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Abstract

Since the outbreak of COVID-19 pandemic in 2020, numerous researches and
studies have focused on the long-term effects of COVID infection. The Centers
for Disease Control (CDC) implemented an additional code into the International
Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM)
for reporting ‘Post COVID-19 condition, unspecified (U09.9)’ effective on Octo-
ber 1st 2021, representing that Long COVID is a real illness with potential
chronic conditions. The National COVID Cohort Collaborative (N3C) provides
researchers with abundant electronic health records (EHR) data by aggregating
and harmonizing EHR data across different clinical organizations in the United
States, making it convenient to build up a survival analysis on Long COVID
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patients and non Long COVID patients among large amounts of COVID positive
patients.

Keywords: Bayesian survival analysis, log-normal model, Markov chain Monte Carlo,
Long COVID, N3C

1 Introduction

The outbreak of COVID-19 pandemic since 2020 has impacted everyone. As time goes
by, it is of more interest to focus on the long-term effect of COVID-19. According to
Centers for Disease Control and Prevention (CDC), Long COVID is broadly defined
as signs, symptoms, and conditions that continue or develop after acute COVID-19
infection [1]. Some conditions can last weeks, months, or years. The diagnosis code
(U09.9) for Long COVID implemented by CDC [2] makes it much easier to identify
this disease.

With stewardship from National Center for Advancing Translational Sciences
(NCATS) and data contributions from more than 75 institutions, the National COVID
Cohort Collaborative (N3C) [3] is one of the largest collections of clinical data related
to COVID-19 patients in the United States, including more than 7 million COVID
positive patients and more than 20 billion rows of electronic health records (EHR)
data for cohort studies. Since the implementation of U09.9 code, various researches
have focused on the characteristics of Long COVID using machine learning methods
on different cohorts, including risk factors, subtypes and vital measurements [4] [5] [6]
[7], and efforts have been put into understanding Long COVID better.

2 Related Work

Two main categories of biases in cohort studies include selection bias and information
bias [8]. In a cohort study of COVID patients, two elements of selection bias, sampling
bias and confounding by indication, might lead to an unrepresentative sample of the
population; and among information bias, observer bias and lead-time bias on Long
COVID patients might affect the accuracy of survival analysis.

Competing risk in survival analysis is common. A competing risk is an event whose
occurrence precludes the occurrence of the primary event of interest. In studies on
cardiovascular disease and depression respectively [9] [10], failure to account correctly
for competing events can result in unexpected consequences, including overestimation
of the probability of the event and mis-estimation of the magnitude of relative effects
of covariates on the outcome.

According to CDC [1], Since October 2021, Long COVID is a real illness and can
result in chronic conditions including respiratory and heart symptoms, neurological
symptoms, digestive symptoms and so on. For some people, these symptoms can last
weeks, months, or years. In a recent study on the risk factors of Long COVID [4], it
is shown that middle-age (40 to 69 years), female sex, hospitalization associated with
COVID-19, long hospitalization stay, receipt of mechanical ventilation, and several
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comorbidities including depression, chronic lung disease, and obesity are associated
with higher likelihood of Long COVID.

There are various studies on survival of COVID patients since the pandemic. A
research on Brazilian COVID patients showed that old age and cardiovascular disease
are associated with higher mortality [11], and a study on COVID patients admitted
to intensive care unit showed heterogeneity in the survival [12]. Another study on
COVID and kidney diseases mentioned that acute kidney disease and chronic kidney
disease are associated with higher risk of death, and COVID might lead to chronic
kidney disease in survivors [13].

After the release of U09.9 [2] code of Long COVID, it is of great interest to study
characteristics of Long COVID patients, but there are limited researches on the sur-
vival analysis, and the comparison between Long COVID patients and non Long
COVID patients. This paper applies a Bayesian survival analysis approach on Long
COVID patients and non Long COVID patients, and study the features associated
with mortality.

3 Methodology

3.1 Survival Analysis

Survival analysis mainly focus on time-to-event data. Following the notation in [14], we
introduce several important variables and functions in survival analysis under Bayesian
paradigm. Let T be a continuous nonnegative random variable representing the sur-
vival times of individuals in a population, defined over the interval [0,∞). Let f(t)
denote the probability density function (pdf) of T , and the cumulative distribution
function (cdf) of T is

F (t) = P (T < t) =

∫ t

0

f(u)du (1)

and the survivor function to describe the probability of surviving till time t is

S(t) = 1− F (t) = P (T > t). (2)

The hazard function h(t), the instant rate of failure at time t is defined as

h(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)

∆t
=

f(t)

S(t)
. (3)

Censoring is common in survival data, and it occurs when incomplete information
is available about the survival time of some individuals [15]. An observation is said to
be right censored at c if the exact value of the observation is not known but only that it
is greater than or equal to c; an observation is said to be left censored at c if it is known
only that the observation is less than or equal to c; an observation is said to be interval
censored if it is known only that the observation is in the interval (c1, c2). Type-I
censoring and Type-II censoring [16] [17] are commonly used in different parametric
models as well in survival analysis.
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3.2 Bayesian Parametric Models

Under Bayesian paradigm [14], given unknown parameters we first set up a prior
distribution, and combine the likelihood function with the prior distribution to get the
posterior distribution of parameters. Markov chain Monte Carlo (MCMC) methods
are widely used in sampling from a complicated distribution, such as Gibbs sampling,
Metropolis-Hasting algorithm, and Hamiltonian Monte Carlo [18] [19]. PyMC [20] is a
Python module allowing users to implement Bayesian statistical models with different
parameters, prior distributions and likelihood functions, as well as calculating the
numerical results of posterior estimation of parameters.

Suppose we have independent identically distributed (i.i.d.) survival time y =
(y1, ..., yn)

T with right censor indicator ν = (ν1, ..., νn)
T where νi = 1 if yi is an

observed failure time, and νi = 0 if yi is right censored. Let D = (n,y,ν), we consider
the following models.

3.2.1 Log-normal Model

The log-normal model is a two-parameter model. The survival time yi has a log-normal
distribution defined on (0,+∞) with density function, mean and variance

f(yi|µ, σ) = (2π)−
1
2 (yiσ)

−1exp(− 1

2σ2
(logyi − µ)2)

E(yi) = exp(µ+
σ2

2
)

Var(yi) = [exp(σ2)− 1]exp(2µ+ σ2)

(4)

and survival function

S(yi|µ, λ) = 1− Φ(
logyi − µ

σ
) (5)

with Φ(.) representing the cdf of the standard normal distribution. The likelihood is

L(µ, σ|D) =

n∏
i=1

f(yi|µ, σ)νiS(yi|µ, σ)1−νi

= (2πσ2)−
d
2 exp(− 1

2σ2

n∑
i=1

νi(logyi − µ)2)

×
n∏

i=1

y−νi
i (1− Φ(

logyi − µ

σ
))1−νi

(6)

Let τ = 1/σ2, and a common prior distribution p(µ, τ) assumes a normal distribution
on µ and a gamma distribution on τ . The posterior distribution is given by

p(µ, τ |D) ∝ p(µ, τ)L(µ, τ |D). (7)

To build a regression model, we introduce covariates through µ and write µi = xT
i β.

Common prior distributions of β include uniform improper prior and normal prior.
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4 Data and Results

4.1 Cohort Identification

In this study, the cohort consists of a group of Long COVID patients and a group
of non Long COVID patients. Patients of both groups have evidence of COVID-19.
According to CDC, Long COVID starts to be identified after several weeks of COVID
infection [1], leading to possible selection bias in the cohort while conducting survival
analysis. Thus, we implement appropriate inclusion criteria to control the selection
bias. In addition, among all COVID positive patients in N3C, only a very small number
of patients are diagnosed with Long COVID by U09.9 code. To make a balanced
cohort, we use 1-on-1 matching [21], assigning each Long COVID patient to a COVID
positive control.

4.1.1 Long COVID group inclusion criteria

• COVID-19 positive patients as defined with a positive SARS-CoV-2 PCR/AG test
or a recorded U07.1 diagnosis. The earliest date of either will be their index date.

• Patients with a U09.9 code.
• The U09.9 diagnosis code should be no earlier than Oct. 1st 2021.
• The U09.9 diagnosis code should be no earlier than the COVID index date.
• Patients should be greater or equal to 18 years old.

4.1.2 COVID positive control group inclusion criteria

• COVID-19 positive patients as defined with a positive SARS-CoV-2 PCR/AG test
or a recorded U07.1 positive diagnosis. The earliest date of either will be their index
date.

• Patients should be greater or equal to 18 years old.
• Patients with no U09.9 code
• Selected based on the matching process to ensure a 1-to-1 ratio to Long COVID
group

4.1.3 Matching process

To make the comparison between the Long COVID group and the control group more
reliable, we try to select patients with similar health conditions in the matching pro-
cess, using variables including age, health system site id, COVID index date, number
of clinical visits and Charlson comorbidity index (CCI) [22].

The matching process will be done without replacement, and the criteria for match-
ing each pair of Long COVID patient and COVID positive control patient are as
following:

• The Long COVID patient and the COVID positive control are from the same health
system.

• The age difference between the Long COVID patient and the COVID positive
control are less than or equal to 10 years.
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• The difference of COVID index date between the Long COVID patient and the
COVID positive control are less than or equal to 45 days.

• The difference of the log of number of visits before COVID index date between the
Long COVID patient and the COVID positive control are less than or equal to 1.

• The difference of the log of CCI score through COVID index date between the Long
COVID patient and the COVID positive control are less than or equal to 0.5.

In this survival analysis, we choose the U09.9 code date for any matched pair as
day 0 of survival. The death date is from a combination of OMOP death records [23]
and PPRL death records [24] in N3C. We drop a pair of patients if anyone in this pair
has a death date earlier than U09.9 code date. The survival length is the outcome of
the survival analysis, defined as the time difference between day 0 of survival and the
earlier of death date and April 1st 2024, as completion of this study.

4.2 Cohort Summary

As the completion of the study, there are 7,376,162 COVID positive patients in N3C
as in the COVID summary table, and among them there are only 74,240 patients with
the U09.9 diagnosis code. Cohort characteristics before the matching process and after
the matching process are both included below. Table 1 and Table 2 are the attrition
tables before the matching process, and Table 3 and Table 4 show characteristics of
patients before the matching process and the final cohort.

After the matching process, the final cohort has 119,466 patients in total with
59,733 Long COVID (U09.9) patients and 59,733 COVID positive control patients.

Table 1 Long COVID group attrition table before matching

inclusion criteria number of patients

COVID positive patients in N3C 7,376,162
patients with U09.9 code 74,240
U09.9 date later than COVID index date and 2021-10-01 72,121
age greater or equal to 18 69,805

Table 2 COVID positive control group attrition table before matching

inclusion criteria number of patients

COVID positive patients in N3C 7,376,162
age greater or equal to 18 6,202,631
patients with no U09.9 code 6,127,387
patients from clinical sites reporting U09.9 5,431,788
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Table 3 Summary table before matching

COVID positive control group Long COVID group

number of patients 5,431,788 69,805
age (mean(SD)) 47.92 (18.79) 54.84 (16.50)

sex (%)

Female 3,070,884 (56.5) 45,314 (64.9)
Male 2,340,669 (43.1) 24,038 (34.4)

race and ethnicity (%)

Asian Non-Hispanic 152,340 (2.8) 1,853 (2.7)
Black or African American Non-Hispanic 660,480 (12.2) 8,014 (11.5)
White Non-Hispanic 3,452,553 (63.6) 48,898 (70.0)
Other Non-Hispanic 205,047 (3.8) 1,473 (2.1)
Hispanic or Latino Any Race 628,286 (11.6) 6,656 (9.5)
Missing/Unknown 333,082 (6.1) 2,911 (4.2)

CCI category (%)

0 3,653,286 (67.3) 28,598 (41.0)
1-2 1,066,217 (19.6) 22,129 (31.7)
3-4 378,595 (7.0) 9,757 (14.0)
4+ 333,690 (6.1) 9,321 (13.4)

age category (%)

18-20 263,208 (4.8) 850 (1.2)
21-45 2,350,131 (43.3) 20,193 (28.9)
46-65 1,724,495 (31.7) 29,414 (42.1)
66+ 1,093,954 (20.1) 19,348 (27.7)

4.3 Modeling

Following the notations in 3, yi is the survival time of a patient in the cohort, with
the distribution

yi ∼ LogNormal(µ, σ2)

τ =
1

σ2

(8)

where
µ = β0 + β1xi1 + β2xi2 + β3xi3 (9)

and xi1, xi2, xi3 represent 3 features in the model: whether the patient has Long
COVID (U09.9), whether the patient has obesity (BMI greater or equal to 30 [25])
and whether the COVID symptom of the patient is mild (mild COVID is defined as
no emergency department visit nor hospitalization around COVID index date). The
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Table 4 Final cohort summary table

COVID positive control group Long COVID group

number of patients 59,733 59,733
age (mean(SD)) 55.33 (16.18) 55.61 (16.36)

sex (%)

Female 37,272 (62.4) 39,135 (65.5)
Male 22,120 (37.0) 20,242 (33.9)

race and ethnicity (%)

Asian Non-Hispanic 1,766 (3.0) 1,574 (2.6)
Black or African American Non-Hispanic 7,565 (12.7) 6,818 (11.4)
White Non-Hispanic 41,004 (68.6) 42,294 (70.8)
Other Non-Hispanic 1,203 (2.0) 1,211 (2.0)
Hispanic or Latino Any Race 5,756 (9.6) 5,469 (9.2)
Missing/Unknown 2,439 (4.1) 2,367 (4.0)

CCI category (%)

0 23,695 (39.7) 22,326 (37.4)
1-2 18,028 (30.2) 19,434 (32.5)
3-4 9,540 (16.0) 9,227 (15.4)
4+ 8,470 (14.2) 8,746 (14.6)

age category (%)

18-20 521 (0.9) 612 (1.0)
21-45 16,470 (27.6) 16,292 (27.3)
46-65 25,354 (42.4) 25,397 (42.5)
66+ 17,388 (29.1) 17,432 (29.2)

prior distributions of the parameters are as following:

β0 ∼ N(0, 2)

β1 ∼ N(0, 2)

β2 ∼ N(0, 2)

β3 ∼ N(0, 2)

τ ∼ Gamma(1, 0.5)

(10)

4.4 Results

Given prior distributions and likelihood specified by the modeling, the posterior of
parameters are numerically estimated using Markov Chain Monte Carlo (MCMC) in
Pymc [20]. Table 5 shows the posterior mean, standard deviation and 95% high-density
interval of parameters, and Fig. 1 shows the trace plots of parameters in the MCMC
sampling process.

5 Conclusion

According to the posterior estimation of parameters, patients with Long COVID
(U09.9) indicator are more likely to have shorter survival length, patients with mild
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Table 5 Posterior estimation of parameters

parameter mean standard deviation 95% High-Density Interval

β0 6.146 0.006 [6.135, 6.157]
β1 -0.009 0.005 [-0.018, 0]
β2 0.005 0.005 [-0.004, 0.014]
β3 0.094 0.005 [0.084, 0.104]
τ 1.754 0.008 [1.739, 1.769]

Fig. 1 Posterior estimations of parameters by MCMC

COVID symptoms are more likely to have longer survival length, and the obesity
indicator is not significant with respect to the survival length.

The Kaplan-Meier estimator is a non-parametric method to estimate the survival
probability from lifetime data [26]. Fig. 2 shows the Kaplan-Meier curves of two groups
in the cohort, and according to the curves, the Long COVID group has lower survival
probability than the COVID positive control group from day 0 of survival til the
maximum observed survival length.
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Fig. 2 Kaplan-Meier curves of two groups in the cohort

6 Limitation and Future Work

Since the CDC issued U09.9 code in October 2021, the maximum possible survival
length of a Long COVID patient is less than 1,000 days. According to Fig. 3, the
distribution of survival length is left skewed. This paper uses a parametric method
[14], assuming the observations of survival length are from a log-normal distribution.
Other distributions should be taken into consideration in order to accommodate the
left skewness, such as Weibull distribution and Gamma distribution.

In a parametric model, the cumulative distribution function of the survival length
is assumed to be differentiable, but this assumption might not hold. Semiparametric
models mainly focus on the baseline hazard or cumulative hazard, and a common
example is the piecewise constant hazard model, where the hazard rate might differ
in time periods, and different subgroups [27] [28].

Among all COVID patients in N3C, Long COVID (U09.9) patients are a very
small portion. The purpose of the matching process is creating a balanced cohort as
well as controlling the selection bias [8]. However, there are limited discussions on the
features to use in the matching process, and how the matching process will affect the
accuracy of modeling. The possibility of new bias created from the matching process
cannot be ignored.

There are few studies on the censoring of Long COVID patients. In this paper,
the observations of survival length are assumed to be not censored for convenience of
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Fig. 3 Survival length of the cohort

calculation. Whether there exists censoring and what type censoring in survival length
are still under question in study of Long COVID patients [29] [30].
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Translational Medicine (ITM) · Aurora Health Care Inc — UL1TR002373: Wisconsin
Network For Health Research · Boston University Medical Campus — UL1TR001430:
Boston University Clinical and Translational Science Institute · Brown University —
U54GM115677: Advance Clinical Translational Research (Advance-CTR) · Carilion
Clinic — UL1TR003015: iTHRIV Integrated Translational health Research Institute
of Virginia · Case Western Reserve University — UL1TR002548: The Clinical &
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Translational Science Collaborative of Cleveland (CTSC) · Charleston Area Medical
Center — U54GM104942: West Virginia Clinical and Translational Science Insti-
tute (WVCTSI) · Children’s Hospital Colorado — UL1TR002535: Colorado Clinical
and Translational Sciences Institute · Columbia University Irving Medical Center
— UL1TR001873: Irving Institute for Clinical and Translational Research · Dart-
mouth College — None (Voluntary) Duke University — UL1TR002553: Duke Clinical
and Translational Science Institute · George Washington Children’s Research Insti-
tute — UL1TR001876: Clinical and Translational Science Institute at Children’s
National (CTSA-CN) · George Washington University — UL1TR001876: Clinical
and Translational Science Institute at Children’s National (CTSA-CN) · Harvard
Medical School — UL1TR002541: Harvard Catalyst · Indiana University School of
Medicine — UL1TR002529: Indiana Clinical and Translational Science Institute ·
Johns Hopkins University — UL1TR003098: Johns Hopkins Institute for Clinical and
Translational Research · Louisiana Public Health Institute — None (Voluntary) · Loy-
ola Medicine — Loyola University Medical Center · Loyola University Medical Center
— UL1TR002389: The Institute for Translational Medicine (ITM) · Maine Medical
Center — U54GM115516: Northern New England Clinical & Translational Research
(NNE-CTR) Network · Mary Hitchcock Memorial Hospital & Dartmouth Hitch-
cock Clinic — None (Voluntary) · Massachusetts General Brigham — UL1TR002541:
Harvard Catalyst · Mayo Clinic Rochester — UL1TR002377: Mayo Clinic Center
for Clinical and Translational Science (CCaTS) · Medical University of South Car-
olina — UL1TR001450: South Carolina Clinical & Translational Research Institute
(SCTR) · MITRE Corporation — None (Voluntary) · Montefiore Medical Center —
UL1TR002556: Institute for Clinical and Translational Research at Einstein and Mon-
tefiore · Nemours — U54GM104941: Delaware CTR ACCEL Program · NorthShore
University HealthSystem — UL1TR002389: The Institute for Translational Medicine
(ITM) · Northwestern University at Chicago — UL1TR001422: Northwestern Univer-
sity Clinical and Translational Science Institute (NUCATS) · OCHIN — INV-018455:
Bill and Melinda Gates Foundation grant to Sage Bionetworks · Oregon Health &
Science University — UL1TR002369: Oregon Clinical and Translational Research
Institute · Penn State Health Milton S. Hershey Medical Center — UL1TR002014:
Penn State Clinical and Translational Science Institute · Rush University Medical Cen-
ter — UL1TR002389: The Institute for Translational Medicine (ITM) · Rutgers, The
State University of New Jersey — UL1TR003017: New Jersey Alliance for Clinical
and Translational Science · Stony Brook University — U24TR002306 · The Alliance
at the University of Puerto Rico, Medical Sciences Campus — U54GM133807: His-
panic Alliance for Clinical and Translational Research (The Alliance) · The Ohio
State University — UL1TR002733: Center for Clinical and Translational Science · The
State University of New York at Buffalo — UL1TR001412: Clinical and Translational
Science Institute · The University of Chicago — UL1TR002389: The Institute for
Translational Medicine (ITM) · The University of Iowa — UL1TR002537: Institute for
Clinical and Translational Science · The University of Miami Leonard M. Miller School
of Medicine — UL1TR002736: University of Miami Clinical and Translational Science
Institute · The University of Michigan at Ann Arbor — UL1TR002240: Michigan Insti-
tute for Clinical and Health Research · The University of Texas Health Science Center

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.25.24309478doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.25.24309478
http://creativecommons.org/licenses/by-nc-nd/4.0/


at Houston — UL1TR003167: Center for Clinical and Translational Sciences (CCTS) ·
The University of Texas Medical Branch at Galveston — UL1TR001439: The Institute
for Translational Sciences · The University of Utah — UL1TR002538: Uhealth Center
for Clinical and Translational Science · Tufts Medical Center — UL1TR002544: Tufts
Clinical and Translational Science Institute · Tulane University — UL1TR003096:
Center for Clinical and Translational Science · The Queens Medical Center — None
(Voluntary) · University Medical Center New Orleans — U54GM104940: Louisiana
Clinical and Translational Science (LA CaTS) Center · University of Alabama at Birm-
ingham — UL1TR003096: Center for Clinical and Translational Science · University of
Arkansas for Medical Sciences — UL1TR003107: UAMS Translational Research Insti-
tute · University of Cincinnati — UL1TR001425: Center for Clinical and Translational
Science and Training · University of Colorado Denver, Anschutz Medical Campus —
UL1TR002535: Colorado Clinical and Translational Sciences Institute · University of
Illinois at Chicago — UL1TR002003: UIC Center for Clinical and Translational Sci-
ence · University of Kansas Medical Center — UL1TR002366: Frontiers: University
of Kansas Clinical and Translational Science Institute · University of Kentucky —
UL1TR001998: UK Center for Clinical and Translational Science · University of Mas-
sachusetts Medical School Worcester — UL1TR001453: The UMass Center for Clinical
and Translational Science (UMCCTS) · University Medical Center of Southern Nevada
— None (voluntary) · University of Minnesota — UL1TR002494: Clinical and Trans-
lational Science Institute · University of Mississippi Medical Center — U54GM115428:
Mississippi Center for Clinical and Translational Research (CCTR) · University of
Nebraska Medical Center — U54GM115458: Great Plains IDeA-Clinical & Trans-
lational Research · University of North Carolina at Chapel Hill — UL1TR002489:
North Carolina Translational and Clinical Science Institute · University of Oklahoma
Health Sciences Center — U54GM104938: Oklahoma Clinical and Translational Sci-
ence Institute (OCTSI) · University of Pittsburgh — UL1TR001857: The Clinical and
Translational Science Institute (CTSI) · University of Pennsylvania — UL1TR001878:
Institute for Translational Medicine and Therapeutics · University of Rochester —
UL1TR002001: UR Clinical & Translational Science Institute · University of Southern
California — UL1TR001855: The Southern California Clinical and Translational Sci-
ence Institute (SC CTSI) · University of Vermont — U54GM115516: Northern New
England Clinical & Translational Research (NNE-CTR) Network · University of Vir-
ginia — UL1TR003015: iTHRIV Integrated Translational health Research Institute
of Virginia · University of Washington — UL1TR002319: Institute of Translational
Health Sciences · University of Wisconsin-Madison — UL1TR002373: UW Institute
for Clinical and Translational Research · Vanderbilt University Medical Center —
UL1TR002243: Vanderbilt Institute for Clinical and Translational Research · Virginia
Commonwealth University — UL1TR002649: C. Kenneth and Dianne Wright Center
for Clinical and Translational Research · Wake Forest University Health Sciences —
UL1TR001420: Wake Forest Clinical and Translational Science Institute · Washing-
ton University in St. Louis — UL1TR002345: Institute of Clinical and Translational
Sciences · Weill Medical College of Cornell University — UL1TR002384: Weill Cor-
nell Medicine Clinical and Translational Science Center · West Virginia University —
U54GM104942: West Virginia Clinical and Translational Science Institute (WVCTSI)·
Submitted: Icahn School of Medicine at Mount Sinai — UL1TR001433: ConduITS
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Institute for Translational Sciences · The University of Texas Health Science Center
at Tyler — UL1TR003167: Center for Clinical and Translational Sciences (CCTS) ·
University of California, Davis — UL1TR001860: UCDavis Health Clinical and Trans-
lational Science Center · University of California, Irvine — UL1TR001414: The UC
Irvine Institute for Clinical and Translational Science (ICTS) · University of Califor-
nia, Los Angeles — UL1TR001881: UCLA Clinical Translational Science Institute ·
University of California, San Diego — UL1TR001442: Altman Clinical and Transla-
tional Research Institute · University of California, San Francisco — UL1TR001872:
UCSF Clinical and Translational Science Institute· NYU Langone Health Clinical
Science Core, Data Resource Core, and PASC Biorepository Core — OTA-21-015A:
Post-Acute Sequelae of SARS-CoV-2 Infection Initiative (RECOVER)·

Pending: Arkansas Children’s Hospital — UL1TR003107: UAMS Translational
Research Institute · Baylor College of Medicine — None (Voluntary) · Children’s
Hospital of Philadelphia — UL1TR001878: Institute for Translational Medicine and
Therapeutics · Cincinnati Children’s Hospital Medical Center — UL1TR001425:
Center for Clinical and Translational Science and Training · Emory University —
UL1TR002378: Georgia Clinical and Translational Science Alliance · HonorHealth
— None (Voluntary) · Loyola University Chicago — UL1TR002389: The Institute
for Translational Medicine (ITM) · Medical College of Wisconsin — UL1TR001436:
Clinical and Translational Science Institute of Southeast Wisconsin · MedStar Health
Research Institute — None (Voluntary) · Georgetown University — UL1TR001409:
The Georgetown-Howard Universities Center for Clinical and Translational Science
(GHUCCTS) · MetroHealth — None (Voluntary) · Montana State University —
U54GM115371: American Indian/Alaska Native CTR · NYU Langone Medical Cen-
ter — UL1TR001445: Langone Health’s Clinical and Translational Science Institute ·
Ochsner Medical Center — U54GM104940: Louisiana Clinical and Translational Sci-
ence (LA CaTS) Center · Regenstrief Institute — UL1TR002529: Indiana Clinical
and Translational Science Institute · Sanford Research — None (Voluntary) · Stan-
ford University — UL1TR003142: Spectrum: The Stanford Center for Clinical and
Translational Research and Education · The Rockefeller University — UL1TR001866:
Center for Clinical and Translational Science · The Scripps Research Institute —
UL1TR002550: Scripps Research Translational Institute · University of Florida —
UL1TR001427: UF Clinical and Translational Science Institute · University of New
Mexico Health Sciences Center — UL1TR001449: University of New Mexico Clinical
and Translational Science Center · University of Texas Health Science Center at San
Antonio — UL1TR002645: Institute for Integration of Medicine and Science · Yale
New Haven Hospital — UL1TR001863: Yale Center for Clinical Investigation
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Mortality and survival of covid-19. Epidemiology & Infection 148, 123 (2020)

[12] Neville, T.H., Hays, R.D., Tseng, C.-H., Gonzalez, C.A., Chen, L., Hong, A.,
Yamamoto, M., Santoso, L., Kung, A., Schwab, K., et al.: Survival after severe
covid-19: long-term outcomes of patients admitted to an intensive care unit.
Journal of intensive care medicine 37(8), 1019–1028 (2022)

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.25.24309478doi: medRxiv preprint 

https://www.cdc.gov/nchs/data/icd/announcement-new-icd-code-for-post-covid-condition-april-2022-final.pdf
https://www.cdc.gov/nchs/data/icd/announcement-new-icd-code-for-post-covid-condition-april-2022-final.pdf
https://doi.org/10.1101/2024.06.25.24309478
http://creativecommons.org/licenses/by-nc-nd/4.0/


[13] Long, J.D., Strohbehn, I., Sawtell, R., Bhattacharyya, R., Sise, M.E.: Covid-19
survival and its impact on chronic kidney disease. Translational Research 241,
70–82 (2022)

[14] Ibrahim, J.G., Chen, M.-H., Sinha, D., Ibrahim, J., Chen, M.: Bayesian survival
analysis 2 (2001)

[15] Leung, K.-M., Elashoff, R.M., Afifi, A.A.: Censoring issues in survival analysis.
Annual review of public health 18(1), 83–104 (1997)

[16] Joarder, A., Krishna, H., Kundu, D.: Inferences on weibull parameters with con-
ventional type-i censoring. Computational statistics & data analysis 55(1), 1–11
(2011)

[17] Dutta, S., Dey, S., Kayal, S.: Bayesian survival analysis of logistic exponential dis-
tribution for adaptive progressive type-ii censored data. Computational Statistics,
1–47 (2023)

[18] Betancourt, M.: A conceptual introduction to hamiltonian monte carlo. arXiv
preprint arXiv:1701.02434 (2017)

[19] Hoffman, M.D., Gelman, A., et al.: The no-u-turn sampler: adaptively setting
path lengths in hamiltonian monte carlo. J. Mach. Learn. Res. 15(1), 1593–1623
(2014)

[20] Patil, A., Huard, D., Fonnesbeck, C.J.: Pymc: Bayesian stochastic modelling in
python. Journal of statistical software 35(4), 1 (2010)

[21] Stuart, E.A., King, G., Imai, K., Ho, D.: Matchit: nonparametric preprocessing
for parametric causal inference. Journal of statistical software (2011)

[22] Roffman, C., Buchanan, J., Allison, G.: Charlson comorbidities index. Journal of
physiotherapy 62(3) (2016)

[23] OMOP Common Data Model. Observational Health Data Sciences and Informat-
ics. https://ohdsi.github.io/CommonDataModel/

[24] N3C Privacy-Preserving Record Linkage. The National COVID Cohort Collabo-
rative (N3C). https://covid.cd2h.org/PPRL/

[25] Adult BMI. U.S. Department of Health and Human Services, CDC. https://www.
cdc.gov/healthyweight/assessing/bmi/adult bmi/index.html

[26] Rich, J.T., Neely, J.G., Paniello, R.C., Voelker, C.C., Nussenbaum, B., Wang,
E.W.: A practical guide to understanding kaplan-meier curves. Otolaryngol-
ogy—Head and Neck Surgery 143(3), 331–336 (2010)

[27] Bouman, P., Dukic, V., Meng, X.-L.: A bayesian multiresolution hazard model

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.25.24309478doi: medRxiv preprint 

https://ohdsi.github.io/CommonDataModel/
https://covid.cd2h.org/PPRL/
https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
https://doi.org/10.1101/2024.06.25.24309478
http://creativecommons.org/licenses/by-nc-nd/4.0/


with application to an aids reporting delay study. Statistica Sinica, 325–357
(2005)
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