and Σ0 for random intercepts and slopes, into a covariance matrix and separate 

standard deviation terms using Cholesky decomposition. This decomposition allows us to assign 

priors to the correlation matrix and covariance matrix separately [34]. We specify Σ( = Λ(Ω(Λ( 

for random changepoints, where Λ( is a diagonal matrix containing standard deviation terms for 

each random changepoint along its diagonal. Ω( is a correlation matrix with 1’s on the diagonal 

and correlation terms representing relationships between random changepoints on the off-

diagonal. Similarly, we express random intercepts and slopes as Σ0 = Λ0ΩEΛ0, where Λ0 and ΩE 

are the diagonal matrix for standard deviation terms and the correlation matrix, respectively. We 
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employ the “Lewandowski-Kurowicka-Joe (LKJ) priors” [35], i.e., the parameterization of the 

LKJ correlation matrix density in terms of its Cholesky factor, for estimating the correlation 

matrices ΩE and ΩF. Additionally, we impose half-Cauchy priors on the standard deviation terms 

in Λ0 and Λ(.  

The model parameters are estimated using the R interface of Stan with the R package 

rstan [36]. Stan utilizes a No-U-Turn Sampler version of Hamiltonian Monte Carlo algorithm for 

generating the Markov Chain Monte Carlo (MCMC) samples [37]. Compared to other MCMC 

algorithms such as Gibbs sampling, Stan offers faster convergence and lower autocorrelation 

between MCMC samples. To assess model convergence, we use the potential scale reduction 

statistic 𝑅� calculated by Stan [38]. 𝑅� values < 1.1 for all parameters indicate successful model 

convergence.  

Model comparison is evaluated using the Widely Applicable Information Criterion 

(WAIC) [39], also known as the Watanable-Akaike for Bayesian model selection. WAIC is a 

useful tool for estimating pointwise out-of-sample prediction accuracy within the Bayesian 

framework. It is calculated based on the log-likelihood evaluated at the posterior simulations of 

the parameter values. Compared to another commonly used information criterion for Bayesian 

methods, the deviance information criterion (DIC), WAIC has been shown to be more stable and 

can be considered as an improvement over DIC [40]. A smaller value of WAIC indicates a better 

model fit.  

3. Simulation study design 

Our proposed models were evaluated in the simulation study. 

3.1 Data generation 
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We simulated two correlated longitudinal measures (𝐾 = 2) for 1000 subjects and two semi-

competing risks (i.e., dementia and death) in each simulated dataset. We chose the bent-cable 

model to simulate the two longitudinal measures. Compared to the piecewise model with an 

abrupt change at the changepoint, the bent-cable model characterized by a smooth change aligns 

more closely with real-world scenarios in practice. Moreover, the bent-cable model can be 

approximated to a piecewise model when the transition zone is small enough. Therefore, the 

bent-cable model exhibits more flexibility, making it a more comprehensive choice for modeling 

longitudinal trajectories with changepoints. The two longitudinal measures were simulated from 

the following models: 

 𝑌"!?𝑡!&@ = 𝑚"!?𝑡!&@ + 𝜖"!?𝑡!&@	

= (𝛽"' + 𝑏"'!) + 𝛽""𝑡!& + (𝛽"# + 𝑏"#!)𝑞(𝑡!& , 𝜏"! , 𝛾") + 𝜖"!(𝑡!&) 
(31) 

 𝑌#!?𝑡!&@ = 𝑚#!?𝑡!&@ + 𝜖#!?𝑡!&@	

= (𝛽#' + 𝑏#'!) + 𝛽#"𝑡!& + (𝛽## + 𝑏##!)𝑞(𝑡!& , 𝜏#! , 𝛾#) + 𝜖#!(𝑡!&) 
(32) 

where the forms of 𝑞(𝑡!& , 𝜏"! , 𝛾") and 𝑞(𝑡!& , 𝜏#! , 𝛾#) were described in Equation (7) from the 

Methods section. We assumed that 𝑌"!?𝑡!&@ had a narrow transition zone around the changepoint, 

mimicking a longitudinal trajectory with a sharp change, while 𝑌"!?𝑡!&@ was postulated to exhibit 

a smooth change. The omission of the random slope before the changepoint was due to the flat 

and homogeneous trajectory pattern observed in real data before the changepoint. Considering 

the complexity of our proposed joint model, we further assumed that the correlation between the 

two longitudinal measures were fully captured by the random changepoints. The random 

intercepts and slopes had the following distribution 
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The random changepoints were 
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� ,   𝜎("# 𝜌(𝜎("𝜎(#
𝜌(𝜎("𝜎(# 𝜎(##

¡) (34) 

The times to semi-competing risks were generated under two scenarios where two 

different association structures (i.e., current value and shared random effects) between the 

longitudinal and survival processes were assumed. For the scenario where the shared random 

effects association structure was adopted, the time-to-event endpoints were generated based on 

the following survival sub-model: 

 ℎ"(𝑡"|𝑋! , 𝑏! , 𝜏!) = 𝑎"𝑏"𝑡"
0#;" exp(𝛼"𝑋! + 𝜁"𝜏"!) , 𝑡" > 0 (35) 

 ℎ#(𝑡#|𝑋! , 𝑏! , 𝜏!) = 𝑎#𝑏#𝑡#
0$;" exp(𝛼#𝑋! + 𝜁#𝜏"!) , 𝑡# > 0 (36) 

 ℎ$(𝑡#|𝑡", 𝑋! , 𝑏! , 𝜏!) = 𝑎$𝑏$(𝑡# − 𝑡")0&;" exp(𝛼$𝑋! + 𝜁$𝜏"!) , 𝑡# > 𝑡" > 0 (37) 

Random intercepts and slopes were excluded due to their insignificant effects on the survival part 

observed in the real data application and the extended simulation time with increased model 

complexity. Additionally, only the changepoint in the first longitudinal measure, as defined by 

𝜏"!, was included in the survival part to avoid multicollinearity. This choice was made under the 

assumption that the two changepoints were highly correlated. The specification of shared random 

effects models with correlated changepoints using competing risks data for dementia and death 

has been investigated in Wang (2021) [22]. 𝑋! was a binary baseline covariate that had an impact 

on the hazards for semi-competing risks. We followed the cause-specific hazard (CSH) approach 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309540doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309540
http://creativecommons.org/licenses/by-nd/4.0/


 

 

which was described in Beyersmann et al. (2009) [41] and Bender et al. (2005) [42] to generate 

the time-to-event endpoints. Specifically, this approach is divided into the following several 

steps: 

Step 1. Let 𝑆"(𝑡) = exp	(−𝐻"(𝑡) − 𝐻#(𝑡)), where 𝐻"(𝑡) and 𝐻#(𝑡) are the cumulative hazard 

functions for equations (35) and (36). Then we simulated a variable 𝑢!~𝑈𝑛𝑖𝑓𝑜𝑟𝑚	(0,1). Next, 

we obtained 𝑇!∗ by solving for the equation 𝑢! = 𝑆"(𝑡). 𝑇!∗ was the time to the first event, i.e., 

dementia or death without dementia. 

Step 2. We ran a Bernoulli experiment for 𝑇!∗ to decide which event occurred at time 𝑇H∗	. 

Specifically, 𝑢!∗ was generated from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚	(0,1). If 𝑢!∗ ≤
I#@4"

∗C
I#@4"

∗CAI$@4"
∗C

, 𝑇!∗ was denoted as the 

time to dementia, i.e., 𝑇!∗ = 𝑇"! . Otherwise, 𝑇!∗ was considered as the time to death without 

dementia, i.e., 𝑇!∗ = 𝑇#!. 

Step 3. If 𝑇!∗ = 𝑇"!, which indicated a participant developed dementia at time 𝑇"!, we further 

simulated 𝑇"#! based on the hazard function ℎ$(𝑡). We then defined 𝐶! as the time to the 

maximum time of follow-up for each participant. We set the observed outcome information as 

(time to event 1, time from event 1 to event 2, indicator for dementia, indicator for death), which 

can be demonstrated in the following scenarios: 

 • (𝑇"! , 𝑇"#! , 1, 1), 𝑖𝑓	𝑇"! +	𝑇"#! ≤ 𝐶! 

• (𝑇"! , 𝐶! − 𝑇"! , 1, 0), 𝑖𝑓	𝑇"! +	𝑇"#! > 𝐶! 	&	𝑇"! ≤ 𝐶! 

• (	𝑇#! , 0, 0, 1), 𝑖𝑓	𝑇#! ≤ 𝐶! 

• (𝐶! , 0, 0,0), 𝑖𝑓	𝑇"! > 𝐶! 	𝑜𝑟	𝑇#! > 𝐶! 

(38) 

In the context where we assumed a current value association structure, the time-to-event 

endpoints were derived using the survival sub-model outlined below: 
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 ℎ"(𝑡"|𝑋! , 𝑏! , 𝜏!) = 𝑎"𝑏"𝑡"
0#;" exp(𝛼"𝑋! + 𝜁"𝑚"!(𝑡")) , 𝑡" > 0 (39) 

 ℎ#(𝑡#|𝑋! , 𝑏! , 𝜏!) = 𝑎#𝑏#𝑡#
0$;" exp(𝛼#𝑋! + 𝜁#𝑚"!(𝑡#)) , 𝑡# > 0 (40) 

 ℎ$(𝑡#|𝑡", 𝑋! , 𝑏! , 𝜏!) = 𝑎$𝑏$(𝑡# − 𝑡")0&;" exp(𝛼$𝑋! + 𝜁$𝑚"!(𝑡#)) , 𝑡# > 𝑡" > 0 (41) 

Like the shared random effects association structure, we only included the true unobserved value 

for the first longitudinal measure at the same time of the event, denoted as 𝑚"!(𝑡") and 𝑚"!(𝑡#), 

to avoid multicollinearity between the two highly correlated longitudinal measures. We followed 

analogous procedures to those outlined in the shared random effects association structure to 

generate two semi-competing risks. 

3.2 Simulation scenarios 

Our simulated dataset mimicked the Offspring cohort in the FHS to allow for reasonable 

generalization. Note that the offspring cohort in FHS represented a community-based group, 

predominantly consisting of relatively healthy individuals who entered the cohort at middle-age. 

Additionally, this cohort was characterized by a low dementia onset rate of less than 10%. 

Therefore, by varying the changepoints and the rate of dementia onset, we simulated a disease 

cohort with earlier occurrence of changepoints and a higher dementia rate, along with a 

community cohort with a similarly low rate of dementia that was observed in the FHS offspring 

cohort. Within each cohort, two association structures were considered due to the uncertainty 

about the true association structure in real-world scenarios. The simulation parameters were 

chosen based on our real data analysis. The main parameter settings in all four scenarios were 

summarized in Table 1. For each scenario, 200 datasets with 1000 subjects were generated and 

analyzed.  

Scenario 1: disease cohort with shared random effects association structure.  
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We set total subjects n=1000 with the baseline time variable 𝑡!' generated from a uniform 

distribution 𝑈(−5, 5) to represent the baseline age subtracted by 60. Each participant was 

followed every two years until the 20th year. The maximum number of follow-up visits was 11. 

The longitudinal measures were observed until the occurrence of either dementia or death or at 

the 20th year of the follow-up period. The intercept, slope before the changepoint, and slope 

difference before and after the changepoint for the first longitudinal measure 𝑌", denoted by 

(𝛽"', 𝛽"", 𝛽"#)4, were (-0.18, -0.02, -0.15)T. The longitudinal parameters for the second 

longitudinal measure 𝑌# were (𝛽#', 𝛽#", 𝛽"#)4 = (−0.03, −0.02, −0.2)4. The half widths of the 

transition zone for two longitudinal measures were (𝛾", 𝛾#)4 = (2, 4)4 , such that 𝑌" had a 

narrower transition zone while the transition zone for 𝑌# was wider. Mean changepoint 

intercepts, mean changepoint slopes, and standard deviations of changepoints were set as 

follows: 𝛽"(' = 15, 𝛽#(' = 12, 𝛽"(" = −3, 𝛽#(" = −5, 𝜎(" = 3, 𝜎(#	 = 3. These parameters 

were chosen to reflect the mean changepoints observed during the follow-up period for each 

participant. 𝑍! was a binary variable generated from a Bernoulli distribution with probability of 

0.2. Two changepoints were assumed to be correlated with a correlation coefficient 𝜌( = 0.8. 

The association parameters for the first random changepoint 𝜏"! in the illness-death model were 

(𝜁", 𝜁#, 𝜁$)4 = (−0.3, −0.1, −0.1)4. The baseline covariate 𝑋! was generated from Bernoulli 

(0.5) with associated coefficients (𝛼", 𝛼#, 𝛼$)4 = (−0.6, −0.6, −0.1)4. The event rates were 

around 30%, 15%, and 20%, respectively, for dementia, death without dementia, and death 

following dementia. All the other parameters were presented in the Supplemental materials. 

Scenario 2: disease cohort with current value association structure. 

The parameters in the longitudinal sub-model were the same as those described in Scenario 1. In 

the survival sub-model, the association parameters for the true observed value of 𝑌" was set as 
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(𝜁", 𝜁#, 𝜁$)4 = (−2.5, −0.6, −0.5)4. The coefficients for the baseline covariate 𝑋! were 

(𝛼", 𝛼#, 𝛼$)4 = (−0.2, −0.4, −0.2)4. The event rates were similar to those in Scenario 1. 

Scenario 3: community cohort with shared random effects association structure. 

By varying the location and variation of the changepoints along with the time interval between 

two adjacent visits, we aligned our data more closely with a community cohort, i.e., the FHS 

offspring cohort. Specifically, participants were followed every 5 years up to a maximum 

duration of 20 years. We set 𝛽"(' = 25 and 𝛽#(' = 27 to reflect the scenario where the mean 

locations for two random changepoints were beyond the average follow-up time of 20 years. We 

also assigned larger variation of two changepoints by assigning 𝜎(" = 8 and 𝜎(# = 8. Other 

parameters were identical to those outlined in Scenario 1. In this scenario, the approximate event 

rates were 10% for dementia, 10% for death without dementia, and 6% for death following 

dementia. 

Scenario 4: community cohort with current value association structure. 

The longitudinal parameters resembled those outlined in Scenario 3 to reflect a community-based 

cohort, and we adopted the same survival parameter settings from Scenario 2 to capture the 

relationship between the true unobserved value for 𝑌" and the semi-competing risks. Slightly 

higher event rates were observed compared to Scenario 3: 15% for dementia, 10% for death 

without dementia, and 10% for death following dementia. 

3.3 Analysis models 

The selection of an appropriate model is based not only on model criterion values but also on the 

underlying rationale. Specifically, the piecewise model may be preferred due to its 

straightforward interpretation of parameters and lower computational burden compared to the 

bent-cable model. The current value association structure could be selected if the focus is on 
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understanding the survival process, while the shared random effect association structure is 

chosen when the focus is correcting longitudinal bias. Therefore, we compared four joint models 

with different changepoint formulations and association structures using the simulated data. We 

calculated and compared the percent bias and 95% coverage probabilities for each parameter, 

along with the WAIC for each model. Below we describe the four joint models to analyze the 

four simulated scenarios.  

Model 1: bent-cable model + shared random effects association structure (BC+RE). 

In the longitudinal sub-model of Model 1, we chose the bent-cable model outlined in Equations 

(31) and (32) for two longitudinal measures. In the survival sub-model of Model 1, the shared 

random effects association structure defined in Equations (35)-(37) was incorporated. We utilized 

commonly used weakly informative priors for Bayesian estimation to reflect what was observed 

in the data. For the fixed intercept and slopes (i.e., 𝛽"', 𝛽"", 𝛽"#, 𝛽#', 𝛽#", 𝑎𝑛𝑑	𝛽##), we used 

normal distributions with zero mean and a large variance of 100, denoted as 𝑁(0, 100). For the 

fixed parameters associated with the transition zone, we utilized uniform distributions to exclude 

biologically implausible changepoint values. Specifically, the priors were set as follows: 𝛽"(' and 

𝛽#('~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(10,20) for the disease cohort scenarios, 𝛽"(' and 𝛽#('~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(20,30) for 

the community cohort scenarios, 𝛽"(" and 𝛽#("~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,0), 𝛾" and 𝛾#~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,6). 

As elaborated in the Methods section, each of the random effects variance-covariance matrices, 

defined as Σ0 and Σ(, can be decomposed into a correlation matrix (Ω0 and Ω() and separate 

standard deviation terms. For the standard deviations of the random intercepts and slopes (i.e., 

𝜎"', 𝜎"#, 𝜎#', 𝜎##), we used half-Cauchy distributions with location 0 and scale 2.5. For the 

standard deviations of the random changepoints (i.e., 𝜎(" and 𝜎(#), we chose 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,6) 
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(disease cohort) or 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,10) (community cohort) to provide a reasonable range for the 

variability of changepoints.  

For each of the correlation matrices, we used LKJ correlation priors parameterized in 

terms of its Cholesky factor with shape parameters equal to 1 or 2. For each of the association 

parameters in the survival sub-model (i.e., 𝛼3, 𝜁3; 𝑔 = 1,2,3), we employed normal distributions 

with zero mean and a variance of 100.  

Model 2: piecewise model + shared random effects association structure (PW+RE). 

Compared to Model 1, Model 2 maintained the same shared random effects association structure 

but incorporated the following piecewise model in the longitudinal process: 

 𝑌"!?𝑡!&@ = 𝑚"!?𝑡!&@ + 𝜖"!?𝑡!&@	

= (𝛽"' + 𝑏"'!) + 𝛽""𝑡!& + (𝛽"# + 𝑏"#!)(𝑡!& − 𝜏"!)𝐼?𝑡!& − 𝜏"!@ + 𝜖"!(𝑡!&) 
(42) 

 𝑌#!?𝑡!&@ = 𝑚#!?𝑡!&@ + 𝜖#!?𝑡!&@	

= (𝛽#' + 𝑏#'!) + 𝛽#"𝑡!& + (𝛽## + 𝑏##!)(𝑡!& − 𝜏#!)𝐼?𝑡!& − 𝜏#!@ + 𝜖#!(𝑡!&) 
(43) 

We adopted the same priors specified in Model 1 except for 𝛾" and 𝛾#, which were absent from 

Model 2. 

Model 3: bent-cable model + current association structure (BC+CV). 

In Model 3, we substituted the survival process in Model 1 with the current value association 

structure specified in Equations (39)-(41). Like Model 1 and Model 2, the association 

coefficients in the survival part were assigned normal priors with a mean of 0 and a variance of 

100. 

Model 4: piecewise model + current value association structure (PW+CV). 
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To construct Model 4, we integrated the piecewise model specified in Equations (42) and (43) 

into the joint model framework along with the current value association structure. The prior 

settings were the same as Model 3. 

In Bayesian estimation, we obtained 6000 MCMC sample iterations from each of the 3 parallel 

chains with the first 4000 iterations as a warm-up phase. Convergence was evaluated through the 

potential scale reduction statistic. 

4. Simulation results 

We generated our data in four scenarios described in section 3.2 and analyzed the data using four 

joint models proposed in section 3.3. Then we evaluated the results based on posterior mean, 

percent bias, 95% coverage probability, and WAIC. Numerical results were presented in Tables 

2-6. The comparison of point estimates for mean changepoints, denoted as 𝛽("' and 𝛽(#', as well 

as the association parameter 𝜁$ in four models was illustrated in Figures 5-8. Our primary 

interests were the slope parameters (𝛽"", 𝛽"#, 𝛽#", 𝛽##) along with changepoint parameters 

(𝛽"(', 𝛽"(", 𝛽#(', 𝛽#(", 𝜎(", 𝜎(#, 𝜌() in the longitudinal sub-model, as well as the association 

parameters (𝜁", 𝜁#, 𝜁$) in the survival sub-model.  

Scenario 1: disease cohort with shared random effects association structure (Table 2 and 

Figure 5) 

The simulation results showed that the bent-cable (BC) model with the shared random effects 

(RE) association structure (BC+RE) generally performed well, with low percent bias < 5% for 

most of the parameters and 95% coverage probability rates around the nominal rate. This finding 

was expected since BC+RE was the generating model. Note that the only parameter with a 

percent bias > 5% was 𝜁$ (percent bias = 7.26%), which can be attributed to the relatively small 

effect size combined with the relatively low event rate of death following dementia. 
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Compared to BC+RE, the piecewise (PW) model with the shared random effects (RE) 

association structure (PW+RE) produced biased estimates in slopes for the longitudinal process. 

More specifically, the slope differences before and after the changepoints (𝛽"# and 𝛽##) were 

underestimated (percent bias: -4.56% and -11.65%, respectively) in terms of their absolute values 

with low coverage probabilities (72% and 0%), suggesting more gradual declines after the 

changepoints were estimated using PW+RE. 𝑌# which exhibited a broader transition zone 

showed greater deviations from the true values compared to 𝑌" which contained a narrower 

transition zone. For changepoint parameters, PW+RE yielded similar estimates to BC+RE with 

low bias, although the occurrence of the estimated changepoints was slightly earlier compared to 

the true values, especially for 𝑌# (12 in BC+RE vs 11.55 in PW+RE). The estimated association 

parameters were similar in both models. 

Substituting the shared random effects association structure in BC+RE with the current 

value (CV) association structure (BC+CV) led to an overestimated absolute value of the slope 

differences for 𝑌" (𝛽"#) (percent bias: 6.62%), indicating a steeper estimated decrease after the 

changepoint for the longitudinal measure with a more abrupt transition 𝑌". In addition, the width 

of the narrow transition zone 𝛾" for 𝑌" was overestimated by about 21%. The estimated 

changepoint locations for both longitudinal measures were close to the true values with the 

slightly later occurrence of changepoints estimated in BC+CV (15.47 vs 15 for 𝑌"; 12.13 vs 12 

for 𝑌#). Since the incorporation of the current value association structure resulted in different 

parameter interpretations for 𝜁", 𝜁#, and 𝜁$ compared to the shared random effect structure, the 

bias and coverage probabilities for the survival sub-model in BC+CV were not available. 

However, the negative associations between the longitudinal and survival processes, introduced 

by the shared random effects in the simulated data, were still evident through the posterior means 
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in the three hazard functions within BC+CV. Specifically, a one-unit increase in the true 

unobserved value for the first longitudinal measure at the time of 𝑡", denoted by 𝑚"!(𝑡"), was 

significantly associated with a 49% decrease (HR=0.51, 95% CI: 0.42 to 0.61)  in the hazard for 

dementia at time 𝑡". The estimated values for 𝜁# and 𝜁$ demonstrated negative associations 

between the two processes although they were not significant due to small effect sizes and low 

event rates.  

In contrast to BC+CV, replacing the bent-cable model with the more parsimonious 

piecewise model (PW+CV) produced underestimated absolute values of the slope after the 

changepoint (percent bias: -1.49% for 𝛽"# and -11.32% for 𝛽##) and a shift to the left in the 

locations of the changepoints, especially for 𝑌# (11.64 vs 12). All the other parameter estimates 

remained similar to those in BC+CV.  

Scenario 2: disease cohort with current value association structure (Table 3 and Figure 6) 

The joint model consisting of the bent-cable model and the current value association structure 

(BC+CV), whose structure was consistent with the generating model, had the best performance. 

BC+CV showed small percent bias of < 5% for all parameters and appropriate coverage 

probabilities. Similar to what we observed in Scenario 1, replacing the bent-cable model with the 

piecewise model (PW+CV) induced a more gradual decline following the changepoints and a left 

shift of the changepoint locations for the longitudinal measures, especially for 𝑌# with a wide 

transition zone. In addition, PW+CV slightly biased the estimated association coefficients for the 

hazards of semi-competing risks (e.g., 7.04% bias for 𝜁$ in PW+CV vs 4.51% bias for 𝜁$ in 

BC+CV), while other association parameters were similar.  

Mis-specifying the association structure with the shared random effects association 

structure (BC+RE) caused an underestimation of the absolute slope difference 𝛽"# (percent bias: 
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-5.62%) and the transition width 𝛾" (percent bias: -9.03%) for 𝑌". Despite the unbiased 

estimation for the mean changepoints 𝛽"(' and 𝛽#(', the standard deviation 𝜎(" for the first 

changepoint 𝜏"! was overestimated by around 9% and the correlation between the two 

changepoints 𝜌( was underestimated by about 9%. Regardless of the different parametrization in 

the survival sub-model, the negative associations between the longitudinal and survival processes 

were evident through the effects of the shared random changepoint. Note that in both Scenarios 1 

and 2, although some of the estimates in the mis-specified models deviated in terms of bias and 

coverage probabilities, the estimates remained acceptable. These estimates reflected the true 

longitudinal trajectories as well as the associations between the two processes. 

According to Table 6, the WAIC values showed that the correctly specified joint model 

with a smooth transition produced the smallest WAIC in the first two scenarios, indicating the 

best predictive accuracy for model fit. 

Scenario 3: community cohort with shared random effects association structure (Table 4 

and Figure 7). 

In this scenario, the gap between consecutive visits increased to 5 years, and the mean 

changepoints occurred beyond the average follow-up duration. This resulted in only a portion of 

participants experiencing the observed changepoints. Additionally, the delayed occurrence of 

changepoints resulted in reduced event rates, as these changepoints were associated with semi-

competing risks. The correctly specified model BC+RE produced overestimated absolute slope 

difference 𝛽"# (percent bias: 14%) and transition width 𝛾" (percent bias: 48%) for 𝑌", indicating 

the narrow transition zone cannot be estimated properly due to the large time intervals between 

visits. In addition, the association estimates in the hazard function for death following dementia 

were not accurate (percent bias: 16% for 𝜁$), but the coverage probabilities were acceptable at 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309540doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309540
http://creativecommons.org/licenses/by-nd/4.0/


 

 

around 95%. Like the previous scenarios, PW+RE yielded an underestimated absolute slope 

difference (percent bias: -18.38%) and changepoint occurrence (percent bias: -3.61%) for 𝑌#, as 

well as similar estimated survival parameters compared to BC+RE.  

The misspecification of the survival process using a current value structure (BC+CV) 

resulted in a greater overestimated absolute slope difference and transition widths compared to 

BC+RE, especially for 𝑌" with a narrow transition zone (percent bias: 24.75% for 𝛽"" and 

65.25% for 𝛾"). Overestimated changepoint locations were also observed in BC+CV (percent 

bias: 12.72% for 𝛽("' and 5.31% for 𝛽(#'). Like the previous scenarios, BC+CV and PW+CV 

were able to capture the associations between the longitudinal and survival processes.  

Scenario 4: community cohort with current value association structure (Table 5 and Figure 

8). 

Most of the conclusions drawn in Scenario 2 also applied to Scenario 4, but larger bias was 

observed on average for all parameters due to the community cohort settings. It was worth noting 

that even the correctly specified model BC+CV still introduced bias in slopes, changepoints, and 

association parameters (e.g., percent bias: 13.87% for 𝛽"#, 58.59% for 𝛾", 4.31% for 𝛽"(', and 

11.23% for 𝜁$).   

The predictive accuracy results for Scenarios 3 and 4 in Table 6 revealed that joint 

models combining piecewise models with correctly specified association structures (PW+RE in 

Scenario 3 and PW+CV in Scenario 4) achieved the lowest WAIC values. These models slightly 

outperformed the bent-cable models (BC+RE and BC+CV), which were used to generate the 

data (4108 for PW+RE versus 4113 for BC+RE in Scenario 3; 5509 for PW+CV versus 5522 for 

BC+CV in Scenario 4).  

Summary  
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For the disease cohort with relatively frequent longitudinal visits and high event rates, the joint 

models that included the bent-cable model, which allowed for a smooth change, along with 

correctly specified association structures, showed the best performance regarding bias, coverage 

probability, and predictive accuracy. These findings demonstrated the flexibility of the bent-cable 

model in handling changepoints in longitudinal measures that exhibited either abrupt or smooth 

change with sufficient data. Parameter estimates from other joint models may deviate from the 

true values, but most bias and coverage probability values were within an acceptable range. 

When evaluating the impact of mis-specifying the longitudinal model with the survival model 

fixed (BC+RE vs PW+RE and BC+CV vs PW+CV), the piecewise model that assumed an 

abrupt change produced a more gradual change in cognitive decline after the changepoint and 

earlier detection of the changepoint compared to the bent-cable model. Differences in the 

estimates were more pronounced for the cognitive measure with a wider transition zone. The 

estimated survival parameters demonstrated robustness, maintaining stability across different 

selections of longitudinal models. When assessing the impact of mis-specifying the survival 

model with the longitudinal model fixed (BC+RE vs BC+CV and PW+RE vs PW+CV), the 

current value association structure resulted in a more drastic decline after the changepoint, a 

wider transition width, and a later occurrence of the changepoint, especially for the cognitive 

measure with a sharp change. The associations between the longitudinal and survival processes 

were captured despite the change in the association structure.  

For the community cohort with relatively wide visit intervals and small event rates, more 

bias was observed compared to the disease cohort overall. The joint models that incorporated the 

bent-cable model and correctly specified associations produced the best performance for the 

cognitive measure with a wide and smooth change. In contrast, the piecewise model coupled 
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with correctly specified associations showed optimal results for the cognitive measure with a 

sharp change. Additionally, both piecewise and bent-cable models showed comparable predictive 

accuracy. These results indicated that the bent-cable model failed to improve upon the more 

parsimonious piecewise model in the presence of insufficient data, especially for the measure 

with an abrupt transition. Most of the other findings in the disease cohort were also applicable to 

the community cohort, but the differences among models became more obvious. 

5. Real data application 

In this section, we used longitudinal data from neuropsychological tests (NP tests) along with 

dementia and death data in the Framingham Heart Study (FHS) Offspring cohort to demonstrate 

our methods. Specifically, we fitted our proposed joint models to the FHS data and compared the 

estimated changepoints and slopes. The impact of the longitudinal process on the transitions 

between health states was also evaluated under different association structures.  

5.1 Data description 

The FHS is a multigenerational cohort study initiated in 1948  by enrolling 5209 residents from 

Framingham, Massachusetts in the Original cohort [43]. In 1971, 5214 participants who were 

offspring of the Original cohort and the spouses of these offspring were included in the Offspring 

cohort [44]. The participants in the Offspring cohort have undergone up to 10 examinations, 

which are scheduled every four to six years. Beginning in 1999, the surviving participants in the 

Offspring cohort were invited to join a secondary study, where they underwent a battery of NP 

tests every five or six years [15]. Participants identified as having potential cognitive impairment 

were invited to undergo additional, annual neurologic and NP tests. A dementia review panel 

determined whether the participants had dementia, as well as the dementia type and the date of 
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onset by reviewing every case of possible cognitive decline based on the participants’ cognitive 

information such as neurologic and NP tests, medical records, and neuroimaging studies [15, 16]. 

NP tests are used to measure participants’ cognitive changes over time. The NP test 

measures cover four domains in the FHS: memory, attention and executive function, 

visuoperceptual, and language [45]. In this research project, we mainly focus on memory and 

language domains. The memory domain includes the following tests: Wechsler Memory Scale 

(WMS) Logical Memory – Immediate Recall, WMS Logical Memory – Delayed Recall, WMS 

Visual Reproductions – Immediate Recall, WMS Visual Reproductions – Delayed Recall, WMS 

Paired Associates – Immediate Recall, and WMS Paired Associates – Delayed Recall. The 

language domain includes Boston Naming Test 30 item version, Wide Range Achievement Test-

3 (WRAT-3) Reading subtest, and Wechsler Adult Intelligence Scale (WAIS) Similarities subtest. 

For each participant at each visit, we calculated a memory score as the average of the Z scores 

for the NP tests in the memory domain and a language score as the average of the Z scores for 

the NP tests in the attention and executive function domain (Figure 9). 

Of the 5124 Offspring cohort participants, 2992 had at least one NP test in the memory 

domain, while 2971 had at least one NP test in the language domain. We excluded participants 

with missing education information from our analysis: 471 out of 2992 participants for the 

memory domain, and 466 out of 2971 participants for the language domain. In addition, we 

restricted the data to participants who had at least three visits with NP tests in both memory and 

language domains, leaving 1128 participants. Of the 1128 participants, we excluded 11 

participants who had dementia onset before the age of 60 or at baseline. Our final sample 

included 1117 participants. Of the 1117 participants in our final sample, 86 were diagnosed with 
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dementia during follow-up, 66 died without the onset of dementia, and 165 died following the 

diagnosis of dementia. 

5.2 Model specification 

In the longitudinal part of the joint model, we fitted two types of bivariate random changepoint 

models for the z-scores in the memory and language domains. The timescale was age centered at 

60 years, and covariates included sex and education years. To reduce model complexity and 

facilitate model convergence, we only included random effects in the intercept term and the 

changepoint term. We encountered convergence problems in some of the models as we included 

more random effects and covariates, which prevented us from conducting proper model 

comparisons. These issues were also reported in previous Bayesian joint models [3, 21]. We 

assumed that two cognitive measures, i.e., memory z-scores and language z-scores, were 

correlated through their random changepoints. The piecewise model and the bent-cable model 

were shown as follows: 

Piecewise model 

 𝑀𝑒𝑚𝑜𝑟𝑦!?𝑡!&@ = 𝑚"!?𝑡!&@ + 𝜖"!?𝑡!&@	

= (𝛽"'' + 𝛽"'"𝑠𝑒𝑥! + 𝛽"'#𝑒𝑑𝑢! + 𝑏"'!) + 𝛽""𝑡!& + 𝛽"#(𝑡!&

− 𝜏"!)𝐼?𝑡!& − 𝜏"!@ + 𝜖"!(𝑡!&) 

(44) 

 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒!?𝑡!&@ = 𝑚#!?𝑡!&@ + 𝜖#!?𝑡!&@	

= (𝛽#'' + 𝛽#'"𝑠𝑒𝑥! + 𝛽#'#𝑒𝑑𝑢! + 𝑏#'!) + 𝛽#"𝑡!& + 𝛽##(𝑡!&

− 𝜏#!)𝐼?𝑡!& − 𝜏#!@ + 𝜖#!(𝑡!&) 

(45) 

Bent-cable model 

 𝑀𝑒𝑚𝑜𝑟𝑦!?𝑡!&@ = 𝑚"!?𝑡!&@ + 𝜖"!?𝑡!&@	 (46) 
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= (𝛽"'' + 𝛽"'"𝑠𝑒𝑥! + 𝛽"'#𝑒𝑑𝑢! + 𝑏"'!) + 𝛽""𝑡!& + 𝛽"#𝑞(𝑡!& , 𝜏"! , 𝛾")

+ 𝜖"!(𝑡!&) 

 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒!?𝑡!&@ = 𝑚#!?𝑡!&@ + 𝜖#!?𝑡!&@	

= (𝛽#'' + 𝛽#'"𝑠𝑒𝑥! + 𝛽#'#𝑒𝑑𝑢! + 𝑏#'!) + 𝛽#"𝑡!&

+ 𝛽##𝑞(𝑡!& , 𝜏#! , 𝛾#) + 𝜖#!(𝑡!&) 

(47) 

where 𝛽"'' and 𝛽#'' are intercepts for memory and language z-scores, and 𝛽"'", 𝛽"'#, 𝛽#'", and 

𝛽#'#	are coefficients of sex and education for two longitudinal measures.  𝜏"! and 𝜏#! are random 

changepoints for memory and language z-scores with the following distributions:	

�
𝜏"!
𝜏#!�~𝑁(�

𝜇("
𝜇(#� , 	(

𝜎("# 𝜌(𝜎("𝜎(#
𝜌(𝜎("𝜎(# 𝜎(##

). 𝑏"'! and 𝑏#'! are random intercepts for memory and 

language z-scores that follow normal distributions: �𝑏"'!𝑏#'!
�~𝑁(�00� , 	(

𝜎0"# 0
0 𝜎0##

).  𝑞(	. ) is the 

function for smooth transition defined in Equation (7). The definitions for other parameters are 

described in the previous sections.  

The random changepoint models were then combined with either of the two types of 

illness-death models to create our proposed joint models. We specified three hazard functions 

ℎ", ℎ#, and ℎ$ for time to dementia, time to death without dementia, and time to death following 

dementia, respectively. Time in the illness-death models is the age at diagnosis of dementia or at 

death subtracted by 60 years in order to be consistent with the timescale in the longitudinal part. 

We considered two association structures as follows: 

Shared random effects model 

 ℎ"(𝑡"|𝑋! , 𝑏! , 𝜏!) = 𝑏"𝑡"
0#;" exp(𝛼"' + 𝛼""𝑠𝑒𝑥! + 𝛼"#𝑒𝑑𝑢! + 𝜁""(𝜏"! − 20) + 𝜁"#𝑏"'!) (48) 

 ℎ#(𝑡#|𝑋! , 𝑏! , 𝜏!) = 𝑏#𝑡#
0$;" exp(𝛼#' + 𝛼#"𝑠𝑒𝑥! + 𝛼##𝑒𝑑𝑢! + 𝜁#"(𝜏"! − 20) + 𝜁##𝑏"'!) (49) 
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 ℎ$(𝑡#|𝑡", 𝑋! , 𝑏! , 𝜏!) 

= 𝑏$(𝑡# − 𝑡")0&;" exp(𝛼$' + 𝛼$"𝑠𝑒𝑥! + 𝛼$#𝑒𝑑𝑢! + 𝜁$"(𝜏"! − 20) + 𝜁$#𝑏"'!) 

(50) 

Current value model 

 ℎ"(𝑡"|𝑋! , 𝑏! , 𝜏!) = 𝑏"𝑡0#;"𝑒𝑥𝑝	(𝛼"' + 𝛼""𝑠𝑒𝑥! + 𝛼"#𝑒𝑑𝑢! + 𝜁""𝑚"!(𝑡")) (51) 

 ℎ#(𝑡#|𝑋! , 𝑏! , 𝜏!) = 𝑏#𝑡0$;"𝑒𝑥𝑝	(𝛼#' + 𝛼#"𝑠𝑒𝑥! + 𝛼##𝑒𝑑𝑢! + 𝜁#"𝑚"!(𝑡#)) (52) 

 ℎ$(𝑡#|𝑡", 𝑋! , 𝑏! , 𝜏!) = 𝑏$(𝑡# − 𝑡")0&;"𝑒𝑥𝑝	(𝛼$' + 𝛼$"𝑠𝑒𝑥! + 𝛼$#𝑒𝑑𝑢! + 𝜁$"𝑚"!(𝑡#)) (53) 

Note that in both models, sex and education were included as covariates. The specifications of 

the association structures resembled those in our simulations, in which we only considered the 

changepoint or true current value for the first longitudinal cognitive measure to prevent 

multicollinearity. In the shared random effect model, we incorporated both random changepoint 

and random intercept as the link between the longitudinal and survival processes. For better 

model convergence, we further centered the time at changepoint since age 60 by subtracting 20, 

denoted as (𝜏"! − 20). 

We adopted Bayesian methods for estimation, incorporating weakly informative priors 

similar to those used in our simulation studies. Convergence was assessed using the potential 

scale reduction statistic 𝑅� [38]. Models were compared based on their WAIC values. 

5.3 Results 

The parameter estimates of the four proposed joint models, including posterior means and 95% 

credible intervals (CI), were displayed in Table 7 and Figures 10 and 11. Based on the WAIC 

values of these four models, the models with smooth transition periods (BC+RE and BC+CV) 

resulted in a better model fit. Comparing BC+RE and BC+CV, the former yielded the smallest 

WAIC value, indicating a superior fit to the FHS Offspring cohort data. Therefore, we mainly 

referred to the results in BC+RE model for the following parameter interpretations. 
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Parameter interpretations in the longitudinal process 

The slope parameters suggested a flat trajectory and then a drastic downward decline in cognitive 

functions for both memory and language domains. Specifically, the rate of decline in cognitive 

functions increased by 17 times for memory and 19 times for language after changepoints. There 

was a significant difference between men and women in baseline cognitive scores, with women 

showing higher cognitive function in both domains (𝛽"'" = 0.28, 95%	CI:	0.22	to	0.34; 𝛽#'" =

0.1, 95%	CI: 0.04	to	0.16). The length of education was positively associated with baseline 

cognition (𝛽"'# = 0.08, 95%	CI:	0.07	to	0.1; 𝛽#'# = 0.14, 95%	CI: 0.12	to	0.15). The smooth 

transition parameters demonstrated a 12-year transition period for the memory domain and a 14-

year transition period for the language domain. On average, the changepoint was at the age of 86 

(𝜇(" = 26) for the memory domain while the changepoint for the language domain occurred 

later at the age of 90 (𝜇(" = 30). The random changepoints for both cognitive domains showed a 

strong correlation, with a correlation coefficient 𝜌( of 0.9.  

Parameter interpretations in the survival process 

For the survival process from the healthy state to the dementia state, sex, education, and the 

random changepoint in the memory cognitive domain were significantly associated with the 

hazard for dementia. Specifically, women had a smaller risk of developing dementia adjusting 

for other covariates compared to men (HR=0.55, 95% CI: 0.31 to 0.93). A longer duration of 

education corresponded to a smaller risk for dementia (HR=0.87, 95% CI: 0.78 to 0.96). An 

increase of one year in the changepoint for the memory cognitive domain was associated with a 

26% lower hazard (HR=0.74, 95% CI: 0.69 to 0.79) for the development of dementia. Of note, 

the effect of the random intercept of the memory cognitive domain was negative but not 

significant (HR=0.73, 95% CI: 0.36 to 1.52).  
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For the survival process from the healthy state to the death state, women had a lower risk 

of death compared to men (HR=0.55, 95% CI: 0.4 to 0.77) while education duration displayed 

non-significant association for participants who never developed dementia. Participants with 

later changepoint occurrence for the memory cognitive domain were less likely to die compared 

to those with earlier changepoint occurrence among the participants who had not experienced 

dementia (HR=0.92, 95% CI: 0.89 to 0.96).  

For the transition from the dementia state to the death state, women displayed a lower   

hazard for death conditional on the occurrence of dementia, but this effect was not significant 

(HR=0.92, 95% CI: 0.53 to 1.58). Unlike the previous hazard function for death without 

dementia, we observed a borderline significant deleterious effect of education (HR=1.13, 95% 

CI:1.01 to 1.26) and the occurrence of changepoint (HR=1.06, 95% CI:1.02 to 1.11) on death 

following dementia. It appeared that having a longer period of education and a later occurrence 

of changepoint increased the risk for death for the participants with dementia.  

Comparison of parameters among models 

 We compared some of the parameters of our main interest in different models, e.g., the slope 

differences before and after the changepoint, mean changepoints, and association parameters 

between two processes (Figures 10 and 11). Most of the findings in the simulation section 

applied to our real data. Overall, the estimation of longitudinal parameters, including the slope 

differences and mean changepoints, was influenced by the selection of changepoint formulations 

and association structures. The survival parameters showed stableness in different changepoint 

formulations. In the current value models (Figure 11 Panel B), the association between the true 

unobserved longitudinal measures and the hazard for death after dementia was not significant 

while the directions of associations were in alignment with the shared random effect models.  
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6. Discussion 

In this paper, we proposed a joint model framework that incorporated a random changepoint 

model for longitudinal cognitive decline and an illness-death model for dementia and death. Our 

main objective was to model the longitudinal cognitive trajectories while investigating the effect 

of the longitudinal process on the transitions between health states. Within this framework, we 

further assessed two changepoint formulations coupled with two association structures between 

longitudinal and survival processes. To evaluate the robustness and accuracy of our proposed 

models, we performed simulation studies in the settings of both disease and community cohorts, 

with different longitudinal measures and joint model association structures. Our simulations 

confirmed that, the joint model, which combined the bent-cable model with a smooth transition 

and correctly specified association structures, displayed the best performance in the disease 

cohort. Other joint models also performed well with bias within a reasonable range. The 

estimation of longitudinal parameters tended to be influenced by the choice of both changepoint 

formulations and association structures. In contrast, survival parameter estimates proved robust 

against different changepoint formulations and allowed for effective characterization of the 

relationship between longitudinal and survival processes even with misspecifications. Compared 

to the disease cohort, the estimates for the community cohort yielded a larger bias. The bent-

cable model failed to offer advantages over the simpler piecewise model using the data with less 

frequent longitudinal visits and low event rates in the community cohort. While most findings 

from the disease cohort also applied to the community cohort, the distinctions between models 

became more pronounced in the community cohort. 

The application using NP test scores and time to dementia and death in the FHS 

Offspring cohort confirmed our simulation study findings regarding model comparison. The joint 
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model that included the bent-cable model and the shared random effect association structure 

displayed the best model fit based on WAIC values. This result suggested that the FHS data may 

resemble a structure where longitudinal cognitive decline displayed a smooth change over time, 

linked with times to dementia and death by the random changepoint. Additionally, we showed 

that sex, education, and the timing of changepoints were associated with transitions between 

different health states. Importantly, we found that the well-educated individuals tended to have a 

higher risk of death once they developed dementia compared to those who were less educated. It 

was reported that cognitive reserve for individuals with higher education contributes to more 

severe underlying brain lesions at the onset of dementia, resulting in a shorter subsequent 

survival period [46, 47]. Experiencing the cognitive changepoint at a later time led to a higher 

risk for death following dementia. Those with later changepoint occurrence might develop 

dementia at an older age, which could lead to a faster progression to death after the onset of 

dementia. The effect of changepoint occurrence might be mitigated if we further included the age 

at dementia onset as one of the explanatory variables or used the Markovian model. 

The findings in our study are consistent with prior research. First, previous joint models, 

which combined changepoints in cognitive decline with times to dementia or death, 

demonstrated that changepoints estimated from cognitive scores were associated with the risk for 

dementia or death [19, 22, 28]. These associations correspond with the results in our study. 

Second, as for model comparison, Yang et al. (2013) compared three bivariate changepoint 

models for cognitive scores and BMI [14]. They suggested that the estimated changepoint of 

cognitive scores in the most flexible smooth polynomial model was years later than the other two 

simplified models including the broken-stick model. The smooth polynomial model, which 

included an additional smooth interval, allowed the identification of changepoints in a later time 
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window. Wang (2021) compared various formulations of changepoints in random changepoint 

models within the joint model framework [22]. This work suggested that both the bent-cable and 

smooth polynomial models could effectively characterize the changepoint data, having either 

abrupt or gradual transitions. This finding aligns with what we found in our disease cohort 

simulation.  

Our study has some limitations. First, it is assumed that all participants will eventually 

experience a changepoint in their cognitive scores and develop dementia if they are followed 

long enough. To eliminate this assumption, the cure rate model that allows a fraction of 

participants to have a null risk of developing events of interest has been suggested in previous 

joint model literature [3, 48]. Second, a participant may develop dementia between his/her 

dementia diagnosis date and the preceding visit. Our method considers the time to dementia 

onset as the time at the dementia diagnosis date, potentially introducing bias due to interval 

censoring. Previous studies have suggested that using inappropriate models to handle time-to-

event data with interval-censoring may cause an underestimation of dementia incidence [16, 46]. 

Third, the FHS Offspring cohort is a community-based cohort, where the participants underwent 

NP tests every five or six years, on average, with a low rate of dementia onset. Our simulations 

and previous research implied that the estimation of joint models can be improved if 

observations are recorded at more frequent intervals [3, 29]. Additionally, an FHS participant 

may be required to undergo additional NP testing annually on condition that his/her test score 

drops significantly or falls below an education-adjusted cutoff, making the visitation process 

informative. Although this study design contributes to more frequent observations, failing to 

account for the informative visitation process may result in biased longitudinal estimates [49]. 
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Plourde (2020) proposed a joint model by treating the visitation process as repeated events using 

the FHS data [49]. 

Our study possesses some strengths. First, our proposed joint models combine 

changepoint estimation with illness-death models, distinguishing different health state transitions 

for semi-competing risks. This represents an improvement over previous joint models 

incorporating changepoints and semi-competing risks. Previous studies using a joint model with 

changepoints failed to consider each of the distinct transitions between health states. For 

example, Wang (2021) considered disease onset and disease-free death but ignored death 

following disease [22]. Dantan et al. (2011) failed to distinguish the transitions from different 

non-terminal states to the death state [28]. Second, we assessed the impact of different selections 

of changepoint formulations and association structures between two processes on parameter 

estimations in both sub-models. Previous studies neglected to consider different association 

structures in the survival process. Wang (2021) compared five changepoint models but assumed 

a shared random effect structure in all joint models [22]. Rouanet et al. (2016) took a latent class 

approach without explicitly specifying the association between longitudinal and survival 

processes [29]. Third, we evaluated a bivariate random changepoint model within the joint model 

framework, which can be easily extended to a multivariate case. The bivariate/multivariate 

approach accommodates   different sources of variation and correlation among longitudinal 

outcomes. Additionally, it allows researchers to compare the temporal orders of changepoints in 

different longitudinal measures.  

Our method can be extended in the following ways. First, our proposed joint model can 

be extended to account for interval censoring in the survival sub-model. Approaches to handle 

interval censoring have been used in the illness-death models and joint models. Joly et al. (2002) 
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proposed an illness-death model for interval-censored data using a penalized likelihood approach 

[50]. Rouanet et al. (2016) handled both interval censoring and semi-competing risks in a joint 

model framework, but the correlation between cognitive measures and times to dementia or 

death is captured by latent classes. Second, a participant may experience mild cognitive 

impairment (MCI) before progressing to dementia or death. Such disease progression can also be 

defined as a multistate process. To incorporate additional non-terminal health states such as MCI, 

the illness-death model can be extended to a multistate model within our joint model framework 

[51]. Some of the previous joint model studies included more health states compared with our 

study. Dantan et al. (2010) included a latent health state before dementia onset, referred to as the 

pre-diagnosis stage, which is closely related to MCI. Ferrer et al. (2016) proposed a joint model 

that combines a linear mixed effects model with a multistate model and focused on the impact of 

longitudinal dynamics on the transitions between clinical states [52]. Furthermore, personalized 

dynamic prediction using joint models has gained increasing research interest [53, 54]. In 

dynamic prediction, prediction results based on fitted joint models can be updated utilizing new 

information recorded over time. One of our next steps is to perform dynamic predictions for 

future longitudinal trajectories as well as risks for dementia and death using our fitted joint 

models. 

In conclusion, we proposed a joint model that integrates a multivariate random 

changepoint model for longitudinal cognitive decline with an illness-death model for semi-

competing risks. Our proposed model provided a flexible framework for estimating longitudinal 

trajectories with changepoints and for characterizing the influence of longitudinal measures on 

transitions between health states. We demonstrated that the selection of changepoint formulations 

and association structures influences model performance for different cohort structures. Future 
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extensions include addressing interval censoring and incorporating multistate models in our 

current joint model framework. 
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Tables and Figures 
 
Table 1. Main parameter settings for all four scenarios in the simulation study. 
 
Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Longitudinal 
Interval between 
visits 

2 years 2 years 5 years 5 years 

𝛽"' -0.18 -0.18 -0.18 -0.18 
𝛽"" -0.02 -0.02 -0.02 -0.02 
𝛽"# -0.15 -0.15 -0.15 -0.15 
𝛾" 2 2 2 2 
𝜎"' 0.4 0.4 0.4 0.4 
𝜎"# 0.05 0.05 0.05 0.05 
𝜌0" 0.3 0.3 0.3 0.3 
𝛽#' -0.03 -0.03 -0.03 -0.03 
𝛽#" -0.02 -0.02 -0.02 -0.02 
𝛽## -0.2 -0.2 -0.2 -0.2 
𝛾# 4 4 4 4 
𝜎#' 0.5 0.5 0.5 0.5 
𝜎## 0.05 0.05 0.05 0.05 
𝜌0# 0.3 0.3 0.3 0.3 

Changepoint 
𝛽"(' 12 12 25 25 
𝛽"(" -3 -3 -3 -3 
𝜎(" 3 3 8 8 
𝛽#(' 15 15 27 27 
𝛽#(" -5 -5 -5 -5 
𝜎(# 3 3 8 8 
𝜌( 0.8 0.8 0.8 0.8 

Survival 
𝛼" -0.6 -0.2 -0.6 -0.2 
𝜁" -0.3 -2.5 -0.3 -2.5 
𝛼# -0.6 -0.4 -0.6 -0.4 
𝜁# -0.1 -0.6 -0.1 -0.6 
𝛼$ -0.1 -0.2 -0.1 -0.2 
𝜁$ -0.1 -0.5 -0.1 -0.5 

Scenario 1, disease cohort with shared random effect association structure; Scenario 2, disease 
cohort with current value association structure; Scenario 3, community cohort with shared 
random effect association structure; Scenario 4, community cohort with current value association 
structure.  
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Table 2. Simulation results for Scenario 1 (disease cohort with shared random effect 
association structure). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
BC, bent-cable model; RE, shared random effect association structure; PW, piecewise model; 
CV, current value association structure. 
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Table 3. Simulation results for Scenario 2 (disease cohort with current value association 
structure). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
BC, bent-cable model; RE, shared random effect association structure; PW, piecewise model; 
CV, current value association structure. 
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Table 4. Simulation results for Scenario 3 (community cohort with shared random effect 
association structure). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
BC, bent-cable model; RE, shared random effect association structure; PW, piecewise model; 
CV, current value association structure. 
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Table 5. Simulation results for Scenario 4 (community cohort with current value 
association structure). 

 
True, parameter true value; Mean, posterior mean; PB, percent bias; CP: 95% credible interval; 
BC, bent-cable model; RE, shared random effect association structure; PW, piecewise model; 
CV, current value association structure. 
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Table 6. Mean WAIC values for each model in each scenario. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

BC+RE 7616 7904 4113 5559 

PW+RE 7716 8004 4108 5557 

BC+CV 7777 7536 4363 5522 

PW+CV 7880 7639 4367 5509 

BC, bent-cable model; RE, shared random effect association structure; PW, piecewise model; 
CV, current value association structure. 
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Table 7. Joint model results for the Framingham Heart Study Offspring cohort data. 

 
Mean, posterior mean; Lower, lower bound of 95% credible interval; Upper: upper bound of 
95% credible interval; BC, bent-cable model; RE, shared random effect association structure; 
PW, piecewise model; CV, current value association structure. 
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Figure 1. The visualization of the piecewise model (left) and the Bent-Cable model (right). 
The y-axis represents the value of a longitudinal measure, and the x-axis represents age. 𝜏! is the 
changepoint for participant 𝑖. [𝜏! − 𝛾, 𝜏 + 𝛾] denotes the smooth transition zone for the Bent-
Cable model. 
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Figure 2. Three health states with semi-competing risks. ℎ"(𝑡") is the hazard function for 
dementia at time 𝑡", ℎ#(𝑡#) is the hazard function for death at time 𝑡#, and ℎ$(𝑡#|𝑡") denotes the 
hazard function for death at time 𝑡# given that the participant develop dementia at time 𝑡".
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Figure 3. The joint model framework. Two red boxes represent the longitudinal process for 
two longitudinal measures, and the blue box is the survival process. 𝑌"! and 𝑌#! are two 
longitudinal measures, 𝑚"!(𝑡) and 𝑚#!(𝑡) are the true unobserved values for two longitudinal 
measures, 𝜏"! and 𝜏#! are two changepoints, 𝒃𝟏𝒊 and 𝒃𝟐𝒊 are random intercepts and slopes for the 
first and second longitudinal measures. ℎ3!(𝑡) denotes the hazard function for each health state 
transition, and 𝑋3 is a baseline covariate associated with each hazard function. Both longitudinal 
and survival processes are linked by either random effects (solid blue lines for the shared random 
effect model) or the true unobserved values of longitudinal measures (dashed blue lines for the 
current value model).  
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Figure 4. Four scenarios for dementia and death. The circle symbol represents the occurrence 
of dementia, the diamond symbol denotes the occurrence of death, and the square means the 
participant is censored.  
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309540doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309540
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

 
Figure 5. Distributions of posterior means for main changepoint and association 
parameters in Scenario 1 (disease cohort with shared random effect association structure). 
Panels A, B, and C represent the distributions of estimated posterior means for 𝛽"(' (the mean 
changepoint parameter in 𝑌"), 𝛽#(' (the mean changepoint parameter in 𝑌#), and 𝜁$ (the 
association parameter between longitudinal and survival processes in ℎ$), respectively. In each 
panel, the boxes denote the posterior means across all simulated datasets based on each method, 
while the dashed line indicates the true value for the parameter. PW: piecewise model; BC: bent-
cable model; RE: shared random effect structure; CV: current value structure.  
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Figure 6. Distributions of posterior means for main changepoint and association 
parameters in Scenario 2 (disease cohort with current value association structure). Panels 
A, B, and C represent the distributions of estimated posterior means for 𝛽"(' (the mean 
changepoint parameter in 𝑌"), 𝛽#(' (the mean changepoint parameter in 𝑌#), and 𝜁$ (the 
association parameter between longitudinal and survival processes in ℎ$), respectively. In each 
panel, the boxes denote the posterior means across all simulated datasets based on each method, 
while the dashed line indicates the true value for the parameter. PW: piecewise model; BC: bent-
cable model; RE: shared random effect structure; CV: current value structure.  
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309540doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309540
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

 
Figure 7. Distributions of posterior means for main changepoint and association 
parameters in Scenario 3 (community cohort with shared random effect association 
structure). Panels A, B, and C represent the distributions of estimated posterior means for 𝛽"(' 
(the mean changepoint parameter in 𝑌"), 𝛽#(' (the mean changepoint parameter in 𝑌#), and 𝜁$ 
(the association parameter between longitudinal and survival processes in ℎ$), respectively. In 
each panel, the boxes denote the posterior means across all simulated datasets based on each 
method, while the dashed line indicates the true value for the parameter. PW: piecewise model; 
BC: bent-cable model; RE: shared random effect structure; CV: current value structure.  
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Figure 8. Distributions of posterior means for main changepoint and association 
parameters in Scenario 4 (community cohort with current value association structure). 
Panels A, B, and C represent the distributions of estimated posterior means for 𝛽"(' (the mean 
changepoint parameter in 𝑌"), 𝛽#(' (the mean changepoint parameter in 𝑌#), and 𝜁$ (the 
association parameter between longitudinal and survival processes in ℎ$), respectively. In each 
panel, the boxes denote the posterior means across all simulated datasets based on each method, 
while the dashed line indicates the true value for the parameter. PW: piecewise model; BC: bent-
cable model; RE: shared random effect structure; CV: current value structure.  
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Figure 9. Z-score trajectories for the memory and language domains of neuropsychological 
tests. Panels A and B show individual z-score trajectories for the memory and language domains, 
respectively. In each panel, the x-axis represents age, and the y-axis represents z-scores. Each 
curve denotes a participant's trajectory. 
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Figure 10. Comparison of estimates for slope differences after the changepoint and mean 
changepoint location. In Panel A, the bars denote the posterior means and its 95% credible 
intervals for slope differences after the changepoint based on each method. 𝛽"# and 𝛽## in the x-
axis denote slope differences after the changepoint in memory and language cognitive domains, 
respectively. In Panel B, the bars denote the posterior means and its 95% credible intervals for 
estimated mean changepoints based on each method. 𝜇(" and 𝜇(# in the x-axis denote estimated 
mean changepoints in memory and language cognitive domains, respectively. PW: piecewise 
model; BC: bent-cable model; RE: shared random effect structure; CV: current value structure. 
CI: credible interval. 
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Figure 11. Comparison of estimates for association parameters linking the longitudinal and 
survival processes. In Panel A, the bars denote the posterior means and its 95% credible 
intervals for the association parameters between the changepoint in the longitudinal process and 
the survival process based on each method. 𝜁"", 𝜁"", and 𝜁$" in the x-axis denote the association 
parameters in ℎ", ℎ#, and ℎ$, respectively. In Panel B, the bars denote the posterior means and its 
95% credible intervals for the association parameters between the true unobserved value of the 
longitudinal cognitive measures and the survival process based on each method. 𝜁"", 𝜁"", and 𝜁$" 
in the x-axis denote the association parameters in ℎ", ℎ#, and ℎ$, respectively. PW: piecewise 
model; BC: bent-cable model; RE: shared random effect structure; CV: current value structure. 
CI: credible interval. 
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