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39 Title: A Systematic Review of Machine Learning-based Prognostic Models for Acute Pancreatitis: 
40 Towards Improving Methods and Reporting Quality
41
42 Background: An accurate prognostic tool is essential to aid clinical decision making (e.g., patient triage) 
43 and to advance personalized medicine. However, such prognostic tool is lacking for acute pancreatitis (AP). 
44 Increasingly machine learning (ML) techniques are being used to develop high-performing prognostic 
45 models in AP. However, methodologic and reporting quality has received little attention. High-quality 
46 reporting and study methodology are critical to model validity, reproducibility, and clinical implementation. 
47 In collaboration with content experts in ML methodology, we performed a systematic review critically 
48 appraising the quality of methodology and reporting of recently published ML AP prognostic models.
49
50 Methods: Using a validated search strategy, we identified ML AP studies from the databases MEDLINE, 
51 PubMed, and EMBASE published between January 2021 and December 2023. Eligibility criteria included 
52 all retrospective or prospective studies that developed or validated new or existing ML models in patients 
53 with AP that predicted an outcome following an episode of AP. Meta-analysis was considered if there was 
54 homogeneity in the study design and in the type of outcome predicted. For risk of bias (ROB) assessment, 
55 we used the Prediction Model Risk of Bias Assessment Tool (PROBAST). Quality of reporting was 
56 assessed using the Transparent Reporting of a Multivariable Prediction Model of Individual Prognosis or 
57 Diagnosis – Artificial Intelligence (TRIPOD+AI) statement that defines standards for 27 items that should 
58 be reported in publications using ML prognostic models.
59
60 Results: The search strategy identified 6480 publications of which 30 met the eligibility criteria. Studies 
61 originated from China (22), U.S (4), and other (4). All 30 studies developed a new ML model and  none 
62 sought to validate an existing ML model, producing a total of 39 new ML models.  AP severity (23/39) or 
63 mortality (6/39) were the most common outcomes predicted. The mean area-under-the-curve for all models 
64 and endpoints was 0.91 (SD 0.08). The ROB was high for at least one domain in all 39 models, particularly 
65 for the analysis domain (37/39 models). Steps were not taken to minimize over-optimistic model 
66 performance in 27/39 models. Due to heterogeneity in the study design and in how the outcomes were 
67 defined and determined, meta-analysis was not performed. 
68 Studies reported on only 15/27 items from TRIPOD+AI standards, with only 7/30 justifying sample size 
69 and 13/30 assessing data quality. Other reporting deficiencies included omissions regarding human-AI 
70 interaction (28/30), handling low-quality or incomplete data in practice (27/30), sharing analytical codes 
71 (25/30), study protocols (25/30) and reporting source data (19/30),. 
72
73 Discussion: There are significant deficiencies in the methodology and reporting of recently published ML 
74 based prognostic models in AP patients.  These undermine the validity, reproducibility and implementation 
75 of these prognostic models despite their promise of superior predictive accuracy.   
76
77 Funding: none
78 Registration: Research Registry (reviewregistry1727)
79

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309389doi: medRxiv preprint 

https://www.researchregistry.com/browse-the-registry#registryofsystematicreviewsmeta-analyses/registryofsystematicreviewsmeta-analysesdetails/653bcd876d91ab002791fee6/
https://doi.org/10.1101/2024.06.26.24309389
http://creativecommons.org/licenses/by/4.0/


3

80 INTRODUCTION

81 Defined as acute inflammation of the pancreas, acute pancreatitis (AP) remains a common and 

82 costly cause of gastrointestinal-related hospitalization, with 1 million new cases each year globally 

83 and increasing incidence[1, 2]. The etiology of the disease varies across patient demographics, 

84 with gallstones and alcohol comprising the majority of adult cases and diverse environmental 

85 factors such as hypertriglyceridemia, drugs, infections, or trauma[3]. The severity of AP can be 

86 further categorized as mild, moderately severe, or severe, with severe AP being defined by the 

87 presence of persistent organ failure [4].  The combination of persistent organ failure and infected 

88 pancreatic necrosis defines a ‘critical’ category of AP severity with the highest morbidity and 

89 mortality risk[5, 6].  Survivors of AP can suffer from long-term sequelae including diabetes 

90 mellitus, recurrent or chronic pancreatitis, and pancreatic exocrine insufficiency[3, 7-10]. Given 

91 the significant short- and long-term morbidity and mortality associated with AP, the National 

92 Institute of Health has called for an accurate prognostic model in AP for use in research and the 

93 clinical setting[11-13]. Benefits of an accurate prognostic model are many, including enablement 

94 of cost-efficient clinical trials through cohort enrichment [14, 15], identification of subphenotypes 

95 within a cohort that require different treatment strategies [16, 17], and prompt triaging of patients 

96 in the emergency room [18].  

97 Current prognostic models for AP were developed using regression-based techniques (e.g., 

98 Glasgow Criteria, Bedside Index for Severity in Acute Pancreatitis (BISAP) etc.) which 

99 demonstrate suboptimal performance and limited clinical usefulness[19]. For example, in a 

100 prospective external evaluation of regression-based models predicting mortality, none of the 

101 models tested produced a post-test probability higher than 14% when “positive”[20]. There has 

102 been a call for new approaches to improve prediction accuracy [19, 21].  Advances in the subset 
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103 of artificial intelligence (AI) known as machine learning (ML) have facilitated the development of 

104 non-regression prediction models, which offer advantages over regression-based models by 

105 performing better in diseases with non-linear predictor-outcome relationships such as AP[22]. 

106 There has been an increasing number of published ML-based prognostic models that appear to 

107 outperform regression-based models [23-25]. However, ML experts have cited concerns regarding 

108 methodologic quality, model building practices, and lack of transparent reporting [26-28]. We 

109 therefore undertook a systematic review and critical appraisal of recent published studies 

110 proposing new non-regression ML based prognostic models to detail any methodological 

111 shortcomings and/or gaps in reporting. This was a collaborative effort between experienced 

112 clinicians and ML experts [19].   

113

114 METHODS

115 Detailed methodology of this review has been published elsewhere[29] (doi: 10.1186/s41512-024-

116 00169-1). We conducted a systematic review of all studies published between January 2021 and 

117 December 2023 in which a non-regression, ML-based prognostic model in AP was developed 

118 and/or validated (either internally or externally), with or without model updating. This review 

119 included studies of prospective or retrospective design including post-hoc analysis of clinical trials 

120 that: a) enrolled only adult patients (i.e., 18 years old or older), b) contained a prognostic model of 

121 AP developed with non-regression ML technique(s), c) predicted any outcome(s) of AP, and d) 

122 published in English. Studies involving participants with chronic pancreatitis, pancreatic cancer, 

123 or post-surgical pancreatitis were excluded, as were studies with animals, regression-based 

124 models, or models that predict the development of AP instead of disease outcomes. Studies 

125 published in abstract form only and review articles were also excluded. 
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126 We searched the databases MEDLINE (OvidSP) and EMBASE (OvidSP) from January 1, 2021 to 

127 December 31, 2023 (Date of search for all data sources, January 31st)  Our search was limited to 

128 the most recent three years for the following reasons 1) Significant advancements in AP 

129 management paradigm has led to a significant change in the natural history/prognosis of the 

130 disease over the last decade [30-37]. It was important to identify models trained/evaluated on 

131 datasets generated from the most recent cohort of AP. 2) New algorithms rapidly emerge, replacing 

132 older algorithms and temporal quality degradation is an established phenomenon in AI models[38].  

133 Validated search strategies [39, 40] were used and are listed in Supplementary Tables 1 and 2, 

134 respectively. Covidence software (city, country) was used to screened title-abstract and full text in 

135 sequential steps. Each stage required concordance between two independent reviewers (LN, IL, 

136 KT, JP, AH, BC, NM, or AL). Disagreements were resolved by a third independent reviewer (PJL 

137 or LAC). Included studies were then appraised in terms of risk of bias in study design, 

138 completeness of reporting, and for summarization of model predictive performances. Necessary 

139 data for PROBAST and TRIPOD+AI evaluation were extracted in accordance with the Critical 

140 Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies 

141 (CHARMS) checklist[41]. 

142 Methodologic Quality Assessment: The Prediction Model Risk of Bias Assessment Tool 

143 (PROBAST) was used to assess both risk of bias in study design of prospective models across four 

144 main domains: participants, predictors, outcomes, and analysis[42]. The assessment of 

145 Applicability section of PROBAST was planned if meta-data were appropriate and feasible for 

146 meta-analysis. To optimize the validity of the PROBAST assessment, all evaluators underwent 

147 PROBAST rater training, which entailed weekly meetings with an AP content expert trained by 

148 PROBAST developers (PJL) to review all 20 signaling questions. Data scientists (JNA, LL, JQ, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.26.24309389doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.26.24309389
http://creativecommons.org/licenses/by/4.0/


6

149 or DR) and ML content experts (LAC) were engaged to accurately complete CHARMS and 

150 PROBAST. Each model was assessed via the PROBAST framework by two independent 

151 reviewers (LN, IL, KT, JP, AH, BC, NM, AL, JNA, LL, JQ, or DR), and disagreements were 

152 resolved by an independent third reviewer (PJL or LAC). The pair of reviewers comprised a 

153 clinician and a data scientist. The risk of bias in each domain and overall risk of bias were reported 

154 for all studies. 

155 Reporting Quality Assessment: To assess the quality of the reporting, we decided to use 

156 TRIPOD+AI statement, which contains a comprehensive list of items that need to be reported for 

157 papers reporting development and/or validation of prognostic AI model[43]. List of sections and 

158 items on this list covers every key part of a manuscript including title, abstract, introduction, 

159 methods, results, and discussion. Additionally, it contains items related to open science and patient 

160 & public involvement. Summary statistics of quality of reporting according to the standards of 

161 TRIPOD+AI[43] were calculated for each study. This review has been registered at Research 

162 Registry (reviewregistry1727). 

163 All data reporting in this systematic review adhered to the guidelines of Preferred Reporting Items 

164 for Systematic reviews and Meta-Analyses (PRISMA) and the checklist can be found in a separate 

165 supplementary file.

166 RESULTS

167 Metadata used to generate these results can be accessed at DOI:10.6084/m9.figshare.26078743. 

168 Our search strategy identified 6480 studies published between January 2021 and December 2023, 

169 of which 30 met eligibility criteria (S1 Figure). Studies originated from China (22), the United 

170 States (4), Hungary (2), Turkey (1), and New Zealand (1) (Table 1). 

171
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Table 1: Basic characteristics of included studies
Author Publication year Study site Type of study Number of 

centers
Number of 

participants
Racial 

category 
Machine 
learning 

algorithms

AUC Type of predictors 
included*

Outcome 
predicted†

Chen[44] 2023 China Retrospective cohort 1 978 NR Neural Network 
(incl. deep 
learning)

0.82, 0.92 2, 3, 4 1, 2

Ding[45] 2021 United States 
of America

Retrospective cohort 1 337 Reported Neural Network 
(incl. deep 
learning)

0.77 1, 2, 3, 4 3

Hameed[46] 2022 United States 
of America

Administrative 
database

2 6326 NR Tree-based 
models

0.94 1, 4 3

Hong[47] 2022 China Retrospective cohort 1 648 NR Tree-based 
models

0.96 1, 3, 4 1

Ince[48] 2022 Turkey Retrospective cohort 1 1334 NR Other (Gradient 
Boost)

0.91-0.98 1, 3, 4 1,3,4

Jin[49] 2021 China Retrospective cohort 1 369 NR Neural Network 
(incl. deep 
learning)

0.98 4 5

Kimita[50] 2022 New Zealand Prospective cohort 1 160 Reported Tree-based 
models

0.67 5 6

Kiss[51] 2022 Hungary Prospective cohort 30 2387 NR Tree-based 
models

0.76 1, 4 7

Kui[52] 2022 Hungary Prospective cohort 28 1184 NR K-nearest 
neighbor

0.81 1, 2, 4 1

Langmead[24] 2021 United States 
of America

Secondary analysis of 
prospective cohort 
study designed for 
another reason 

1 133 Reported Tree-based 
models

0.91 5 1

Li[53] 2022 China Prospective cohort 7 915 NR Tree-based 
models

Support vector 
machine

Random Forest
LightGBM
Ensemble

0.79-0.90 1, 2, 4 2, 3, 4, 8, 9

Liang[54] 2023 China Administrative 
database

1 1798 NR Neural Network 
(incl. deep 
learning)

0.98 3 2, 5

Luo, Z[55] 2023 China Retrospective cohort 2 673 NR Naive Bayes 0.96 1, 3, 4 1

Luo, J[56] 2023 China Retrospective cohort 1 13645 NR Neural Network 
(incl. deep 
learning)

0.91 2, 4 10

Ren[57] 2023 China Retrospective cohort 1 531 NR Tree-based 
models

0.81 1, 3 ,4 11
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*Type of predictors included: 1 = Clinical history (incl. demographics, social, medical history), 2 = Physical Exam Findings, 3 = Radiologic features, 4 = Laboratory values, 5 = Cytokines/new 
biomarker

Shi[58] 2022 China Retrospective cohort 3 2846 NR Tree-based 
models

0.90, 0.98 1, 4 3, 5

Thapa[59] 2022 United States 
of America

Administrative 
database

700 371885 Reported Tree-based 
models

0.92 1, 2, 4 1

Xu[60] 2021 China Retrospective cohort 3 447 NR Other (Adaptive 
Boost)

0.83 4, 5 10

Yan[61] 2022 China Retrospective cohort 1 151 NR Tree-based 
models

NR 2, 4 3

Yang, D[62] 2022 China Retrospective cohort 1 996 NR Tree-based 
models

Neural Network 
(incl. deep 
learning)
XGBoost

0.73-0.91 1, 2, 4 5

Yang, Y[63] 2022 China Retrospective cohort 2 424 NR Tree-based 
models

0.91 1, 3, 4, 5 5

Yang, D[64] 2023 China Retrospective cohort 1 292 NR Tree-based 
models*

0.995 4, 5 5

Yin[65] 2022 China Retrospective cohort 3 1012 NR Tree-based 
models

Gradient 
Boosting 
Machines

Neural Networks
XGBoost

0.87-0.95 1, 3, 4 1

Yuan[66] 2022 China Retrospective cohort 2 5280 NR Tree-based 
models

0.87 1, 2, 3, 4 4

Zhang, W[67] 2023 China Retrospective cohort 1 440 NR Tree-based 
models

0.93 1, 3, 4 5

Zhang, J[68] 2023 China Retrospective cohort 4 820 NR CatBoost
Random Forest
Neural Network

0.52-0.75 1, 4 12

Zhang, M[69] 2023 China Retrospective cohort 1 460 NR Bayesian
Support Vecetor 

Machine
Ensembles of 
Decision Tree

0.81-0.89 4 5

Zhao[70] 2023 China Retrospective cohort 1 215 NR Tree-based 
models

0.89 3 2

Zhou[71] 2022 China Retrospective cohort 1 441 NR XGBoost 0.91 1, 3, 4 1

Zhu[72] 2021 China Retrospective cohort 6 711 NR Tree-based 
models

Neural network

0.99 1, 3, 4 13
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†Outcome(s) predicted: 1 = severe pancreatitis, 2 = mild acute pancreatitis, 3 = mortality (all-cause, acute pancreatitis specific, does not specify),  4 = intensive care unit admission, 5 = moderately 
severe and severe pancreatitis, 6= other, 7 = pancreatic necrosis,  8 = length of stay, 9 = pancreatic necrosis – infected, 10 = multisystem organ dysfunction/failure, 11 = recurrent pancreatitis, 
12 = new onset diabetes, 13 = Intra-abdominal infection; 
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172 All 30 studies reported the development of a new ML-based prognostic model, but only one study 

173 included external validation step of the newly developed model. Nearly three-fourths (22/30) of 

174 included studies were retrospective cohort, while only five studies were prospective, of which one 

175 was a secondary analysis. Five studies developed more than one model, resulting in a total of 39 

176 models developed in 30 studies. The most common machine learning algorithms were tree-based 

177 models (20/39) and neural networks (7/39). AP severity (21/39) or mortality (6/39) were the most 

178 common outcomes predicted. The most common methods of internal validation were cross-

179 validation (23/39) and bootstrapping (17/39). For 31/39 models, shrinkage methods were not used 

180 to evaluate for or adjust for optimism (shrinkage methods: techniques used to account for 

181 magnitude of noise in the dataset contributing to overinflation of predictive performance). A 

182 summary of pertinent descriptive statistics collected as per the CHARMS checklist is provided in 

183 Table 1.  Overall, for the 39 models the mean area-under-the-curve (AUC) was 0.91 (SD 0.08). 

184 Six studies developed more than one ML-model using the same dataset, presenting the parameters 

185 of the “best performing” model (Table 1). Every model had at least one domain in which the risk 

186 of bias was classified as high (Fig 1), meaning that all 39 models were assessed to be at high risk 

187 of bias by PROBAST standards (see S3 Table for individual model’s ROB rating). The median 

188 number of TRIPOD+AI items that were reported on in the 30 studies was 15/27 (range 6-20).  No 

189 study reported on all the items.  A comprehensive breakdown of the number of TRIPOD+AI items 

190 reported on in each study is given in Supplementary Table 4 and on the heatmap for visual 

191 presentation of the data (Fig 2).

192 Fig 1. Summary of Risk of Bias in 4 Domains Assessed by PROBAST

193 Fig 2. Heatmap depicting common areas of deficiencies in reporting standards as assessed 
194 by TRIPOD+AI *Publication has same first author and year as another paper listed; PMID of each * in 
195 ascending order: Yang et al, 2022: 35430680, 35607360. Luo et al, 2023: 36653317, 36773821. Zhang et al, 2023: 
196 36902504, 36964219, 37196588.
197
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198 Risk of Bias in Four Domains of Methodology as Assessed by PROBAST 

199 PROBAST ratings of the 39 models based on individual studies are summarized in Supplementary 

200 Table 3. Assessment of Applicability was not applicable to the objectives of this review.  As the 

201 primary objective was to assess the methodologic quality and because of marked heterogeneity of 

202 the cohorts and the different definitions and determination of outcomes, a synthesis of the meta-

203 data was not undertaken. 

204 Participants Domain: In this domain there was a high risk of bias with 35/39 models. The data 

205 source was not appropriate with 31/39 models. The inclusions and exclusions of participants was 

206 not appropriate in 26/39 models.  

207 Predictors Domain:  In this domain there was a high risk of bias with 18/39 models. The predictors 

208 were not defined and measured in a similar way for all participants in 12/39 models.  Assessor 

209 blinding to the outcome data was not done with 30/39 models.  In 8/39 studies predictors were 

210 included when the result would not be available at the time of applying the prognostic model. 

211 Outcomes Domain: In this domain there was a high risk of bias with 24/39 models. While 

212 outcomes were defined in a standard way in 33/39 models, they were not  determined appropriately 

213 in 20/39 models. The way that outcomes were determined was not reported for 1/39 models.  

214 Outcomes were not defined and determined in a similar way in 13/39 models. Blinding was not 

215 performed in 24/39 models.  Outcomes were included as predictors in 17/39 models.  

216 Analysis Domain: In this domain there was a high risk of bias with 37/39 models (Fig 1). The 

217 common deficiencies in this domain were no accounting for overfitting and optimism (i.e. no 

218 shrinkage methods employed) in 31/39 models, none or inappropriate reporting of data complexity 

219 in 38/39 models (Fig 2), insufficient sample size in 28/39 models, and selection of predictors relied 

220 solely on univariate analysis in 26/39 models.  
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221 Quality of Reporting as Assessed by TRIPOD+AI

222 Title, Abstract, Introduction Section: All 30 studies reported to the standards of TRIPOD+AI 

223 except in one important sub-item. No study reported the health inequalities that may exist in 

224 outcomes between sociodemographic groups (Fig 2 and S4 Table). 

225 Methods Section: Twenty-eight studies described The sources of data, study dates, setting and 

226 eligibility were described in 28/30 studies but only 5/30 studies reported details of any treatment 

227 received where treatment might have influences the outcome of interest. Other frequent omissions 

228 included no description of model fairness and their rationale (28/30), no sample size justification 

229 (23/30), no blinding of assessors (20/30), no reporting differences between training and evaluation 

230 data (16/30), no outcome measurement (15/30), no description of data preparation  and pre-

231 processing(13/30), no reporting of elements pertinent to outcome definition (13/30), and no 

232 assessment of study quality (13/30)

233 Open Science and Patient/Public Involvement Section: There was no reporting on whether a 

234 protocol was prepared, available or accessed in 25/30 studies.  There was no report as to the 

235 availability of study data (9/30) or analytical code (28/30).  There was comment on whether 

236 patients and public were involved in 26/30 studies. 

237 Results Section: There was insufficient detail of the prediction model to allow external validation 

238 in 25/30 studies.  Reporting details of the prediction model performance in key subgroups (e.g. 

239 sociodemographic) was not available in 15/30 studies. 

240 Discussion Section: Items pertaining to the usability of the model in the context of current care 

241 were usually not discussed. Only 3/30 studies described how poor quality or missing data should 

242 be handled with clinical implementation of the model.  Only 1/30 study specified whether users 
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243 will be required to interact with handling of the input data or use of the model and what level of 

244 expertise is required to use the model.

245 Rationale against performing subgroup analyses: Even though several of the included studies 

246 developed models predicting similar outcomes, decision was made not to perform subgroup 

247 analyses stratified by similar endpoints. All but one model was judged to have high risk of bias in 

248 at least two out of the four PROBAST domains and none of the models were at low risk of bias in 

249 the statistical analyses domain. With such limitations in the methodology across the board, 

250 subgroup analyses were felt not to lead to meaningful discoveries or different conclusions.   

251 DISCUSSION

252 In this systematic review, we assessed the quality of the methodology and reporting of studies 

253 that develop and/or validated non-regression ML-based models in AP literature. While the 

254 performance of the published models was high (mean AUC 0.91), we identified several key 

255 limitations in the recently published models. Unfortunately, these shortcomings are like those 

256 identified in other fields such as oncology[28] and anesthesiology[73]. First, the concern relates 

257 to the high risk of bias most notably in the statistical analysis section, which can undermine the 

258 validity of the models. Second, due to the lack of external validation studies, generalizability of 

259 the ML models may be limited. Third relates to open science practice, where in over 90% of the 

260 studies, the code was not shared and no information was provided on how the model was built. 

261 Additionally, there was a lack of reporting on how the ML model can be implemented in clinical 

262 practice. Lastly, none of the studies described potential health inequities among different 

263 sociodemographic groups, which risks widening disparities in healthcare, if implemented in real 

264 clinical practice. 
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265 The quality of the statistical analyses is one of the most important facets of model development. 

266 The PROBAST ROB tool dedicates 9 signaling questions to this domain[42]. Two particularly 

267 deficient areas were sample size justification and guarding against overfitting. A robust sample 

268 size (especially for a ML model) and guarding against overfitting are critically important. When 

269 these steps are omitted, a model may perform well in the development dataset but the predictive 

270 performance may not be reproducible[74]. We found that most published studies developed a 

271 model with a sample size of less than 1,000 participants and median events per variable was 9.5. 

272 Even for regression-based models, the minimum recommended events per variable is 20[42]. 

273 While events per variable is not a singular reflection of sufficient sample size, it is generally 

274 accepted that ML models require much larger sample size (than regression-based models) due to 

275 the risk of model instability[75]. 

276 Potentially limited generalizability of the published models need to be highlighted. Only one 

277 study conducted external validation but with limitations, all but 5 studies were single-center 

278 design. While AP is a common gastrointestinal disease, with an annual worldwide 1 million new 

279 cases a year[76], international or large multi-center consortiums with efforts to build a 

280 generalizable model have been lacking. Lack of such collaboration results in siloed attempts at 

281 building models that may not be clinically utilized due to poor reproducibility and 

282 generalizability. As with the case with the regression-based models[21], we are seeing a similar 

283 trend in ML-based models in AP. 

284 Ultimately, prognostic models are built to aid clinical decision making or enhance cohort 

285 enrichment in a research study. Therefore, steps need to be taken to thoughtfully consider real-

286 life issues we will face when trying to deploy these models (e.g., ways to deal with missing 

287 values in real clinical practice when patients won't have the data elements necessary for the ML 
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288 model). We also found key missing items relevant to open science, that limit external validation 

289 studies by other investigators and clinical implementation by the hospitals. For example, only 5 

290 studies shared the code to permit third-party evaluation and implementation, only 3 studies gave 

291 guidance on how to handle missing data, and one study detailed the specifics of what constitutes 

292 human-AI interaction. As important, aspects of model building relevant healthcare equity (e.g., 

293 comparison of performance estimates among different sociodemographic subgroups) were not 

294 evaluated. Such deficiency leads to a potential to produce a model that widens the 

295 socioeconomic disparities[77]. 

296 Our study has several strengths. For transparency and rigor of our methodology we have 

297 published our methods and adhered strictly to the standards of TRIPOD-SR/MA. Our work was 

298 conducted in collaboration between data scientists, ML methodologist, and content experts in 

299 AP, which we believe enhances the reliability of our findings. There are multiple aspects to 

300 PROBAST and TRIPOD+AI assessment that require both AP content and ML methodology 

301 expertise. Third, rigorous internal training for PROBAST assessment preceded the project, 

302 enhancing the validity of our ROS assessment. 

303 Several limitations deserve mention. Our search strategy extended only the last 3 years so it is 

304 possible that our findings may not be fully representative of all the ML models published for AP 

305 thus far. Second, while PROBAST was developed by expert methodologists, it is possible that 

306 models deemed high ROB by PROBAST may still be valid, reproducible, and generalizable in 

307 AP. However, there is emerging data from other diseases that suggest models deemed high ROB 

308 by PROBAST perform poorly external validation studies[78, 79] 

309 In conclusion, the potential benefit of ML-based prognostic models is evident with an overall 

310 high AUC (mean 0.91±0.8SD).  However, this study indicates that there should be great caution 
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311 in implementing the reported models because of the very major concerns with the quality of the 

312 methodology and reporting.  These raise questions about the validity, reproducibility, and 

313 generalizability of the prognostic models. It is recommended that AP-specific, standardized 

314 methodology that covers all 4 PROBAST domains and all items within TRIPOD+AI be used in 

315 developing and validating ML-based prognostic models.  Only then should implementation be 

316 considered. Our study findings provide valuable baseline assessment of the quality of methods 

317 and reporting of ML-based models in AP. It is also timely given the recent publication of 

318 TRIPOD+AI[43], which we hope will encourage future investigators to utilize.  

319
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