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Abstract

We develop a “block” LASSO (blockLASSO) method for training polygenic scores (PGS) and demonstrate
its use in All of Us (AoU) and the UK Biobank (UKB). BlockLASSO utilizes the approximate block diagonal
structure (due to chromosomal partition of the genome) of linkage disequilibrium (LD). LASSO optimization is
performed chromosome by chromosome, which reduces computational complexity by orders of magnitude. The
resulting predictors for each chromosome are combined using simple re-weighting techniques. We demonstrate
that blockLASSO is generally as effective for training PGS as (global) LASSO and other approaches. This is
shown for 11 different phenotypes, in two different biobanks, and across 5 different ancestry groups (African,
American, East Asian, European, and South Asian). The block approach works for a wide variety of pheno-
types. In the past, it has been shown that some phenotypes are more/less polygenic than others. Using sparse
algorithms, an accurate PGS can be trained for type 1 diabetes (T1D) using 100 single nucleotide variants
(SNVs). On the other extreme, a PGS for body mass index (BMI) would need more than 10k SNVs. blockLasso
produces similar PGS for phenotypes while training with just a fraction of the variants per block. For example,
within AoU (using only genetic information) block PGS for T1D (1,500 cases/113,297 controls) reaches an AUC
of 0.63±0.02 and for BMI (102,949 samples) a correlation of 0.21±0.01. This is compared to a traditional global
LASSO approach which finds for T1D an AUC 0.65±0.03 and BMI a correlation 0.19±0.03. Similar results are
shown for a total of 11 phenotypes in both AoU and the UKB and applied to all 5 ancestry groups as defined via
an Admixture analysis. In all cases the contribution from common covariates – age, sex assigned at birth, and
principal components – are removed before training. This new block approach is more computationally efficient
and scalable than global machine learning approaches. Genetic matrices are typically stored as memory mapped
instances, but loading a million SNVs for a million participants can require 8TB of memory. Running a LASSO
algorithm requires holding in memory at least two matrices this size. This requirement is so large that even large
high performance computing clusters cannot perform these calculations. To circumvent this issue, most current
analyses use subsets: e.g., taking a representative sample of participants and filtering SNVs via pruning and
thresholding. High-end LASSO training uses ∼ 500 GB of memory (e.g., ∼ 400k samples and ∼ 50k SNVs) and
takes 12-24 hours to complete. In contrast, the block approach typically uses ∼ 200× (2 orders of magnitude)
less memory and runs in ∼ 500× less time.

1 Introduction

Polygenic scores (PGS) are becoming important tools for understanding genetic architecture[1–3], identifying po-
tential genetic risk of disease[4, 5], and now have clinical applications[6]. PGS are traditionally built in one of
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two ways: (1) starting from single marker regression and adding in additional genomic information or (2) training
algorithms executed directly on a subset of the genome.

The first approach principally relies on the results of single marker regression, or genome wide association studies
(GWAS). The GWAS results are then re-weighted using linkage disequilibrium (LD) structure (i.e., the correlation
structure of SNPs), functional information, fine mapping, meta-analyses, or ancestry specific effects. This approach
has the advantage that GWAS is computationally efficient (it can be run completely in parallel) and that parts of
the additional information can be computed separately. Examples of this include PRS-cs[7, 8] and LDpred[9–11]
which uses as inputs the results of a GWAS and the LD information, and then re-weights the SNPs using a sparse
continuous shrinkage prior. This LD information can be computed a single time for a population and used in the
creation of many predictors. The disadvantage of this approach is that the GWAS and LD matrices represent
approximations of the genome level data and that information can be lost in this process.

The second approach relies on applying machine learning algorithms – penalized frequentist/Bayesian regressions,
neural networks , decision trees, etc. [12–14] – directly on genome level data. The advantage here is that the
algorithms train directly on genomes and don’t have to approximate any structure. The disadvantage is that this
requires loading large genetic matrices into computer memory. For example, loading a matrix that includes 50,000
SNPs for 500,000 people at single precision requires roughly 800 gigabytes (GB) of memory.

→ Figure 1: (Left) a generic block diag-
onal matrix. (Right) block diagonal
matrices resulting from negligible cor-
relations across (as opposed to within)
chromosomes.

Over the past decade there have been efforts to speed up LASSO computations by using “safe” [15] and “strong”
[16] screening rules. Screening refers to identifying features that will remain with zero weight at successive LASSO
hyperparameter steps, thus reducing the effective dimensionality of the problem at that step. Several works
have shown possible improved computational efficiency [17–19]. For example, the Batch Screening Iterative Lasso
(BASIL)[20] uses the “strong” rules and found a ∼ 20% faster computation time to other LASSO solutions. However,
for some genomic applications, previous work that used the “safe” rules in a custom Julia implementation [21, 22]
found similar results and similar computation times to a python implementation using scikit-learn without the
“safe” rules [23–25]. It has also been shown that the improvements from the implementation of these screening
rules depend on how they are implemented [26].

Here we utilize the underlying biological structure to greatly reduce computational time and resource requirements
by computing an approximate LASSO solution. The main idea is that over large distances (e.g., from one chromo-
some to another) SNVs are uncorrelated. In other words, the correlation structure is block diagonal as in Figure 1.
From this assumption we can run LASSO (or another algorithm) on each block independently and then perform a
re-weighting to find the relative importance of each block. While the exact LASSO solution is not recovered, the
majority of the predictive power appears to remain and the computation times are ∼ 500x faster than a traditional
calculation.
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AoU UKB∗ UKB
trait block global† block global block global

asthma

A
U

C

0.530.02 0.5550.008 0.570.02 0.5790.007 0.6060.006 0.6230.005
gout 0.570.03 0.590.01 0.580.03 0.610.01 0.650.01 0.650.01
hyperlipidemia 0.560.01 0.6060.007 0.650.01 0.6440.003 0.6420.004 0.6600.003
hypertension 0.530.01 0.570.01 0.550.02 0.570.01 0.6140.004 0.6330.003
psoriasis 0.540.02 0.580.02 – – 0.670.01 0.680.01
type 1 diabetes 0.630.02 0.650.03 0.620.03 0.660.01 0.660.02 0.670.02
type 2 diabetes 0.570.01 0.620.02 0.580.01 0.600.02 0.630.01 0.6350.007

bmi
co

rr
.

0.210.01 0.190.03 0.190.02 0.2100.007 0.3080.008 0.3500.005
hdl 0.300.01 0.370.03 0.330.02 0.330.02 0.4290.007 0.4580.004
height 0.450.01 0.490.03 0.490.01 0.5290.005 0.5950.004 0.6300.004
total bilirubin 0.410.01 0.520.03 0.560.02 0.570.006 0.5780.005 0.5900.004

Table 1: Summary of main PGS metrics for results in All of Us (AoU), the UK Biobank trained with sets matching the size
of those found in AoU (UKB∗), and for the UK Biobank using the maximum possible training sizes (UKB). For one trait,
psoriasis, there are actually more cases in AoU than in the UKB so the UKB∗ computation is left blank. All predictors are
trained and tested on European populations. Blocks colored indicate that the block and traditional results agree within
uncertainty. Blocks colored indicate that the block and traditional results disagree by less than 20%. Finally, bold text
indicates that the results between AoU and UKB (either block or traditional) are in agreement within uncertainty.

2 Results

The main results can be seen in Table 1 and a subset are displayed in Figure 2, while the full set of results are
collected in the Supplementary Information. Results are presented in terms of Area Under Receiver Operator
Curve (AUC) for case control phenotypes and phenotype to PGS correlation (corr.) for quantitative phenotypes.
All uncertainties are estimates of the standard deviation of the true distribution, i.e. are a reflection of the width
of the entire distribution. Global LASSO refers to the standard LASSO algorithm run with 50k features spread
throughout the autosome. BlockLASSO refers to small LASSOs run chromosome by chromosome and then stitched
together as described in Section 3. Table 1 shows the results for the block LASSO vs Global LASSO for training in
All of Us (AoU), the full UK Biobank (UKB), and the UKB with training/testing sets reduced to the sizes found in
AoU (UKB∗), i.e., to give a more direct comparison. The global UKB∗ column is computed from the Monte Carlo
bounds set by interpolating between training sizes[25]. Table cells highlighted in indicate that the global LASSO
and blockLASSO agree (within uncertainty) in AoU – this is true for 4 case control conditions and 2 continuous
phenotypes. For the other two continuous phenotypes, marked in , the overall signal loss from using the block
approach is less than 20%.

For the reduced UK Biobank training (UKB∗) we see that 5 case-control and 3 continuous phenotypes are in
agreement between block and global LASSO. The remaining two phenotypes have a signal fall-off of less than 20%.
Psoriasis was omitted as it is the one phenotype where there are more cases in AoU than in the UKB. In principal we
could limit the number of cases on the AoU side, but this would be a different calculation than the others presented.
In addition we see 9 different measurements are labeled in bold indicating that the results between AoU and UKB∗

are consistent within uncertainty. There are known phenotyping errors within AoU. For example, there are BMI
measurements that are ∼ 106 kg/m2. Although these clearly unrealistic outlying measurements are filtered before
training, there is still the possibility of residual phenotyping errors. Despite these possible phenotyping errors and
using different SNP sets, the bolded results indicate that a similar level of polygenic prediction was found for 9
measurements between the two different biobanks.

Finally we see that for maximal training within the UKB 4 phenotypes agree within uncertainty between block and
global LASSO and 6 phenotypes have less than a 20% signal loss. Training with the full UKB uses much larger
training and testing sets which is reflected in the smaller uncertainties.
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Figure 2: Comparison of block vs global LASSO in AoU and UKB∗ (UKB reduced to training/testing sets comparable to
AoU). We see that for many conditions both the block and global results are in agreement in both biobanks and the results
are in agreement between biobanks. Uncertainties reflect one standard deviation computed from 5-fold cross-validation and
computing AUC/correlation with finite sample sizes. For the “global AoU” measurement only one training fold was run so
the uncertainty is the larger of the finite size effect, or the corresponding uncertainty found in the UKB.

Traditional global LASSO is limited by computation time, memory requirements, and cost, all three of which can
limit the number of features (SNVs) and samples (individuals) used to train models. In previous research [21, 22,
24, 25, 27], a typical global LASSO was run on ∼ 50k SNPs and ∼ 400k people. These computations required
between 500-700 GB of RAM and would complete after 8-24 hours of computational time. The computations were
mostly done on 28 core Intel(R) Xeon(R) CPU E5-2680 v4 (2.40GHz) processors. Some older computations were
done on 20 core Intel(R) Xeon(R) CPU E5-2670 v2 (2.50GHz) processors.

As seen in Figure 3 the blockLASSO approach is much faster and uses much less memory than the global LASSO.
Using the full UKB we trained blockLASSO predictors using different numbers of SNPs per chromosome. There is
an average increase in speed of a factor of 4.7±0.8 × 102, i.e. over 2 orders of magnitude.

In Figure 4 we see in the top panel the effective variance fraction explained by variants across the autosome. As
described in section 3.5, this approximate variance per location is computed by summing over one dimension of
the feature correlation matrix. Error bars reflect the uncertainty over cross-validation folds, but only one fold is
used for the global AoU results. Binning, and adding error bars in quadrature, of nearby positions is done to
make the plot human readable. In the bottom panel, these contributions are summed to show the variance fraction
explained per chromosome. Again, the error bars come from using multiple cross-validation folds. By comparing
the block LASSO to the traditional LASSO we see that the block method recovers the same important regions
with similar weights. Also analogously, by comparing the results from the UKB and AoU we see similar variance
fractions explained in similar regions.

3 Methods

3.1 Phenotypes

The phenotypes used are a combination of self-report/survey data, ICD9/10 code diagnoses, and laboratory mea-
surements. Exact combinations that make up each phenotype in both AoU and UKB can be found in the Sup-
plementary Information. Additionally, we include the number of samples for each phenotype used in training. In
general we do not use exclusion criteria, i.e. we have no criteria that would exclude a documented case or control
(e.g., age of onset or minimum age). The only exception is for psoriasis in AoU where we found a less inclusive
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Figure 3: Computational details for the block LASSO in the UKB. Left: computation time (seconds) as a function of number
of SNVs per chromosome. Error bars are standard deviation over runs. blockLASSO in the specific case of 2273 SNVs per
autosomal chromosome is compared to the traditional global LASSO using 50,000 SNVs (or SNPs) and corresponds to an
average 4.7±0.8 × 102 times increase in computation time. A typical global LASSO using 50,000 SNVs typically requires
300-700 GB of memory. Right: RAM used per block LASSO SNPs per chromosome. Error bars are standard deviations over
runs. For most phenotypes and SNP sizes the error bars are very small. For SNVs per chromosome below 103 the larger
error bars reflect runs that did not converge and contribute trivially to the overall performance, i.e., these were runs where
the coordinate descent algorithm failed to converge and the resulting AUC(correlation) was ∼ 0.5(0) respectively.

Figure 4: Comparison of block vs global LASSO binned variance per base pair position (top) and per chromosome (bottom)
in AoU and the UKB for type 2 diabetes. This approximate variance is identified by computing the PGS covariance
matrix and summing over rows as detailed in section 3.5. Error bars are standard deviations over cross-validation folds and
then propagated in quadrature as nearby contributions are binned (top) or summed over the entire chromosome (bottom).
For global LASSO in AoU only a single CV fold was computed. Similar plots for the other phenotypes can be found in
Supplementary Information.
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definition of cases and controls allowed for better results. While there are accurate PGS for psoriasis (e.g., [28–30]),
it is also known that there are various types of psoriasis that can have separate genetic signatures [31–33]. For this
phenotype alone, we use a set of exclusion criteria for both cases and controls.

Some pre-filtering is done on continuous phenotypes to exclude values that may reflect a rare genetic condition (e.g.,
dwarfism), possibly reflective of extreme lifestyle choices (extreme obesity), and to exclude obvious data errors. In
AoU we use the following cuts on continuous phenotypes: BMI <60 kg/m2 to filter implausible values, 144 cm <
height < 205 cm to filter out possibly distinct genetics such as dwarfism and Marfan syndrome, total bilirubin <
2.5mg/dl to filter unrealistic values, and hdl <200mg/dl to filter unrealistic values. In the UKB we require that
measurements be positive values and that height >144 cm.

3.2 Populations

Within the UKB we largely relied on self-reported “Ethnic background” responses to identify ancestry. We used
the following mapping from UKB fields: Asian or Asian British, Indian, Pakistani, Bangladeshi, Any other Asian
background–South Asian (SAS); Black or Black British, Caribbean, African, Any other Black background–African
(AFR); Chinese–East Asian (EAS); and White, British, Irish, Any other white background–European (EUR).

For both UKB and AoU we also computed genetic ancestry via ADMIXTURE [34]. This was used to identify a
generalized American or Hispanic group in UKB and also general identification in AoU. We implemented Admixture
on “1000 Genomes” [35] with 5 groupings – this generated an ancestry fraction for each individual for each of the
5 groups and we found that the ancestry fractions corresponded with their respective superpopulations (EUR,
AFR, AMR, SAS, EAS). These results were then applied to the UK Biobank where it was found that the ancestry
fractions largely aligned with the 4 self-reported categories. Individuals with at least 0.35 ancestry fraction in the
fifth grouping, which corresponded to AMR in 1000 Genomes, were labeled as American (AMR) and excluded from
the other groupings. Within AoU we relied exclusively on the admixture approach but compared ancestry fractions
against survey results for consistency. Again 5 groupings were used with ancestry fraction cuts of 0.7 for AFR, 0.3
for AMR, 0.8 for EAS, 0.9 for EUR, and 0.6 for SAS.

Within the UKB we identify genetic siblings to be used as a testing set (not used in training). Genetic siblings can
be assumed to have more similar environmental backgrounds than random pairs. This leads to slightly reduced
PGS accuracy as discussed in [23, 36]. The method for identifying siblings is described in [23] in supplemental
section C.

3.3 Polygenic scores

This project demonstrates an efficient approach to building PGS that is applied block by block on the genome. To
this end we are interested in only the genetic component of the PGS. Future work will be aimed at combining this
approach with other effects (environmental, gene × environment interactions, etc.) to generate maximal possible
prediction accuracy. To train these genetic-only predictors we take an approach to try to be as conservative as
possible. The process can be briefly summarized as follows: (1) separate samples into training, model selection (val-
idation), and testing sets; (2) regress phenotype on covariates and build residual phenotype; (3) identify candidate
SNPs (4) perform block by block LASSO (5) re-weight relative block LASSO results (6) evaluate on completely
withheld testing sets.

(1) For all phenotypes we split the samples into training, model-selection/re-weighting, and testing sets. In both
biobanks we used the EUR cohort for training as it had the largest sample sizes. We remove a small subset of the
EUR group and the entire AFR, AMR, EAS, and SAS groups to be used for final testing sets. In the UKB the
EUR testing set is a group of sibling pairs as described above. After removing the testing sets we assemble training
and model-selection sets using 5-fold cross-validation. Exact set sizes are given in the Supplementary Information.
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Next we build residual phenotypes as step (2) using the training sets. For a case-control phenotype we regress
the raw phenotype on covariates – age, sex, and principal components (top 16 in AoU and top 20 in UKB). For
continuous phenotypes we do sex-specific z-scoring so that we can combine the sex assorted data into a single,
much larger training set. We then use linear regression on age and principal components. For all phenotypes we
then subtract off the effect of these covariates to make a residual phenotype. Building residual phenotypes allow
us to give conservative estimates of the genetic effects since we first assume that the covariates have a maximal
impact and then we train the genetics on just the remaining information. Additionally, because PRS have not
be extensively trained in AoU we did global LASSO training for case-control phenotypes on the raw phenotype
allowing us to be conservative about our statement of agreement between block and global results.

Step (3) involves identifying candidate features (SNVs). For both global and block LASSO approaches we perform
a GWAS using the training set and rank SNVs by p-values across the entire autosome or block (chromosome)
respectively. This GWAS is used purely to rank SNVs and none of the other GWAS information (e.g., p-values,
odds ratios, weights) is retained or used. In previous research involving case-control phenotypes in the UKB it was
found that rank ordering results from a GWAS on the raw phenotype (e.g., [22, 23]) lead to similar results as rank
ordering results from a GWAS on residual phenotype (e.g., [25]). For the block approach, within the UKB, this
remained true. However, when we moved to AoU, we found, only for the block approach, that selecting features
based on a GWAS of the raw phenotype under-performed selecting features based on a GWAS of the residual
phenotype. This is likely a result of the AoU biobank being more diverse both environmentally and ancestrally
causing these covariates to have a much larger effect. When selecting the top features we used a cut off to include
only SNVs with allele frequency > 0.001 in the training population to avoid spurious associations.

For the global approach it has been previously shown that the top 50k SNVs are more than sufficient to build
a PGS [21, 22]. It was shown that the resultant sparse PGS included SNVs all throughout the top 50k SNVs,
but that increasing the total number of SNVs (e.g., to 100k[21]) did not noticeably improve results, even for the
least sparse predictors. For the block approach, the ideal number of features is not a priori known. It will not
necessarily be the case that the set of SNVs from the 50k top ranked SNVs across the entire autosome will be the
same set as the collection of the top 2,273 SNVs on each autosomal chromosome. To this end we tested different
block sizes: {10; 23; 50; 100; 227; 500; 1,000; 2,273; 5,000; 10,000; 22,727} SNVs. The performance of training with
different block sizes within the UKB can be seen in Figure 5 and in the Supplementary Information. We see that
performance tends to plateau near 2,273 SNVs per chromosome (50,006 SNVs over the entire autosome) which is
roughly equivalent to the size of the global LASSO training. This plateau behavior generally persists when tested
in other ancestry groups.

After feature selection, step (4) involves running the LASSO algorithm. We used Scikit-Learn with settings
specified in Supplementary Information. Model selection is done by selecting the maximal performance in the
validation/model-selection set.

Step (5) is only for the blockLASSO. Using the validation/model-selection set we now do a linear regression of block
scores against the raw phenotype. In principle, the re-weighting does not need to be done with linear regression,
but because there are so few features in the current example (i.e., 22 chromosomes), testing with more advanced
algorithms yielded the same results as linear regression. An example of the effect of this re-weighting, for all 5
ancestry groups, can be seen on the right side of Figure 5.

Finally, in step (6) the model (i.e., individual SNV weights and block weights) is applied to the testing sets, which
have been witheld from all training steps.

3.4 PGS performance uncertainties

When using the block LASSO approach, the reported uncertainty is a standard deviation (i.e., reflects the width
of the overall possible distribution) and has contributions from 5-fold cross-validation and from computing metrics
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Figure 5: Left: performance as a function of training SNV size in UKB and applied to different ancestry groups. Within
each ancestry group, dots correspond to training with {10, 23, 50, 100, 227, 500, 1000, 2273, 5000, 10000, 22727} SNVs per chro-
mosome from left to right respectively. The starred data points correspond to 2273 SNVs per chromosome wich is roughly
equivalent to 50k SNVs across the autosome. Right: performance before and after the re-weighting step of the blockLASSO.
While re-weighting is trained within the EUR group, the effect of re-weighting improves prediction accuracy across all tested
ancestry groupings.

with finite sample sizes. These two effects are added in quadrature. The only exception is the global LASSO in
AoU which is both slow and costly. For this alone we only use a single global LASSO run to compute metrics and
the uncertainties are reported as the larger of either the uncertainty from the finite sample size computation of the
metric or the uncertainty in the UKB with the same training size. Specific definitions for the finite sample size
contributions are given in the Supplementary Information.

3.5 PGS variance distributions

In order to estimate the localized contribution to the variance of the PGS we compute an approximate covariance
per SNV (feature). To do this we compute the covariance between each feature and sum the contribution from
all correlated features. I.e., we build a covariance matrix of features and sum over columns. The sum of the
partially summed covariance is the total variance of the PGS. The explicit mathematical definition is given in the
Supplementary Information. This approximate variance per locus is a generalized version of “single SNP variance”
defined in [27, 37]. When training with n samples (e.g., people) and m total features (e.g., all SNVs from all
blocks), the covariance between features is an m×m matrix. In Figure 4, and in the Supplementary Information,
we see the result of summing over one axis in the covariance matrix. To make the plot more human-readable we
filter out variants accounting for less than 0.01% of the total variance and by binning nearby variants within 1Mbp.
After cutting and binning we attribute this partial sum to the effective location of the binned variants (a weighted
average over variant location). Error bars are computed by averaging over cross-validation folds.

4 Conclusion

There are many successful methods for training PGS. Generally, compared to methods that rely on summary
statistics or genome wide associations, methods that train directly on genotypes and involve variant/nucleotide
level data can produce equivalent (or better) results with much less data (e.g., human height prediction using
∼ 450k individuals in [21] vs ∼ 5.4 million individuals[38]). Additionally, many of the limitations associated with
PGS in general are actually limitations of GWAS-based PGS (e.g., [39]). There is an added interest in sparse
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methods, i.e., algorithms that perform feature selection, allowing inferences regarding genetic architecture and
pleiotropy. Currently, most commonly used sparse methods perform similarly, with the simple least absolute
shrinkage and selection operator (LASSO) regularly performing among the best methods[25]. Sparse methods
are often advantageous as performing feature selection can reduce the computational demand. However, training
directly on genotypes – even after pre-filtering SNVs – is still very demanding and typically requires hundreds of
gigabytes of memory and tens of hours of run time on a computing cluster. Here we present an improved method
which makes use of block diagonal structure in SNP correlations associated with independent chromosomes (or
other large regions). For a PGS that trains with 50k SNPs and 450k samples, this produces a ∼ 75x reduction in
required memory and compute resources.

LASSO based predictors have previously been trained in one biobank and tested in a separate biobank with only
minimal loss in performance (e.g., [22]). It is encouraging here that we see training and testing a polygenic predictor
is largely independent of dataset (i.e. AoU vs UKB) – given equal data size. This suggests confounders – such as
intake, genotyping platform/procedure, societal differences, etc. – have diminutive effect on the interpretations of
these LASSO based PGS trained directly on genotypes.

We hope that the novel method demonstrated in this work can be improved upon. While screening rules – i.e.,
rules which aid in feature selection – have only resulted in modest improvements for the global LASSO approaches,
it is possible that incorporating screening will further speed up block approaches. Some PGS models have been
improved via ancestry specific tagging and SNV selection[40, 41], functional information[42–45], and more careful
definitions of phenotypes[46–48]. It should be possible to integrate all of these approaches with the new method
presented here.

Finally we mention that initial research has shown the implementation of PGS in the clinic can lead to significantly
better outcomes for some diagnoses[49]. There is also a large literature highlighting potential benefits for identifying
those at high risk of particular diseases, aiding in early detection, reducing total cost of care. This is all evidence for
PGS as a generally useful tool in clinical practice[22, 50–54]. However, there are still outstanding practical [55–59]
and ethical [60, 61] challenges related to the widespread adoption of PGS to the practice of clinical medicine.
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8 Data availability

Block predictors from both the UKB and AoU and code examples can be found in the Hsu group GitHub: https:
//github.com/MSU-Hsu-Lab/blockLASSO. Exact code used to generate the AoU results can be found in the
“Scalable and efficient polygenic scores in diverse populations” workspace in the AoU “controlled tier” data access
tier.
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AMR: American

AoU: All of Us

AUC: area under receiver operator curve

BASIL: batch screening iterative LASSO

BMI: body mass index

EAS: East Asian
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GB: gigabyte

GWAS: genome wide association studies

hdl: high-density lipoprotein

LASSO: least absolute shrinkage and selection op-
erator

LD: linkage disequilibrium

Mbp: megabase pair

PGS: polygenic score

SAS: South American

SNP: single nucleotide polymorphism

SNV: single nucleotide variant

T1D: type 1 diabetes

T2D: type 2 diabetes

UKB: UK Biobank
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