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Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative dis-
ease that severely impacts affected persons’ speech and motor functions, yet
early detection and tracking of disease progression remain challenging. The
current gold standard for monitoring ALS progression, the ALS functional
rating scale - revised (ALSFRS-R), is based on subjective ratings of symptom
severity, and may not capture subtle but clinically meaningful changes due
to a lack of granularity. Multimodal speech measures which can be automat-
ically collected from patients in a remote fashion allow us to bridge this gap
because they are continuous-valued and therefore, potentially more granu-
lar at capturing disease progression. Here we investigate the responsiveness
and sensitivity of multimodal speech measures in persons with ALS (pALS)
collected via a remote patient monitoring platform in an effort to quantify
how long it takes to detect a clinically-meaningful change associated with
disease progression. We recorded audio and video from 278 participants and
automatically extracted multimodal speech biomarkers (acoustic, orofacial,
linguistic) from the data. We find that the timing alignment of pALS speech
relative to a canonical elicitation of the same prompt and the number of
words used to describe a picture are the most responsive measures at detect-
ing such change in both pALS with bulbar (n = 36) and non-bulbar onset (n
= 107). Interestingly, the responsiveness of these measures is stable even at
small sample sizes. We further found that certain speech measures are sen-
sitive enough to track bulbar decline even when there is no patient-reported
clinical change, i.e. the ALSFRS-R speech score remains unchanged at 3 out
of a total possible score of 4. The findings of this study have the potential
to facilitate improved, accelerated and cost-effective clinical trials and care.
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1. ALS & Speech Biomarkers

Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neuron dis-
ease with an estimated global prevalence of 4.42 per 100,000 persons [1].
Neuronal death leads to muscular atrophy, loss of voluntary motor control
in persons with ALS (pALS) and a median survival of 3 to 5 years [2] af-
ter disease onset. Up to 30% of pALS present with bulbar onset of ALS,
characterised by a rapid loss of speech and swallowing functions [3], while
the rest present with non-bulbar onset characterised by muscular atrophy in
the limbs and the trunk [4]. However, a vast majority of non-bulbar onset
pALS eventually also exhibit bulbar symptoms in the course of their disease
progression [2]. The heterogeneous nature of ALS onset and progression un-
derlines the importance of identifying efficacious biomarkers to improve the
predictive modelling of disease progression.

The current clinical gold standard to track disease progression in ALS
is the ALS Functional Rating Scale - Revised (ALSFRS-R) [5], a question-
naire comprising 12 questions across four functional domains impacted by
ALS [6]: bulbar, fine motor, gross motor and respiratory. However, there is
evidence that the ALSFRS-R scale may track disease progression in a non-
linear manner and may lack sensitivity in the early stages of bulbar disease
onset [7, 8, 9]. For example, Van Unnik et al. have pointed out that such
survey-based outcomes have “limited ability to detect subtle changes over
time” [10].

Speech and oro-facial biomarkers have shown great promise for remote as-
sessment and monitoring of neurological and mental health [11, 12, 13, 14, 15].
Indeed, many studies have computed and demonstrated the efficacy of mul-
tiple speech metrics that capture how a given disease impacts multiple do-
mains of speech performance – be it motor, anatomical, cognitive, linguistic
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or affective [11, 16, 17, 18]. Objective speech and facial kinematic measures
have been shown to be very powerful in early detection of bulbar symptoms
[19, 20, 21, 22, 23, 24, 25] and the progression of bulbar decline in pALS
[26, 27, 28, 29, 30]. Eshghi et al. [29] demonstrated that speaking rate and
speech intelligibility can predict speech loss based on pre-defined thresholds
and that these objective speech measures are more responsive to functional
decline than patient-reported ALSFRS-R scores. Yunusova et al. [27] sug-
gested that changes in kinematics of the jaw and lips are detectable prior to
changes in vowel acoustics and speech intelligibility. Stegmann et al. [28]
demonstrated that disease progression in bulbar onset and non-bulbar on-
set pALS can be predicted using speaking rate and articulatory precision
through data collected remotely via a mobile application. Speaking rate has
been consistently found to be an important biomarker for early diagnosis and
stratification in both these studies and other studies, along with other timing-
related measures like percentage pause time, speaking duration and others
[22, 23, 31, 32]. Prior work by us [30] has shown that some timing-related
speech biomarkers, collected remotely through a conversational dialog plat-
form, have the requisite responsiveness and sensitivity to track speech decline
in the context of clinical interventional trials targeting neurodegenerative dis-
orders. To establish the efficacy of multimodal biomarkers in tracking disease
progression, it is important to consider what constitutes a minimal clinically-
important difference (MCID) [33, 34, 35] and whether these biomarkers show
change greater than any measurement errors. It is important that these mul-
timodal biomarkers are also sensitive in detecting bulbar decline, which could
be well before corresponding changes are observed in the relevant ALSFRS-R
functional scores or equivalent clinical scales.

To address the need for improved biomarkers of bulbar disease progres-
sion in ALS, we explored the responsiveness, sensitivity and clinical utility
of multimodal speech metrics1 – automatically extracted via a cloud-based
multimodal dialog platform – by formulating the following research questions:

1. Optimal Feature Selection. Which speech and facial biomarkers are
the best at capturing differences between bulbar and non-bulbar onset

1A note on the terminology used in this paper: We use the term metric to denote the
general concept of speech and facial characteristics (e.g., speaking rate), and we use the
term feature to denote a metric that was extracted for a specific stimulus or task (e.g.,
speaking rate for a reading passage task).
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ALS?

2. Responsiveness to Longitudinal Change. How is the rate of change in
these speech and facial biomarkers different for bulbar and non-bulbar
onset pALS? Can we quantify how different the rates are?

3. Time to Detect Change. How many weeks does it take to detect a clini-
cally meaningful change in these biomarkers from disease onset in both
cohorts of pALS, keeping in mind that ALS is a rapidly-progressing
disease?

4. Effect of Sample Size. How does the responsiveness and time to detect
change depend on the sample size of the cohort?

5. Sensitivity Relative to Clinical Standard. Can these metrics detect
speech deterioration during intervals of time when patients report no
speech changes on the ALSFRS-R instrument?

The present study is partially inspired by the work by Stegmann et al. [28]
who applied growth curve models to model longitudinal trajectories of speak-
ing rate and articulatory precision in pALS with bulbar onset and non-bulbar
onset. We extend this work in several key aspects: (i) by analyzing a con-
siderably larger dataset (278 participants total) that was recorded using an
interactive dialog system; (ii) by exploring a large multimodal feature set to
find the most promising features for the task at hand; (iii) by conducting a
sample size analysis; and (iv) by putting the longitudinal modelling results
into context with respect to MCID thresholds (based on work by Stipancic et
al. [34]) and ALSFRS-R scores. As mentioned previously, we have addressed
some of these research questions using a very narrow set of speech timing fea-
tures in [30]. However, this is the first data-driven study, to the best of our
knowledge, to look at the responsiveness and sensitivity of remotely-collected
multimodal (i.e., speech, facial and text based) digital biomarkers extracted
using a structured conversational dialog with a virtual agent. The advan-
tage of such self-driven assessments is that there is no software or hardware
installation required and data collection can be done using the participants’
devices.

The rest of this paper is organized as follows. Section 2 provides infor-
mation about the study design and the dataset. The dialog system that
was used for data capture is described in section 3. Section 4 presents all
methodological details, including automatic feature extraction, feature selec-
tion, MCID estimation, and the longitudinal analysis based on growth curve
models. Our findings are presented in section 5, before we conclude this
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paper with the discussion in section 6.

2. Data and Study Design

The study protocol was approved by an external Institutional Review
Board2 on August 11, 2020. Participants were recruited by EverythingALS
and the Peter Cohen Foundation3. All participants provided informed con-
sent upon recruitment, prior to their first assessment on the Modality plat-
form. Figure 1 provides an overview of the study procedures. Data was col-
lected between 2020-11-03 and 2023-10-06 from 143 pALS (70 female, mean
age ± standard deviation = 60.4 ± 10.2 years, Bulbar onset: n = 36, Non-
Bulbar onset: n = 107) and 135 age and sex-matched controls (71 female,
mean age ± standard deviation = 59.9 ± 10.3 years). For age matching, a
tolerance threshold of ±3 years was set4. A total number of 6,816 record-
ing sessions were conducted (3,388 sessions from pALS – 598 bulbar onset
and 2,790 non-bulbar onset – and 3,428 sessions from healthy controls). Out
of 3,388 sessions from pALS, the ALSFRS-R total score was available for
1,879 sessions. Table 1 summarizes the participant statistics and provides
information on the ALSFRS-R scores at baseline (participants’ first session).

3. Multimodal Dialog System

The Modality service, a cloud-based multimodal dialog system [36, 37,
38], was used to collect video recordings from participants, who engaged in
a structured conversation with Tina, a virtual dialog agent (see Figure 2
for a schematic illustration of the dialog platform). To ensure data privacy
and protection of personal health information (PHI), the Modality service
is fully compliant with the Health Insurance Portability and Accountability
Act (HIPAA) and the General Data Protection Regulation (GDPR; Euro-
pean Union). Each participant is provided with a unique website link to
the Modality platform, which they can click on to start the assessment us-
ing a browser and device of their choice (microphone and webcam required).

2https://versiticlinicaltrials.org/salusirb [retrieved on 2023-12-29], protocol
number: 2020-06-PI42

3https://www.everythingals.org/research [retrieved on 2023-12-29]
4For some participants, there was no match in the healthy controls cohort. As a result,

the final dataset contained less healthy controls than people with ALS.
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Figure 1: Schematic of study design and modeling procedures.
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Figure 2: Schematic diagram of the Modality dialog platform.

After completing microphone and camera checks to ensure data collection
of good quality, participants engage in a conversation with Tina. The di-
alog protocol elicits different types of speech samples that are inspired by
prior work [39, 40, 41, 42] and also utilized in similar remote monitoring ef-
forts [15, 43]. In this data collection, the following tasks were included: (a)
read speech (sentence intelligibility test (SIT), 5-15 words; Bamboo reading
passage (RP), 99 words), (b) measure of diadochokinesis (DDK, rapidly re-
peating the syllables /pAtAkA/), (c) single breath counting (SBC), and (d)
free speech in form of a picture description task (PD). During the assess-
ment, Tina asks participants to do the aforementioned tasks. Due to the
conversational nature, participants receive feedback (e.g., when they spoke
shorter than a predefined threshold for a given task), and Tina can pro-
vide demonstrations of how a task should be performed. Participants’ audio
and video streams are uploaded to the cloud and segmented in real-time for
downstream analysis. After dialog completion, participants were asked to fill
out the ALS functional rating scale - revised (ALSFRS-R) [5], the standard
clinical scale to capture progression in ALS.5

5Participants filled out the ROADS questionnaire [44] for a subset of sessions instead
of the ALSFRS-R. Therefore, the ALSFRS-R score was not available for all sessions.
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4. Methods

4.1. General Experimental Setup

All analyses were performed using Python (v3.10) and R (v4.3.1). The
following open-source Python libraries were used: Pandas (v1.5.3 [45, 46]),
Numpy (v1.24.3 [47, 48]), scikit-learn (v1.2.2 [49]), Matplotlib (v3.7.1 [50]),
spaCy6 (v3.5.3), and SciPy (v1.10.1 [51]). The following R packages were
used: ROCR (v1.0.11 [52]), pROC (v1.18.2 [53]), ggplot2 (v3.4.4 [54]), nlme
(v3.1.162 [55]), and the rpy27 interface (v3.5.13).

4.2. Speech and Facial Metrics

Our multimodal dialog platform is equipped with analytics modules that
automatically extract metrics to capture information from acoustic (energy,
timing, voice quality, spectral), facial (articulatory kinematics, range of mo-
tion, eye and facial movement), motoric (finger tapping kinematics) and tex-
tual (lexico-semantic, sentiment) domains during the different tasks. Table 2
provides an overview of the extracted metrics.

We use Praat (v6.2.17) [56] and the Montreal Forced Aligner (v2.0.0.a22)
[57] to extract speech metrics, including timing measures, such as percentage
of pause time (PPT; proportion of the total duration of all pauses to the total
duration of the utterance), rate measures such as speaking rate (the total
number of words in the passage (99) divided by the speaking duration, or time
taken to read the Bamboo passage [58]), frequency related measures, such
as fundamental frequency (F0), energy related measures, such as signal-to-
noise ratio, and voice quality measures, such as the harmonics-to-noise ratio
(HNR). We also computed Canonical Timing Alignment (CTA; %), a number
between 0% (non-alignment) and 100% (perfect alignment), measured as
the normalised inverse Levenstein edit distance between words and silence
boundaries (here the participant’s predicted word-level timing information,
derived using the Montreal Forced Aligner [59] is compared to a canonical
production by Tina [60]).

Facial video metrics are based on facial landmarks generated with Medi-
aPipe Face Mesh [61]. First, MediaPipe Face Detection, which is based on
BlazeFace [62], is used to determine the (x, y)-coordinates of the face for ev-
ery video frame. Then, facial landmarks are extracted using MediaPipe Face

6https://spacy.io/ [retrieved on 2023-12-29]
7https://github.com/rpy2/rpy2 [retrieved on 2023-12-29]
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Mesh. We use 14 key landmarks to compute metrics like the speed of articu-
lators (jaw, lower lip), surface area of the mouth, and eyebrow raises. These
landmarks include center and corners of the lips, jaw center, nose tip, center
and corners of the eyes, and the center of the eyebrows. Lastly, the features
are normalized by dividing them by the inter-caruncular or inter-canthal dis-
tance, to handle variability across participant sessions due to position and
movement relative to the camera [63].

Linguistic metrics are computed for the picture description task only,
using the Python package spaCy. They are based on automatic transcriptions
obtained with AWS Transcribe8 and include lexico-semantic metrics, such as
word count, noun rate, and noun-to-verb ratio.

4.3. Preprocessing

Generally, every metric is computed for each task of the assessment on
an utterance level, e.g., speaking rate for the reading passage, or speaking
duration for the SBC task. In the present work, we refer to these task-
metric combinations as features. For the SIT task, metrics were aggregated
across six SIT sentences by taking the mean values over these utterances
(i.e., speaking rate for SIT denotes the average speaking rate across the six
sentences).

To remove outlier values from speech and facial features, we employed
a distribution-based outlier detection algorithm [64]. Possible reasons for
outlier occurrence include high-intensity background noise, bad lighting con-
ditions, or incorrectly performed tasks. First, all feature values that are
more than five standard deviations away from the population mean are re-
moved. These are considered extreme outliers, which potentially skew the
distribution mean. Such extreme events can happen when the recorded data
is corrupted, for example through a poor network connection. The value
of five standard deviations was empirically chosen after carefully analyzing
the data distributions. Then, the mean is re-computed and values outside
±3 standard deviations are flagged as outliers and removed from any further
analysis.

For the feature selection procedure (section 4.5), all features were nor-
malized to zero mean and unit variance. For the longitudinal analysis, where
we look at one feature at a time, we decided to work with raw, unnormalized

8https://aws.amazon.com/transcribe/ [retrieved on 2023-12-29]
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Table 2: Overview of extracted metrics. For visual metrics, functionals (minimum, max-
imum, average) are applied to produce one value across all video frames of an utterance.
Visual distance metrics are measured in pixels and are normalized by dividing them by
the intercanthal distance (distance between inner corners of the eyes) for each participant.
*specific to DDK task

Domain Exemplar Metrics

A
u
di
o

Energy shimmer (%), intensity (dB), signal-to-noise ratio (dB)
Timing speaking and articulation duration (sec.), articulation

and speaking rate (WPM), percent pause time (PPT,
%), canonical timing agreement (CTA, %), cycle-to-
cycle temporal variability* (cTV, sec.), syllable rate*
(syl./sec.), number of syllables*

Voice quality cepstral peak prominence (CPP, dB), harmonics-to-
noise ratio (HNR, dB)

Frequency mean, max., min. fundamental frequency F0 (Hz), first
three formants F1, F2, F3 (Hz),
slope of 2nd formant (Hz/sec.), jitter (%)

T
ex
t

Lexico-semantic word count, percentage of content words, noun rate,
verb rate, pronoun rate,
noun-to-verb ratio, noun-to-pronoun ratio, closed class
word ratio, idea density

V
id
eo

Mouth (distances) lip aperture/opening, lip width, mouth surface area,
mean symmetry ratio between left and right half of the
mouth

Lip/Jaw Movement velocity, acceleration, jerk, and speed of lower lip and
jaw center

Eyes number of eye blinks per sec., eye opening, vertical dis-
placement of eyebrows

values because this helps with interpreting the intercepts and slopes of the
growth curve models.

4.4. Clinically-meaningful change

To clearly define what feature changes count as clinically meaningful,
we use the concept of the minimal clinically-important difference (MCID)
[33, 34]. The MCID is the smallest domain-specific change that is consid-
ered to be clinically relevant [65]. It can be quantified as a threshold for
a change corresponding to clinical improvement or deterioration [35] and is
tied to an external anchor, which is considered to be a clinical gold standard,
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the ALSFRS-R speech question in this case. We calculated the MCID for
all features for a corresponding one-point change on the ALSFRS-R speech
question where participants are asked to rate their speech on the following
scale with scores in parentheses:

• Normal speech processes (4)

• Detectable speech disturbance (3)

• Intelligible with repeating (2)

• Speech combined with nonvocal communication (1)

• Loss of useful speech (0)

One approach to derive the MCID is using data-driven ROC analysis [66],
which was also applied in [34]. The point representing maximum sensitivity
and specificity (closest to the top left corner) on an ROC curve is determined
as the optimal cutpoint corresponding to the MCID value. MCID calculation
was performed using the rpy2 package in Python along with the pROC [67] and
ROCR [52] packages in R [68]. The classes being discriminated were pALS who
exhibited a one-point decline in their ALSFRS-R speech score and those who
did not show any change in their ALSFRS-R speech score. For each pALS,
adjacent sessions (with at least 14 days between sessions) were considered to
calculate the change in every feature from the first to the second session. For
pALS in the one-point decline class, only those adjacent sessions were taken
into account where the decline was observed.

4.5. Feature Selection

All audiovisual metrics were extracted for each of the five speech tasks
in the protocol. Considering all valid task-metric combinations as individual
features results in a very large number of features. To handle multicollinear
features and identify a good set of representative features, we applied hier-
archical clustering on the Spearman rank-order correlations, similar to the
approach in [69]. For this feature clustering approach, only healthy controls’
data was considered in order to avoid data leakage in the experimental de-
sign – note that all subsequent analyses focuses on patient data only – and
because data from healthy controls is most representative of normative fea-
ture ranges and correlations between features. Ward’s method was used for
clustering and we plotted a dendrogram for visual inspection of the feature
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clusters (see Figure 3). A distance threshold of 1.0 to split clusters9 was cho-
sen manually to select clusters that represent sensible feature groupings in
terms of the domain (e.g. frequency or timing related speech features) or the
area of the face (e.g. features pertaining to jaw movement). This threshold
resulted in 27 clusters.

Next, a representative feature for every cluster was selected to form the
final feature set. Receiver operating characteristic (ROC) curve analysis was
used in a 5-fold cross validation setup to determine the area under the ROC
curve (AUC) for distinguishing bulbar onset participants from non-bulbar
onset participants (for every individual feature). 5-fold cross validation was
used to ensure generalizability. We implemented it with sklearn’s Stratified-
GroupKFold function, where the samples were stratified by the class label
non-bulbar/bulbar onset, and it was ensured that there is no overlap of a
participant’s data between training and test folds. Table 3 shows the clus-
ters and the selected representative features. To further filter features, we
imposed a minimum threshold for the ROC-AUC. Only features with an
AUC≥ 0.65 and for which the MCID was larger than the standard error of
the mean (SE) were considered in the longitudinal analysis (section 4.6).10

4.6. Longitudinal analysis

Responsiveness and sensitivity of features over time was evaluated using
growth curve models (GCMs) [70], which provide a linear fit for a non-linear
mixed effects model to estimate the trajectory of a metric over time with
random slopes and intercepts for each participant [28]. Growth curve models
produce estimates of smoothed trajectories of change over time by using
observed repeated measures of each individual, making it the ideal statistical
method to answer the research questions posed in this paper. The assumption
here is that a latent growth process (functional decline) is responsible for the
change in observed measures. GCM fitting was performed in R. GCM curves
for distinct cohorts can help identify differences in the longitudinal trajectory

9The maximum distance at which all features would be combined into one single cluster
was 5.4

10AUC values were rounded to 2 digits after the decimal point before determining the
best feature in each cluster. Among the 17 resulting clusters with AUC≥ 0.65 there was
only one instance of a tie: the features SIT speaking rate, RP speaking duration, and RP
speaking rate all had an AUC of 0.84. We ran the responsiveness analysis for all three
features and report results for the best performing one, RP speaking duration.
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Figure 3: Dendrogram for visualizing feature clusters of acoustic, linguistic, and facial
features (exemplary section with 11 out of 27 clusters). The dashed line shows the distance
threshold for splitting the clusters.
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Table 3: Feature clusters from hierarchical clustering and the selected representative fea-
tures. AUC represents the mean AUC for distinguishing bulbar onset and non-bulbar
onset pALS samples across five cross validation folds. Only features with AUC> 0.65
were included in the longitudinal analyses. Resp. p are the p-values of the responsiveness
analysis (see Table 4) and an asterisk (*) indicates features that showed signal in the
sensitivity analysis.
LL: lower lip, JC: jaw center, RP: reading passage, DDK: diadochokinesis, PD: picture
description, SBC: single breath counting, SIT: sentence intelligibility test.

Cluster description Selected representative AUC Resp. p

Timing: duration and rates Speaking duration (RP) 0.84 0.0001*
Temporal DDK measures cTV (DDK) 0.83
Timing alignment CTA (RP) 0.83 0.0020*
Duration and word count for PD Word count (PD) 0.83 < 0.0001*
Eyebrow displacement Max. eyebrow displ. (SIT) 0.78
Pause time PPT (SIT) 0.77 0.0001
Lip width Max. lip width (RP) 0.72 0.0490
Voice quality (read/free speech) HNR (SIT) 0.71 0.0020
Cepstral peak prominence (CPP) CPP (RP) 0.69 0.0290*
Voice quality for SBC and DDK HNR (DDK) 0.68 0.0010
Lip aperture, mouth surface area Mean lip aperture (SIT) 0.68
Eye opening measures Max. eye opening (SIT) 0.68
Content and closed class words Closed class word ratio (PD) 0.67
Min. and mean F0 Mean F0 (RP) 0.67 0.0351
JC velocity for SIT Max. JC velocity down (SIT) 0.66
Duration measures for SBC and
DDK

Number of syllables (DDK) 0.65

JC velocity for RP Max. JC velocity up (RP) 0.65

Verb/noun/pronoun rates Pronoun rate (PD) 0.62
LL velocity for PD Max. LL jerk up (PD) 0.61
JC velocity for PD Max. JC velocity down (PD) 0.61
JC velocity for SBC Mean JC speed (SBC) 0.60
Max. F0 and F0 stdev. Max. F0 (SIT) 0.60
LL velocity for read speech Mean LL speed (SIT) 0.58
JC velocity for DDK Max. JC velocity down (DDK) 0.58
LL velocity for DDK Mean LL jerk (DDK) 0.57
LL velocity for SBC Max. LL speed (SBC) 0.55
Mouth symmetry ratio Mean mouth symmetry ratio

(RP)
0.54

of measures in the two cohorts. In this study, more than 80% of participants
had at least 3 repeated measures, thus minimising any impact of variability
in the number of sessions per participant on the growth curve models [71].
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4.6.1. Responsiveness

For the responsiveness analysis, the two cohorts chosen for growth curve
modeling were sessions from pALS with bulbar onset and those from pALS
with non-bulbar onset. First, for every selected feature, we examined whether
the rate of change (or slope of the linear fit) is significantly different between
the two cohorts. Then, for those features that showed differences, respon-
siveness was evaluated in two ways: (i) the time taken in weeks to detect
deterioration greater than the standard error of the mean for the cohort
(statistical utility) and (ii) the time taken in weeks to detect deterioration
greater than the MCID value (clinical utility).

4.6.2. Sample Size

To investigate the relationship between responsiveness and sample size
of the participant cohort, sample sizes of 30, 25, 20, 15 and 10 participants
were randomly sampled 100 times, without replacement, from both cohorts11.
GCMs were run for each of these 100 iterations. Mean responsiveness for a
sample size was calculated by taking the average slope for each cohort across
the 100 iterations.

4.6.3. Correlations

To explore the relationship between responsive metrics and the ALSFRS-
R scale, we ran Spearman correlations between metrics that showed differ-
ences in slopes of bulbar and non-bulbar onset pALS and the ALSFRS-R total
score, ALSFRS-R bulbar subscore and the ALSFRS-R speech question [5].

4.6.4. Sensitivity

For sensitivity analysis, we wanted to ask whether these metrics can de-
tect bulbar speech deterioration even during those intervals of time where
patients report no speech changes on the ALSFRS-R instrument. The two
cohorts analysed for this purpose were sessions from healthy controls and all
contiguous pALS sessions with a speech score of 3. We decided to look at
pALS sessions with a speech score of 3 because these pALS were deemed to
exhibit bulbar impairment (albeit per self-perception) but still had speech
that was intact enough for objective analysis. A feature was determined to
be sensitive if the slope of the GCM for pALS with a steady speech score of 3

11We did not consider sample sizes of 40 or greater per cohort for this analysis to avoid
sampling the 36 participants in the bulbar cohort more than once.
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varied as compared to the slope of participants from the control cohort with
a steady speech score of 4. Note that longitudinal data may be confounded
by the presence of learning effects due to the repetition of the same tasks
over time. For example, in the case of the Bamboo passage, familiarity with
the words in the passage may lead to a decreased speaking duration. The
advantage of comparing the trajectory of metrics in ‘clinically-stable’ pALS
with that in controls is that it will demonstrate a difference in slopes over
any learning effects (assuming the learning effects are equal across cohorts).

5. Results

Out of the 17 features selected (after the procedures described in sec-
tion 4.5), 9 features showed differences in slopes between bulbar onset and
non-bulbar onset pALS with the bulbar onset cohort exhibiting a steeper
slope (see Figure 4). Details of the slopes per cohort and responsiveness in
terms of time to detect change can be found in Table 4. RP speaking dura-
tion was found to be the measure with the most responsive statistical utility
(2.11 weeks in pALS with bulbar onset). When both statistical and clinical
utility are taken into account, RP CTA was the most responsive measure
in both cohorts. RP CTA showed statistical and clinical utility in detecting
changes in bulbar onset pALS within less than 4 weeks and in non-bulbar
onset pALS within 9 weeks. These results are consistent with what was re-
ported in [30] where only timing-related metrics of the RP were considered.
PD word count also seemed responsive in detecting changes in bulbar on-
set pALS within less than 11 weeks and in non-bulbar onset pALS within 9
weeks. However, the shorter duration in the non-bulbar onset cohort is due
to an increase in word count over time. This could perhaps be attributed
to participants getting familiar with the PD task over repeated sessions and
thus exhibiting a learning effect. However, the bulbar onset cohort shows a
sharp decrease in PD word count over time despite any learning effect, thus
capturing the rapid decline of articulatory and perhaps respiratory function.
RP speaking duration demonstrated good responsiveness in detecting statis-
tical changes in both cohorts and clinical change in the bulbar onset cohort.
However, when it comes to detecting clinical change in the non-bulbar onset
cohort, it takes 23.5 weeks. Although all other features also show differences
in the longitudinal trajectory between bulbar onset and non-bulbar onset
pALS, the time taken to observe a clinical change, especially in non-bulbar
onset pALS, may be too long to be of clinical utility for some interventional
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trials.
Mean responsiveness of RP speaking duration, PD word count, RP CTA

and RP mean F0 remains stable, with narrow confidence intervals, even with
sample sizes as low as 15 per cohort (see Figure 5). However, we observed
that the uncertainty about this estimate generally increases as the sample
size decreases. For all other features, the number of weeks required to detect
a statistical and clinical change in the non-bulbar cohort is either unstable
or too large to be of any clinical utility. Surprisingly, for some of the metrics,
responsiveness was greater at a sample size of 10 than that of 15. We think
this could be a result of model overfitting and may not be generalizable.

Certain speech metrics (like RP speaking duration, RP CTA and SIT
PPT) showed moderate to strong correlations with the ALSFRS-R speech
question score and the ALSFRS-R bulbar subscore but not the ALSFRS-R
total score (see Figure 6).

Four features were sensitive enough to show a longitudinal change before
any change in the ALSFRS-R speech score of patients from 3 (see Table 5)
when compared to controls. These features were: RP speaking duration,
PD word count, RP CPP and RP CTA. However, for three of these four
features (RP speaking duration, PD word count and RP CTA), a learning
effect in controls can be observed through the negative slope for RP speaking
duration and RP CTA and a positive slope for PD word count. Since clinical
deterioration of speech in controls is not expected, any changes in features
can be attributed to familiarisation with the task or learning effects. Note
that the slope for CTA is negative in controls because an increase in speaking
rate would reduce the CTA value because the elicitation will be faster than
the canonical elicitation of the reading passage. Differences between controls
and pALS were observed despite the presence of these learning effects.

6. Discussion and Conclusions

Summary. We can summarize the modeling results and in turn, the
novel contributions of this manuscript, by means of the following concise
answers to the research questions framed in Section 1:

1. Optimal Feature Selection. Through a comprehensive feature selection
process that took multicollinearity into consideration, we selected 17
representative features that were able to distinguish bulbar onset pALS
from non-bulbar onset pALS with an AUC ≥ 0.65.
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(a) RP CTA (p = 0.0020; equa-
tions: bulbar onset RP CTA = -
0.2010 * number of weeks + 74.73;
non-bulbar onset RP CTA = -
0.0750 * number of weeks + 83.51)

(b) PD word count (p < 0.0001;
equations: bulbar onset PD word
count = -0.2447 * number of
weeks + 85.73; non-bulbar onset
PD word count = 0.2851 * num-
ber of weeks + 57.58)

(c) RP speaking duration (p =
0.0001; equations: bulbar onset
RP speaking duration = 0.3180 *
number of weeks + 25.18; non-
bulbar onset RP speaking dura-
tion = 0.0617 * number of weeks
+ 31.52)

(d) RP mean F0 (p = 0.0351;
equations: bulbar onset RP mean
F0 = 0.1576 * number of weeks
+ 145.35; non-bulbar onset RP
mean F0 = 0.0662 * number of
weeks + 138.18)

(e) DDK HNR (p = 0.0010; equa-
tions: bulbar onset DDK HNR =
0.0264 * number of weeks + 7.08;
non-bulbar onset DDK HNR =
0.0039 * number of weeks + 7.40)

(f) RP CPP (p = 0.0290; equa-
tions: bulbar onset RP CPP
= 0.0137 * number of weeks +
26.64; non-bulbar onset RP CPP
= 0.0020 * number of weeks +
25.94)

(g) RP Max. Lip Width (p =
0.0490; equations: bulbar onset
RP Max. Lip Width = 0.0003
* number of weeks + 1.65; non-
bulbar onset RP Max. Lip Width
= -0.0001 * number of weeks +
1.64)

(h) SIT PPT (p = 0.0001; equa-
tions: bulbar onset SIT PPT
= 0.0400 * number of weeks +
2.43; non-bulbar onset SIT PPT
= 0.0034 * number of weeks +
2.13)

(i) SIT HNR (p = 0.0020; equa-
tions: bulbar onset SIT HNR
= 0.0187 * number of weeks +
10.16; non-bulbar onset SIT HNR
= 0.0017 * number of weeks +
10.06)

Figure 4: Growth curve models showing rates of change for bulbar onset pALS (blue) as
compared to non-bulbar onset pALS (red). Note: The cohort-specific lines in the growth
curve model figures are not linear regression fits. They represent the average intercept
and slope across all participants in the respective cohorts. Each data point represents a
session.
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Figure 5: Weeks required to detect a change greater than SE and MCID as a function of
sample size. For these plots, the vertical limit of the y-axis was set to 52 weeks. Any metric
that requires more than 52 weeks or 1 year to detect statistically or clinically-important
changes may not be useful. The red curve is thus missing in many of the subfigures.
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Figure 6: Correlation matrix with Spearman’s ρ values indicating the correlation between
responsive metrics and ALSFRS-R scores.
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2. Responsiveness to Longitudinal Change. 9 of these 17 features showed
a significantly different change over time in pALS with bulbar onset as
compared to pALS with non-bulbar onset.

3. Time to Detect Change. Of these metrics, RP CTA and PD word count
were the most responsive, in that our fitted growth curve models for
these metrics showed the shortest time to detect a change that was
statistically and clinically relevant.

4. Effect of Sample Size. Responsiveness of metrics remains relatively
stable even with small sample sizes. However, the uncertainty about
this estimate generally increases as the sample size decreases.

5. Sensitivity Relative to Clinical Standard. Four speech features – RP
CTA, PD word count, RP speaking duration and RP CPP – also showed
a statistically significant change over time even when the clinical gold
standard indicated no clinical change in bulbar-impaired pALS. For
this, we chose pALS who perceived their speech to be impaired, i.e., a
score of 3 on the ALSFRS-R speech question. Healthy controls showed
a learning effect over time for three of these four features (a slope sta-
tistically different from 0) – RP speaking duration, PD word count, RP
CTA – perhaps because they got more familiar with doing the tasks.
Under the assumption that pALS and controls exhibit similar learning
effect rates, progression in pALS was significantly different as com-
pared to controls, indicating that these metrics are more sensitive than
the clinical gold standard ALSFRS-R at detecting speech deterioration.
Future work will examine the veracity of this assumption by carefully
modelling learning effects across a larger cohort of ALS patients.

Implications. These results are promising and could have a direct im-
pact on the future of remote digital assessment and remote patient monitoring
in both clinical trials and clinical care. The need for objective and responsive
outcome measures for improved and accelerated clinical trials is high. Digital
biomarkers that can be collected remotely – and therefore more frequently
than standard clinical assessments – serve as promising outcome measures for
tracking disease progression and changes over time in an automated, objec-
tive, and scalable manner. Our findings on sample size suggest that speech-
based digital biomarkers show considerable promise in enabling clinical trial
designs with small sample sizes. For the most responsive metrics, while the
mean responsiveness is stable with decreasing sample size, the uncertainty
about the estimate (standard error) increases marginally as the sample size
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decreases. This has important implications for clinical trial design, where
one desires high confidence in chosen biomarker endpoint estimates on the
one hand, and as low a participant sample size as possible on the other. This
is because the estimated costs of a clinical trial are directly proportional to
the number of participants and clinic visits required [72], and therefore the
sample size has to be small enough to fit budgetary constraints. However, an
underpowered trial may result in a statistically inconclusive outcome and the
failure of the clinical trial. Furthermore, in rare neurodegenerative disorders
like ALS, accommodating smaller sample sizes is especially important, given
the rapidity of disease progression. Remotely-collected digital biomarkers,
showing responsiveness at sample sizes of around 15 participants, not only
enable smaller sample sizes but also obviate the need for frequent clinical
visits. It is possible, however, that the heterogeneity of disease manifestation
and progression in pALS may not always enable clinical trials with small
sample sizes. Future studies with diverse populations need to be conducted
to confirm the findings of this study. Concerning the generalizability of the
presented findings to other neurological or mental disorders, it is important
to note that the specific set of selected useful features, including the rela-
tive utility of different modalities, will likely be different in other disorders
(cf. related work in Parkinson disease [73] or mental health disorders like
depression [74] and schizophrenia [75]), as well as the sensitivity analysis
with respect to a traditional clinical outcome (which is dependent on the dis-
ease). However, the methods that were applied in this study can be readily
transferred to other diseases.

Limitations and future work. It is crucial to interpret the presented
findings in the context of the study’s assumptions and limitations. Out
of the selected set of multimodal metrics, we found that certain metrics
were more useful than others. In particular, facial video metrics showed
diminished utility relative to speech metrics. Despite previously presented
evidence for the utility of these facial metrics in cross-sectional studies, in
ALS and other disorders [26, 27, 76, 77, 75, 74], they were not as responsive
to longitudinal change as speech metrics in the specific cohorts investigated
in this work, suggesting that these metrics are comparatively less robust than
speech metrics for characterizing the strongly heterogeneous nature of ALS
disease progression [78]. Some features that were selected during feature
selection had an good AUC for discriminating bulbar onset from non-bulbar
onset pALS, but were not responsive for longitudinal change, e.g., DDK cTV
and SIT maximum eyebrow displacement. While eyebrow placement metrics
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are not typically expected to be informative about ALS disease progression,
we hypothesized good clinical utility for the DDK cTV. A related measure of
DDK temporal variability, lip movement jitter, was previously shown in [79]
to be useful in distinguishing slow and fast progressors of bulbar ALS, and
that we did not observe similar findings for DDK cTV was counterintuitive.
On examining the fitted GCM more closely, we observed a much higher
variance about the cTV slope estimate for the bulbar onset cohort relative to
the non-bulbar cohort, which rendered the differences in slopes statistically
insignificant. One possible explanation for this observation could be the
challenging nature of estimating cTV automatically with sufficient resolution
from audio recordings for the bulbar cohort in particular, which may lead to
inaccurate estimates of the true cTV. To contexualize how fine a resolution
is required, in our dataset, the cTV feature had a range of approximately
30 to 100ms, and therefore requires very low measurement error to capture
accurately, which is challenging even with human annotation.

On a more general note about the selected feature set, we are aware of
the fact that other types of features, such as deep neural network based
representations, can potentially yield improved performance. However, as
interpretability is pivotal in clinical applications, this work focused on well
studied and interpretable speech, linguistic, and facial kinematic metrics. Al-
ternative black-box data representations like wav2vec [80, 81] and HuBERT
[82] were not in the scope of this study, but should be investigated in future
work. Another aspect to consider for future work is the potential effect of
speaker sex on certain speech metrics. Frequency related metrics (e.g. F0)
and voice quality metrics (e.g. cepstral peak prominence) are influenced by
sex; thus, it might be beneficial to analyze such metrics separately for female
and male participants.

Methodologically, some necessary assumptions were made to compute
the MCID as a measure of clinical utility. How to derive the MCID for a
given outcome measure is still an open challenge and multiple approaches to
estimate clinically-meaningful change have been proposed [33, 66]. We used
the ALSFRS-R speech score as external anchor of meaningfulness and applied
ROC analysis to derive MCID thresholds for each feature. It is important
to note that the AUC values for these analyses were in the range of 0.51 to
0.64. Such values are not surprising and have been seen in prior work looking
at dysarthric speech in ALS [34]. Different approaches and alternatives for
an external anchor will be carefully and systematically examined in future
work. Also, in our investigation of responsiveness and sensitivity, we applied
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growth curve models under the assumption of linear trajectories. While
this was done for simplicity and ease of interpretation and is still useful,
we know that ALS disease progression is often nonlinear [78]. Future work
will focus on improving modelling methods to better capture trajectories and
the variability in different clusters of patients that may share similar disease
progression patterns.

Lastly, it is important to take into account the practical considerations
and challenges to overcome for widespread adoption of these multimodal
digital biomarker technologies in clinical practice and clinical trials. These
include robustness in the face of many different conditions that affect sig-
nals from different modalities differently, robustness to atypical speech di-
versity, heterogeneity and comorbidities involved in progression of disease,
recording environments and application settings, and generalizability and
statistical power of models as promoted by abundant, good-quality training
data [11, 38]. Over and above these, one needs to to overcome several prac-
tical challenges, including, but not limited to, privacy (protection, access
regulation and security of patient data), economic issues (reimbursement,
insurance coverage), clinical issues (potential for lowering quality of care,
potential for abuse, fragmentation of care), legal issues (licensure laws, li-
ability concerns) and social issues (differential access to technologies based
on socioeconomic background) [83, 84, 38]. While some of these are within
our control – for example, ensuring that the Modality platform is HIPAA-
and GDPR-compliant, and adheres to strict standards of patient privacy12,
others will require working as a community to address these gaps in order to
accelerate progress towards the next generation of precision digital health.

Conclusion. In conclusion, we found that the longitudinal trajectories
of certain digital speech biomarkers are useful in distinguishing between per-
sons with bulbar onset ALS and non-bulbar onset ALS. These trajectories
suggest that clinical change associated with bulbar decline could be detected
in a matter of a few weeks in pALS. Among the biomarkers investigated,
the timing alignment of read speech as compared to a canonical reading of
the passage was the most responsive to bulbar decline. This responsiveness
holds true even at low sample sizes. Additionally, some biomarkers are sen-
sitive enough to detect a change before any clinical change is detected by the
prevalent gold-standard survey instrument, the ALSFRS-R scale. The find-

12https://www.modality.ai/regulatory/privacy
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ings of this study highlight the importance of including multimodal speech
biomarkers from remotely-collected data in clinical trials. Their inclusion can
facilitate accessible, speedier and cost-effective randomized controlled trials.
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