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ABSTRACT 

Background: Essential Hypertension (EH) is a global health issue, responsible for approximately 9.4 million deaths 

annually. Its prevalence varies by region, with genetic factors contributing 30-60% to blood pressure variation. Despite 

extensive research, the genetic complexity of EH remains largely unexplained. This study aimed to investigate the 

genetic basis of EH in African-derived individuals from partially isolated quilombo remnant populations in Vale do 

Ribeira (SP-Brazil). Methods: Samples from 431 individuals (167 affected, 261 unaffected, 3 with unknown phenotype) 

were genotyped using a 650k SNP array. Global ancestry proportions were estimated at 47% African, 36% European, 

and 16% Native American. Additional data from 673 individuals were used to construct six pedigrees. Pedigrees were 

pruned, and three non-overlapping marker subpanels were created. We phased haplotypes and performed local 

ancestry analysis to account for admixture. We then conducted genome-wide linkage analysis (GWLA) and performed 

fine-mapping through family-based association studies (FBAS) on imputed data and through EH-related genes 

investigation. Results: Linkage analysis identified 22 ROIs with LOD scores ranging from 1.45 to 3.03, encompassing 

2363 genes. Fine-mapping identified 60 EH-related candidate genes and 118 suggestive or significant variants (FBAS). 

Among these, 14 genes, including PHGDH, S100A10, MFN2, and RYR2, were strongly associated with hypertension 

and harbors 29 SNPs. Conclusions: Through a complementary approach — combining admixture-adjusted genome-

wide linkage analysis based on Markov chain Monte Carlo (MCMC) methods, association studies on imputed data, and 

in silico investigations — genetic regions, variants, and candidate genes were identified, offering insights into the 

genetic etiology of EH in quilombo remnant populations. 
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INTRODUCTION 

Essential Hypertension (EH) is a pervasive and sustained raise in arterial blood pressure (BP) and 
a major cause of premature death worldwide (K. T. Mills et al., 2020). Classified as the primary preventable 
risk factor for cardiovascular diseases (CVDs) (Fuchs & Whelton, 2020), EH is defined as systolic BP ≥140 
mmHg and/or diastolic BP ≥90 mmHg (Barroso et al., 2021; Unger et al., 2021; Whelton et al., 2018).  

EH, which affects 1.3 billion people worldwide annually (World Health Organization, 2023), demands 
comprehensive investigation. Global prevalence is 22.1% (WHO, 2015), 23.9% in Brazil (PNS, 2019). EH 
is a multifactorial chronic condition, intricately weaving together environmental factors, social determinants, 
and greatly (30-60%) genetic/epigenetic influences (Arnett & Claas, 2018; Niiranen et al., 2017; Patel et al., 
2017). The risk for BP traits varies among ethnic groups (Keaton et al., 2021) and the genetic ancestry 
significantly influences hypertension risk (Aggarwal et al., 2021), particularly in Afro-descendant 
populations (Jones et al., 2017; Marden et al., 2016; K. T. Mills et al., 2020; Zhou et al., 2021; Zilbermint et 
al., 2019). 

Yet, the genetic etiology of hypertension — encompassing genes, variants, susceptibility loci, and 
population disparities — remains elusive (Ehret & Caulfield, 2013; Seidel & Scholl, 2017). Despite 
advancements from the common disease-common variant and common disease-rare variant hypotheses, 
methodologies such as Genome-Wide Linkage Analysis (GWLA) and Genome-Wide Association Studies 
(GWAS) face limitations (Olczak et al., 2021). This gap leaves a segment of EH heritability unexplained by 
known genetic factors. Moreover, the existing (data as of May 2024) underrepresentation of African 
(0.21%), African American or Afro-Caribbean, and Native American (0.53%), Hispanic or Latin American 
(0.39%), Other/Mixed (0.67%) populations (M. C. Mills & Rahal, 2020) in worldwide genomic investigations 
imposes constraints on the generalizability of results to admixed populations (Buniello et al., 2019; Popejoy 
& Fullerton, 2016), such as the Brazilian one (68.1% European, 19.6% African, and 11.6% Native American) 
(de Souza et al., 2019). 

This study focuses on the tri-hybrid admixed populations known as “quilombo remnants” in Vale do Ribeira 
region, São Paulo, Brazil. Quilombo remnants are communities established by runaway or abandoned 
African slaves, often exhibiting intricate mixtures with European and Native American ancestry. These 
populations represent a unique model for the study of diseases. They are marked by a high prevalence of 
EH (Borges & Kimura, 2023), well-defined clinical characterization, semi-isolation, background relatedness, 
high gene flow between populations, and founder effects (Lemes et al., 2014). They also exhibit relatively 
homogeneous environmental influences, including lifestyle, dietary habits, and natural habitat, thereby 
minimizing confounding factors found in larger urban populations. Studying EH in quilombo remnants helps 
to reduce biases associated with population heterogeneity. This approach improves the signal-to-noise 
ratio, thereby enhancing statistical power, while providing better representation of admixed populations in 
genomic studies. It also allows us to uncover chromosomal regions, genes, and variants that may contribute 
to EH. 

Here, we employed an efficient multi-level computational approach that combines: (a) pedigree- and 
population-based methodologies to account for admixture (African, European, and Native American 
ancestries) through family analysis (Genome-Wide Linkage Analysis, GWLA) and (b) a two-step fine-
mapping strategy based on family-based association studies (FBAS) and investigation of EH-related genes. 
By reducing the need for multiple tests, minimizing population stratification, and leveraging chromosomal 
location information provided by meiotic events, this approach aims to contribute to a deeper understanding 
of the genetic underpinnings of EH. 

 

METHODS 

SAMPLES AND SNP GENOTYPING 

We conducted 51 trips to Vale do Ribeira (São Paulo, Brazil) from 2000-2020 to obtain samples 
(peripheral blood for DNA extraction), clinical data (average blood pressure, height, weight, waist 
circumference and hip circumference), and collect information (sex, age, family relationships, medical 
history, demographic information, and daily physical activity levels) from 431 consenting individuals aged 
17 or older (Fig. 1A). Blood samples were drawn after signing informed consents approved by the ethics 
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committees (USP/Institute of Biomedical Sciences 111/2001 and USP/Institute of Biosciences 012/2004 
and 034/2005).  

Genomic DNA was extracted and quantified from each of the 431 blood samples and prepared for SNP 
genotyping through Axiom® Genome-Wide Human Origins 1 Array SNPs (Fig. 1B) according to Affymetrix 
requirements (refer to Supp. Material SS1 for details). Raw data was processed, annotated, and subjected 
to quality control according to Affymetrix Human v.5a threshold (Applied Biosystems, 2020).

From the combined collected data, we constructed six extended pedigrees encompassing 1104 individuals 
(Table 1) using GenoPro software: 431 genotyped (167 affected, 261 non-affected and 3 unk.) and 673 
non-genotyped, from 8 different  populations (Abobral [AB], André Lopes [AN], Galvão [GA], Ivaporunduva 
[IV], Nhunguara [NH], Pedro Cubas [PC], São Pedro [SP], and Sapatu [TU]) (Fig. 2). Pedigree structures 
underwent validation through calculation of multi-step pairwise kinship coefficients (Φ) conducted by KING-
Robust (Manichaikul et al., 2010), MORGAN (Tong & Thompson, 2008; Wijsman et al., 2006), and PBAP 
(Nato et al., 2015) algorithms. 

We filtered and trimmed the dataset (refer to Supp. Material SS1 for details) using KING-Robust 
(Manichaikul et al., 2010) and PLINK (Chang et al., 2015). Samples with a genotyping rate of less than 
95%, as well as SNPs with a genotyping rate below 95%, were excluded. Monomorphic SNPs and SNPs 
resulting in heterozygous haploid calls across all remaining individuals were removed. SNPs not adhering 
to Hardy-Weinberg equilibrium (P < 1x10-3) were also removed. SNP identification followed the dbSNP 
standard format (rsID), and their genetic locations (cM) were obtained through the Rutgers Combined 
Linkage-Physical Map v.3 (Matise et al., 2007). EH was considered a binary outcome, categorizing 
individuals as hypertensive (SBP ≥ 140 and/or DBP ≥ 90 mmHg) or normotensive (SBP < 140 and/or DBP 
< 90 mmHg). Individuals diagnosed and/or under medication for EH were classified as hypertensive. 

 

LOCAL ANCESTRY ESTIMATION 

We estimated local ancestry fractions (Fig. 1E), which allowed us to determine individual- and 
pedigree-specific ancestries. The reference dataset was composed of 189 samples from the 1000 
Genomes Project (Fairley et al., 2020) and Stanford HGDP SNP Genotyping (Huang et al., 2011) data: 63 
European (CEU - Northern Europeans from Utah), 63 African (YRI - Yoruba in Ibadan, Nigeria), and 63 
Native American (Colombia, Maya, and Pima populations) samples. Overlapping markers (145,467 SNPs) 
present in both reference (189 samples) and inference (431 samples) datasets were extracted and both 
datasets were merged and pruned for missingness (<95% genotyping rate). Haplotypes were inferred using 
SHAPEIT2 (O’Connell et al., 2014). RFMix (Maples et al., 2013) was used to estimate local ancestry calls. 
We used in-house scripts to estimate global ancestry fractions for each sample and pedigree ancestries 
from RFMix output files (refer to Supp. Material SS2 for details). 

 

PEDIGREE ANALYSIS 

In our multipoint pedigree linkage analyses, we employed MORGAN (Monte Carlo Genetic 
Analysis) suite, leveraging its versatility and robust capabilities rooted in the Markov Chain Monte Carlo 
(MCMC) approach, allowing for simultaneously handling numerous markers and individuals within 
pedigrees through a sampling methodology (Wijsman et al., 2006). 

We implemented a redundant and semi-independent design to yield results that are both independent and 
comparable. From the complete inference marker set, we selected three distinct non-overlapping subsets 
(or subpanels) of markers (Fig. 1F) employing specific selection criteria and parameters through PBAP 
(refer to Supp. Material SS3 for details). The first subpanel, labeled the gold standard, included top-quality 
markers meeting specific criteria. The other two subpanels, while informative, might have slightly lower 
quality and were applied for validation of the finding. All three subpanels were crucial for discovery analyses. 
Parametric linkage analysis was performed using an autosomal-dominant model with a risk allele frequency 
of 0.01, an incomplete penetrance of 0.70 (for genotypes with 1 or 2 copies of the risk allele), and a 
phenocopy rate of 0.05. The penetrance was estimated by assessing affected and unaffected individuals 
within pedigrees. All subsequent steps were performed concurrently for each pedigree (refer to Supp. 
Material SS3.1 for details).  
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We estimated allelic frequencies for each SNP marker (Fig. 1G) using ADMIXFRQ (Nafikov et al., 2018). 
This involved the generation of unique pedigree-specific files organized by ancestry based on local ancestry 
calls and subpanel information. 

To compute LOD scores, we employed the approach in MORGAN outlined as 𝑃𝛾(𝑌𝑇|𝑌𝑀)= 
∑ 𝑃𝑆𝑀 𝛾(𝑌𝑇|𝑀)(𝑆𝑀|𝑌), where 𝑆𝑀 denotes the meiosis indicators for all markers (Tong & Thompson, 

2008). The LOD score calculation was a two-step process. In the initial step (Fig. 1H), we sampled 

inheritance vectors (IVs) for the gold standard subpanel using alternate SNP markers (2,500-3,000 SNPs) 
in a genome-wide “scan" analysis. Preliminary candidate regions were identified as those with a peak LOD 
score > 1. 

In the second step, we conducted a "dense" analysis (Fig. 1J) restricted to the entire chromosomes 
containing each preliminary candidate region using all three subpanels and sampling IVs using all available 
SNP markers. LOD scores were calculated again for this second step, defining Regions of Interest (ROIs) 
as those with a maximum LOD score > 1.50 in at least one subpanel, with mandatory positive results for 
subpanel 1. ROI boundaries were determined based on LOD score > 1 marker position (refer to Supp. 
Material SS3.3 for details). Both steps (“scan” and “dense” analysis) were conducted separately for each 
pedigree. 

To ensure the convergence of the sampling process, we performed diagnostic analysis of the MCMC runs 
(Fig. 1I), evaluating run length, autocorrelation of LOD scores, and run stability using three different 
graphical tools (refer to Supp. Material SS3.4 for details). The default setup for MCMC runs was 100,000 
MC iterations, 40,000 burn-in iterations, 25 saved realizations, 1,000 identity-by-descent (ibd) graphs and 
output scores saved at every 25 scored MC iterations. 

Results of this analysis were used to determine the appropriate running conditions. Once the correct setup 
for each pedigree was established, we repeated the genome-wide scan and dense analysis, which included 
sampling of IVs and calculation of LOD scores. 

 

FINE-MAPPING STRATEGIES 

Following pedigree analysis adjusted for admixture, we identified and fine-mapped 22 ROIs. We 
explored the 22 ROIS by analyzing suggestive/significant variants from the SNP array database through 
family-based association studies and by identifying EH-related genes through in-silico investigation. 

Family-Based Association Studies 

Initially, we addressed population structure through principal components analysis (PCA), first 
employing MORGAN Checkped (Thompson, 2011; Tong & Thompson, 2008; Wijsman et al., 2006) and 
PBAP Relationship Check (Nato et al., 2015) algorithms for sample relatedness verification. Pairwise 
kinship coefficients (Φ) were calculated using KING-robust (Manichaikul et al., 2010). The subsequent 
steps involved the iterative use of PC-AiR and PC-Relate functions conducted using the GENESIS R 
package (Gogarten et al., 2019). In the initial iteration, KING-robust estimates informed both kinship and 
ancestry divergence calculations, with resulting principal components (PCs) used to derive ancestry-
adjusted kinship estimates (1st GRM) via PC-Relate. To further refine PCs for ancestry, a secondary PC-
AiR run utilized the 1st GRM for kinship and KING-robust estimates for ancestry divergence, yielding new 
PCs. These new PCs informed a secondary PC-Relate run, culminating in a 2nd GRM. Subsequently, we 
evaluated variation using the top 10 PCs, selected in accordance with the Kaiser criterion on the Kaiser-
Guttman rule (Kaiser, 1960). 

We employed a comprehensive two-way independent imputation strategy for variants within each ROI 
identified through the family analysis (refer to Supp. Material SS4.2 for details). We utilized linkage 
disequilibrium (LD) information to perform population-based approach. This involved chromosome-wise 
dataset separation, phasing through SHAPEIT2+duoHMM (Delaneau et al., 2014), imputation using the 
MINIMAC4 (Fuchsberger et al., 2015) software and filtering through BCFtools (Danecek et al., 2021). 
Concurrently a pedigree-based strategy incorporating IVs information was applied. This involved 
chromosome-wise dataset separation and imputation conducted using GIGI2 (Cheung et al., 2013). 
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To account for the complex correlation structure of the data, we included the 2nd GRM as a random effect 
to fit the mixed models through fitNullModel function, conducted using the GENESIS R package (Gogarten 
et al., 2019). Comprehensive testing included 10 ancestry principal components and all available covariates 
as fixed effects (refer to Supp. Material SS4.1 for details). The final statistical model incorporated the top 8 
PCs, along with sex, BMI, and age as significant variables. The next step was to fit the generalized linear 
mixed model (GLMM). Specifically for single-variant tests we employed a logistic mixed model expressed 
as:   

logit(π)= Xα + Gjβj + g 

where 𝜋 = 𝑃(𝑦 = 1 ∣ X,Gj,g) represents the 𝑁𝑥1 column vector of probabilities of being affected for the 𝑁 

individuals conditional to covariates, allelic dosages; and random effects; X is the vector of covariates; and 
α is the vector of fixed covariate effects. We assume that g  ~ N (0,𝜎𝛼

2𝛷) is a vector g = (g1,…, gN) of random 

effects for the N subjects, where 𝜎𝛼
2  is the additive genetic variance and 𝛷 is the GRM; Gj is a vector with 

the allelic dosages (0, 1, or 2 copies of the reference allele) or expected dose (in the case of imputed 
genotypes) at the locus 𝑗; and βj is its corresponding effect size. The null hypothesis of βj =0 was assessed 

using a multivariate score test (Horimoto et al., 2023). 

Finally, for each ROI, two independent FBAS tests were conducted using imputed variant datasets that are 
either (1) pedigree-based or (2) population-based. The dataset comprised all 431 samples from the 
combined 6 pedigrees. The single-variant association tests were conducted using the GENESIS R package 
(Gogarten et al., 2019), implementing the adjusted GLMM to perform Score tests.  

We performed multiple testing correction using the effective number of independent markers (Me) estimated 
using the Genetic Type I Error Calculator software (Li et al., 2012). We also evaluated adequacy of the 
analysis modeling through evaluation of the genomic inflation factor (λ) by dividing the median of the chi-
square statistics by the median of the chi-square distribution with 1 degree of freedom (Devlin & Roeder, 
1999). Analysis was carried out for each imputed variant dataset. 

Suggestive or significant association variants underwent curation, assessment, and compilation into a 
comprehensive database using a custom R script. Data were sourced from NIH dbSNP (Sherry et al., 
1999), CADD (Rentzsch et al., 2021) , NCBI PubMed (National Center for Biotechnology Information, 1988), 
Ensembl Variant Effect Predictor (McLaren et al., 2016), ClinVar (Landrum et al., 2018), Mutation Taster 
(Schwarz et al., 2014), SIFT (Vaser et al., 2016), PolyPhen (Adzhubei et al., 2010), and VarSome (Kopanos 
et al., 2019). Annotation included chromosome and physical positions (GRCh37/hg19), dbSNP rsID, 
associated genes, genomic alterations, variant consequences, exonic functions, and pathogenicity 
classifications. This procedure was executed independently for each ROI and for both imputed variant 
datasets. 

Furthermore, we assessed LD patterns for variants located within a window size of 500,000 base pairs 
surrounding each identified suggestive or significantly associated variant. Leveraging the Ensembl Rest 
API for Linkage Disequilibrium and utilizing the ensemblQueryR tool (Fairbrother-Browne et al., 2023) we 
set thresholds for r2>0.7 and D’>0.9. This analysis incorporated data from the 1000 Genomes Project 
(Fairley et al., 2020) for multiple populations, including European (CEU: Utah Residents with Northern and 
Western European Ancestry), African (YRI: Yoruba in Ibadan, Nigeria), and American populations: CLM 
(Colombian in Medellin, Colombia), MXL (Mexican Ancestry in Los Angeles, California), PEL (Peruvian in 
Lima, Peru), and PUR (Puerto Rican in Puerto Rico). Additionally, we utilized the Ensembl REST API VEP 
to annotate and select LD patterns based on variant consequences. 

 

Investigation of EH-related Genes 

To elucidate the hypertension-related implications of genes identified within each ROI, we first 
identified all ROIs genes using biomaRt R(Durinck et al., 2009). Then we obtained and annotated genes 
associated with "essential hypertension" or "high blood pressure" according to NCBI PubMed (National 
Center for Biotechnology Information, 1988), MedGen (National Library of Medicine, n.d.), MalaCards 
(Rappaport et al., 2013), ClinVar (Landrum et al., 2018), Ensembl BioMart (Kinsella et al., 2011), and 
GWAS Catalog (Sollis et al., 2023). Finally, we matched both lists, systematically annotating based on 
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physical position (base pair), cytogenetic band, summary, molecular function, related phenotype, gene 
ontology, genetic location (cM; GRCh37/hg19), expression patterns, and publication data. Moreover, to 
prioritize these genes (refer to Supp. Material SS5 for details). we implemented VarElect (Stelzer et al., 
2016). 

 

RESULTS AND DISCUSSION 

We examined age differences across pedigrees in affected and unaffected individuals, employing 
Welch Two Sample t-tests, one-way ANOVA, two-way ANOVA, and multiple regression analysis using in-
house R scripts. The t-tests revealed significant differences in mean ages between affected and unaffected 
individuals across all pedigrees (Fig 3), consistently showing younger ages for unaffected individuals 
(ABDR: 36.52 vs. 48.02 years, P = 0.01478; ANNH: 38.27 vs. 55.95 years, P = 1.403e-05; GASP: 37.52 
vs. 52.36 years, P < 0.001; PC: 36.03 vs. 55.40 years, P < 0.001; IV: 33.63 vs. 63.00 years, P = 1.072e-
05; TU: 36.26 vs. 52.18 years, P = 0.00036), as seen in Supp. Table ST1. Overall, the combined data 
showed a mean age of 36.59 years for unaffected individuals versus 53.35 years for affected individuals (P 
< 2.2e-16). The one-way ANOVA was performed with 5 degrees of freedom for pedigrees and 184 for 
residuals, the sum of squares for pedigrees was 2837 and for residuals was 55278, resulting in mean 
squares of 567.5 and 300.4, respectively. Comparing the average age of affected individuals across 
pedigrees for both sexes, this analysis yielded an F value of 1.889 with a p-value of 0.0982, indicating 
marginally non-significant differences in average age across pedigrees. The two-way ANOVA highlighted 
a significant effect of affected status on average age (P < 0.001). However, neither sex nor the interaction 
between sex and affected status showed significant effects on average age, with p-values of 0.589 and 
0.670 respectively. This suggests that while affected status significantly influences average age, sex and 
the interaction between sex and affected status do not have a significant impact. The multiple regression 
model showed that affected status significantly influenced average age (P < 0.001). The coefficients for sex 
and other pedigrees are not statistically significant. The overall model's performance is moderate, as 
indicated by the R-squared value of 0.2181, suggesting that about 21.81% of the variability in average age 
can be explained by the predictors in the model. Additionally, the F-statistic is significant (P < 2.2e-16), 
indicating that the model as a whole is significant in predicting average age. 

We calculated ancestry proportions for individual admixture segments (local ancestry) using data from 
145,467 SNPs considering all the 431 samples (Fig. 4A) and individually per pedigree (Fig. 4B). The three 
main components (PCs), PC1, PC2 and PC3, explain 12.42%, 6.17%, and 1.68% of the variance, 
respectively (Fig. 5A), allowing to visualize the genetic distance between the inference and the reference 
datasets (Fig. 5B). All six quilombo remnants pedigrees studied have a high degree of admixture. Among 
all the 431 individuals the estimates are 47.4%, 36.3%, and 16.1%, respectively, for African, European, and 
Native American ancestries (Table 2). The pedigrees from ABDR and PC had the highest (51.5%) estimates 
of African ancestral contribution. In comparison, TU had the highest (50.8%) estimate of European ancestral 
contribution, and ABDR had the highest estimate (16.9%) of Native American ancestral contribution. For 
comparison, the ancestry proportions for the general Brazilian population were estimated as 19.6%, 68.1%, 
and 11.6% for African, European, and Native American ancestral contributions (de Souza et al., 2019), 
respectively, with vivid contrasts among each Brazilian region (Supp. Table ST2-3). 

The MCMC runs diagnosis were conducted, within each pedigree, on the smallest chromosome exhibiting 
a positive LOD score (Supp. Fig. SF2-7).  

Through pedigree analysis, we identified 22 ROIs containing 2363 genes (Example in Fig. 6A). Employing 
family-based association studies (Fig. 6B-C), we uncovered 117 variants with suggestive/significantly 
association with hypertension (Supp. Table ST4). Furthermore, our investigation of EH-related genes 
yielded 60 promising candidate genes (Table 3). Highlighting the common results between both fine 
mapping strategies, 14 genes (highlighted in Table 3) were identified within the mapped regions with strong 
evidence of association with the phenotype. These regions harbor 29 SNPs (highlighted in Supp. Table 
ST4) implicated by our family-based association studies. These genes include PHGDH and S100A10 
(ROI1); MFN2 (ROI2); RYR2, EDARADD, and MTR (ROI3); SERTAD2 (ROI4); LPP (ROI5); KCNT1 
(ROI11); TENM4 (ROI13); P2RX1, ZZEF1, and RPA1 (ROI18); and ALPK2 (ROI20). Our approach of 
combining admixture-adjusted linkage analysis using MCMC methods, association studies on imputed 
data, and in silico investigations yielded additional results to pursue, as different strategies occasionally 
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supported the role of the same gene in contributing to essential hypertension in quilombo remnants 
populations. 

Twenty ROIs were supported by the investigation of EH-related genes as a fine-mapping strategy, and 17 
of them were additionally supported by family-based association studies. To prioritize our results, we 
developed a comprehensive score based on the weights assigned to each strategy (Supp. Table ST5), 
including linkage analysis, EH genes investigation, and association studies. The scores allowed to classify 
the ROIs into three tiers based on their priority level (Table 4): high (top 20% of the ROIs), intermediate 
(30% of the ROIs), and low (50% of the ROIs).  

Note that the SNPs linked to the EH phenotype identified in this study were genotyped using genomic 
arrays and are therefore common variants. Many of these variants are situated in non-coding or intergenic 
regions and may or may not have recognized functional or regulatory effects. Although these SNPs are not 
expected to affect the phenotype directly, several of these variants are in LD with variants of more significant 
impact. Notably, among these, some may be rare and remain ungenotyped. Specifically, we identified 
unique tag SNPs: 77 non-coding SNPs (3’ UTR, 5’ UTR, or TF binding), 196 regulatory, and 15 missense 
SNPs (Supp. Table ST6).

The study, as presented, has some limitations. One such limitation is that the investigation of EH-related 
genes, as part of the fine-mapping strategy, was focused on genes previously supported by literature as 
being related to blood pressure regulation. Consequently, it is possible that genes which have never been 
implicated in EH may contain rare or novel variants relevant to the origin of hypertension in quilombo 
remnant populations. 

In conclusion, this study presented a unique multi-level computational approach that combined mapping 
strategies to deal with large family data, which provided reliable results. By using genome-wide linkage 
analyses based on MCMC methods and adjusted for admixture, association studies as the primary fine-
mapping strategy, and limiting analyses to candidate genomic regions, the study took advantage of meiotic 
information provided by pedigrees while simultaneously reducing the need for multiple tests and avoiding 
population stratification. Therefore, the ROIs identified in this study are credible and provide valuable 
insights into the genetic basis of essential hypertension in the quilombo remnants populations.  

Conducting analyses by merging all six pedigrees into only one would be a formidable challenge, and 
probably not feasible. However, the prospect of replicating these analyses using alternative computational 
packages is exciting and not an impossible task. Our study has demonstrated that blood pressure and 
hypertension in the quilombo remnant populations are likely influenced by multiple genes, possibly in a 
polygenic or oligogenic mechanism of inheritance. We have identified several loci across different 
chromosomes that contain genes and variants involved in the development of hypertension. Additionally, 
we have identified genomic regions of interest not previously associated with EH and will therefore be 
important targets for future research. 

Furthermore, our study has the potential to shed light on important genomic regions, genes, and variants 
that are specific to African-derived populations. By focusing on this population, we have provided insights 
into the genetic factors that contribute to hypertension in a group that has been often underrepresented in 
genetic studies and databases. 

In order to overcome the limitations, future steps of this investigation will involve the use of Whole Genome 
Sequencing (WGS) and Whole Exome Sequencing (WES) data from this dataset. WGS and WES will 
enable the investigation of coding and non-coding variants within all ROIs, with a focus on rare variants that 
may have a higher impact on gene functioning. To optimize this process, we will prioritize high and 
intermediate ROIs when filtering variants detected after WES and WGS, addressing the low-priority ROIs 
afterward. 
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TABLES AND FIGURES 
 

  

 

 

Figure 1. Schematic diagram of the pedigree analysis (GWLA) mapping workflow. A) Samples and collected 
data datasets; B) DNA extraction, quantification, SNP genotyping and quality control; C) Pedigree 
assembly; D) Pedigree structure validation analysis; E) Local ancestry estimation; F) Selection of markers 
for 3 subpanels; G) Allelic frequencies estimation; H) Genome-Wide scan analysis; I) MCMC convergence 
diagnostic analysis; J) Dense analysis resulting in the ROIs.

 

 

Table 1. Distribution of samples across pedigrees 

Pedigree 
Genotyped 

Subtotal 
Non-genotyped Total 

Affected Unaffected Unknown 

ABDR 38 29 1 68 105 173 
ANNH 37 54 -  91 117 208 
GASP 45 49 1 95 88 183 

IV 12 34 1 47 110 157 
PC 16 51 -  67 130 197 
TU 19 44 -  63 123 186 

Total 167 261 3 431 673 1104 

 
Total samples included by pedigree. Samples are separated into genotyped (and affected, unaffected and 
unknown phenotype) and non-genotyped. Abobral (ABDR), André Lopes and Nhunguara (ANNH), Galvão 
and São Pedro (GASP), Ivaporunduva (IV), Pedro Cubas (PC) and Sapatu (TU). 
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Figure 2. Geographical location of Quilombo populations.  A) Brazilian territory in South America, with the 
State of São Paulo highlighted in gray and the Ribeira Valle in a darker shade of gray.  B) Location of 
quilombo populations: AB (Abobral), AN (Andre Lopes), GA (Galvão), IV (Ivaporanduva), NH (Nhunguara), 
PC (Pedro Cubas), SP (São Pedro), and TU (Sapatu) (adapted from Kimura et al., (2013). The black dots 
denote the urban centers of Eldorado (EL) and Iporanga (IP). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Distribution of ages for both affected and unaffected individuals across different pedigrees. The 
box plots represent the interquartile range (IQR) with the median age indicated by the line within each 
box. The whiskers extend to 1.5 times the IQR, with individual points outside the whiskers representing 

potential outliers. The small black dots indicate the mean ages for each group, and the error bars 
represent the standard deviation around these means. Affected individuals are shown in green, 

unaffected individuals are shown in blue, and unknown individuals are shown in gray. 
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Table 2. Ancestry proportions 

Pedigrees 
Sample 

size 

Ancestry Proportions 

African European 
Native 

American 

ABDR 68 51.5% 31.4% 16.9% 
 GASP 95 46.8% 36.9% 16.2% 
ANNH 91 50.8% 33.2% 15.8% 

IV 47 47.3% 35.9% 16.7% 
TU 63 33.4% 50.8% 15.7% 
PC 67 51.5% 32.4% 16.0% 

Total 431 47.4% 36.3% 16.1% 

 

Data are presented by pedigree, with the corresponding sample size and ancestry proportions (%) that reflect 

the contribution of African, European, and Native American ancestries, respectively. The total dataset is 

described as “Total.” 

 

 

Figure 4. Graphic representation of global ancestry estimates: A) considering all 431 samples; B) considering 

each pedigree individually. The colors refer to the ancestral contribution: Green (Native American), dark blue 

(African) and light blue (European); 
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Figure 5. Graphic representation of the genetic distance between all individuals over Principal Component 

Analysis (PCA). The reference samples from European (EUR), African (AFR) and Native American (NAM) 

populations were represented by blue, red and yellow circles, respectively. A) PCA results for the first 4 

PCs; B) 3D PCA results. 
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Table 3. Main genes resulting from the three strategies per region of interest (ROI): linkage analysis, EH-related gene 
investigation (EH) and association studies (AS).

Gene Cytoband ROI EH AS 

ALPK2 18q21.31-q21.32 20 ● ● 
EDARADD 1q42.3 3 ● ● 

KCNT1 9q34.3 11 ● ● 
LPP 3q27.3-q28 5 ● ● 

MFN2 1p36.22 2 ● ● 
MTR 1q43 3 ● ● 

P2RX1 17p13.2 18 ● ● 
PHGDH 1p12 1 ● ● 
RPA1 17p13.3 18 ● ● 
RYR2 1q43 3  ● ● 

S100A10 1q21.3 1 ● ● 
SERTAD2 2p14 4 ● ● 

TENM4 11q14.1 13 ● ● 
ZZEF1 17p13.2 18 ● ● 
ABCC9 12p12.1 14 ●  

ACE 17q23.3 19 ●  

ADIPOQ 3q27.3 5 ●  

APOE 19q13.32 21 ●  

ARHGEF17 11q13.4 13 ●  

BORCS7 10q24.32 12 ●  

CASP3 4q35.1 7 ●  

CDH13 16q23.3 17 ●  

CNNM2 10q24.32 12 ●  

CORIN 4p12 6 ●  

CYGB 17q25.1 19 ●  

CYP17A1 10q24.32 12 ●  

CYP2C19 10q23.33 12 ●  

CYP2C9 10q23.33 12 ●  

EDN1 6p24.1 9 ●  

HTR2A 13q14.2 16 ●  

KDR 4p12 6 ●  

KIT 4p12 6 ●  

KLKB1 4q35.2 7 ●  

KNG1 3q27.3 5 ●  

LPL 8p21.3 10 ●  

MC4R 18q21.32 20 ●  

MEIS1 2p14 4 ●  

NT5C2 10q24.32-q24.33 12 ●  

PDE3A 12p12.2 14 ●  

PDE4D 5q11.2-q12.1 8 ●  

PHACTR1 6p24.1 9 ●  

PLCE1 10q23.33 12 ●  

PRKCA 17q24.2 19 ●  

RBM47 4p14 6 ●  

RBP4 10q23.33 12 ●  

SGCZ 8p22 10 ●  

SLC1A4 2p14 4 ●  

SLC39A14 8p21.3 10 ●  

SOCS3 17q25.3 19 ●  

SST 3q27.3 5 ●  

TBX2 17q23.2 19 ●  

TGFB1 19q13.2 21 ●  

TIMP2 17q25.3 19 ●  

TLR3 4q35.1 7 ●  

TMOD4 1q21.3 1 ●  

TNFRSF1B 1p36.22 2 ●  

UCP2 11q13.4 13 ●  

VEGFC 4q34.3 7 ●  

WBP1L 10q24.32 12 ●  

ZDHHC2 8p22 10 ●  
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Figure 6. Illustrative representation of the results for ROI5. A) Dense linkage analysis for all 3 subpanels; 
B) Strategy performed with population-based imputed data; C) Strategy performed with pedigree imputed 
data. The black dots represent SNPs (identified by chr:physical position), the blue lines refer to the 
suggestive p-value (-log10(p)) and the red lines to the significant p-value (-log10(p)).  
 

 

 Table 4. Ranked Score-Weighted ROIs

The ROIs are classified into three tiers according to their priority level: the top 20% are labeled as high priority (dark 
gray), the medium 30% as intermediate priority (medium gray), and the bottom 50% as low priority (light gray). 

 

ROI Cytoband 
ROI size 

(Mb) 
EH Genes 

Linkage Analysis Assoc. 
Studies 

Sugg./Sig. 

Gene 
Relevance 

TOTAL Peak LOD 
Score 

Subpanels 
consensus 

5 3q27.3-q29 11.4 Mb Yes | 4 genes (+1p) 3.036 (+6p) 3 (+3p) Sig. (+3p) Yes (+5p) 18 

12 10q23.33-q25.1 11.2 Mb Yes | 9 genes (+1p) 2.795 (+5p) 3 (+3p) Sig. (+3p) Yes (+5p) 17 

13 11q13.4-q14.1 7.6 Mb Yes | 3 genes (+1p) 2.414 (+4p) 3 (+3p) Sugg. (+1p) Yes (+5p) 14 

19 17q23.2-25.3 19 Mb Yes | 9 genes (+1p) 2.138 (+3p) 3 (+3p) Sugg. (+2p) Yes (+5p) 14 

3 1q43 1.3 Mb Yes | 3 genes (+1p) 2.161 (+3p) 2 (+2p) Sugg. (+2p) Yes (+5p) 13 

9 6p24.1-p22.3 8 Mb Yes | 2 genes (+1p) 2.621 (+5p) 2 (+2p) Sugg. (+2p) Yes (+3p) 13 

10 8p23.1-p21.3 9.8 Mb Yes | 4 genes (+1p) 2.658 (+5p) 3 (+3p) Sugg. (+1p) Yes (+3p) 13 

7 4q32.3-q35.2 20.6 Mb Yes | 4 genes (+1p) 2.322 (+4p) 2 (+2p) Sugg. (+2p) Yes (+3p) 12 

21 19q13.12-13.32 10 Mb Yes | 2 genes (+1p) 2.503 (+4p) 3 (+3p) Sugg. (+1p) Yes (+3p) 12 

14 12p12.3-p11.23 11.1 Mb Yes | 2 genes (+1p) 2.662 (+5p) 2 (+2p) Sugg. (+1p) Yes (+2p) 11 

8 5q12.1-q13.2 11.1 Mb Yes | 1 gene (+1p) 2.117 (+3p) 3 (+3p) Sugg. (+2p) Yes (+2p) 11 

18 17p13.3-p13.2 4.3 Mb Yes | 3 genes (+1p) 1.771 (+2p) 2 (+2p) Sugg. (+1p) Yes (+4p) 10 

2 1p36.21-p36.22 3.2 Mb Yes | 2 genes (+1p) 1.824 (+2p) 3 (+3p) Sugg. (+1p) Yes (+3p) 10 

16 13q14.13-q21.33 25.6 Mb Yes | 1 gene (+1p) 2.554 (+4p) 3 (+3p) No (0p) Yes (+2p) 10 

1 1p12-q21.3 32.5 Mb Yes | 3 genes (+1p) 1.503 (+1p) 2 (+2p) Sugg. (+1p) Yes (+4p) 9 

4 2p14 3.4 Mb Yes | 3 genes (+1p) 1.906  (+2p) 2 (+2p) Sugg. (+1p) Yes (+3p) 9 

20 18q21.32 1.7 Mb Yes | 2 genes (+1p) 1.608 (+1p) 3 (+3p) Sugg. (+1p) Yes (+3p) 9 

6 4p15.1-q12 26.5 Mb Yes | 4 genes (+1p) 1.938 (+2p) 3 (+3p) No (0p) Yes (+3p) 9 

11 9q34.3 0.8 Mb Yes | 1 gene (+1p) 1.418 (+1p) 3 (+3p) Sugg. (+1p) Yes (+2p) 8 

17 16q23.3-q24.1 4.5 Mb Yes | 1 gene (+1p) 2.175 (+3p) 2 (+2p) No (0p) Yes (+2p) 8 

15 12q24.32-q24.33 4.6 Mb No (0p) 2.087 (+3p) 2 (+2p) Sugg. (+1p) Yes (+1p) 7 

22 19q13.41-13.42 3.2 Mb No (0p) 1.860 (+2p) 3 (+3p) Sugg. (+1p) Yes (+1p) 7 
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