
Feasibility to virtually generate T2 fat-saturated breast MRI by 

convolutional neural networks  
Andrzej Liebert1, Dominique Hadler1, Chris Ehring1, Hannes Schreiter1, Luise Brock1, Lorenz 

A. Kapsner1,2, Jessica Eberle1, Ramona Erber3,4, Julius Emons5, Frederik B. Laun1, Michael 

Uder1, Evelyn Wenkel6, Sabine Ohlmeyer1, Sebastian Bickelhaupt1,7 

1. Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg 

(FAU), Erlangen, Germany 

2. Lehrstuhl für Medizinische Informatik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 

Germany 

3. Institute of Pathology, University Regensburg, Regensburg, Germany 

4. Institute of Pathology, Universitätsklinikum Erlangen, Erlangen, Comprehensive Cancer Center Erlangen-

EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany 

5. Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center 

Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany  

6. Medizinische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. 

Radiologie München, München, Germany  

7. German Cancer Research Center (DKFZ), Heidelberg, Germany 

Abstract:  

Background: Breast magnetic resonance imaging (MRI) protocols often include T2-weighted 

fat-saturated (T2w-FS) sequences, which are vital for tissue characterization but significantly 

increase scan time.  

Purpose: This study aims to evaluate whether a 2D-U-Net neural network can generate virtual 

T2w-FS images from routine multiparametric breast MRI sequences. 

Materials and Methods: This IRB approved, retrospective study included n=914 breast MRI 

examinations performed between January 2017 and June 2020. The dataset was divided into 

training (n=665), validation (n=74), and test sets (n=175). The U-Net was trained on T1-

weighted (T1w), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) 

sequences to generate virtual T2w-FS images (VirtuT2). Quantitative metrics and a qualitative 

multi-reader assessment by two radiologists were used to evaluate the VirtuT2 images. 

Results: VirtuT2 images demonstrated high structural similarity (SSIM=0.87) and peak signal-

to-noise ratio (PSNR=24.90) compared to original T2w-FS images. High level of the frequency 

error norm (HFNE=0.87) indicates strong blurring presence in the VirtuT2 images, which was 

also confirmed in qualitative reading. Radiologists correctly identified VirtuT2 images with 

92.3% and 94.2% accuracy, respectively. No significant difference in diagnostic image quality 

(DIQ) was noted for one reader (p=0.21), while the other reported significantly lower DIQ for 

VirtuT2 (p<=0.001). Moderate inter-reader agreement was observed for edema detection on 

T2w-FS images (ƙ=0.43), decreasing to fair on VirtuT2 images (ƙ=0.36).  
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Conclusion: The 2D-U-Net can technically generate virtual T2w-FS images with high similarity 

to real T2w-FS images, though blurring remains a limitation. Further investigation of other 

architectures and using larger datasets are needed to improve clinical applicability. 

Summary Statement: Virtual T2-weighted fat-saturated images can be generated from 

routine breast MRI sequences using convolutional neural networks, showing high structural 

similarity but with notable blurring, necessitating further refinement for clinical use.  

Key Results:  

1. Images with T2w-FS characteristics can be virtually generated from T1w and DWI 

images using deep learning 

2. Image blurring occurring in the VirtuT2 image limit clinical use for the current moment 

3. Further investigation of different architectures and with larger datasets are necessary 

in the future to improve the VirtuT2 performance. 

Abbreviations: 

CE – contrast enhanced 

SSIM – structural similarity index 

PSNR – peak signal-to-noise-ratio 

HMI – histogram mutual information 

NRMSE – normalized root mean square error 

MEDSYMAC – median symmetrical accuracy 

HFEN – high frequency error norm 

DWI – diffusion weighted imaging 

Key Words: Magnetic Resonance Imaging, Breast Imaging, Neural Network, Artificial 

Intelligence 
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INTRODUCTION 

Breast magnetic resonance imaging (MRI) commonly utilizes a multiparametric protocol [1]. 

Such multiparametric protocols typically comprises different imaging sequences: unenhanced 

T1-weighted (T1w), T2-weighted fat-saturated (T2w-FS), diffusion-weighted imaging (DWI, 

with at least two b-values) and multiple T1w contrast-enhanced (T1w-CE) sequences that form 

the dynamic contrast-enhanced (DCE) series. 

Among those acquisition sequences, the T2w-FS acquisition provides morphological insight 

into tissue composition and fluid presence, aiding in lesion characterization and being included 

in classification schemes such as the Kaiser-Score [1]. However, acquiring the T2w-FS images 

with sufficient spatial resolution can significantly contribute to the total scanning time, 

sometimes accounting for up to 20% of the entire breast MRI examination [2; 3]. This 

influences scanner throughput, which is of relevance especially when aiming to use breast MRI 

as a supplemental screening modality in breast cancer screening programs [4].  

In recent years several publications showed that deep-learning approaches are technically 

feasible to derive “virtual” contrast-enhanced images from multiparametric unenhanced 

acquisitions in the breast [5-10]. The aim of these virtual contrast-enhanced (vCE) techniques, 

in all body regions, is focused on the reduction or even potential elimination of gadolinium-

based contrast agents (GBCA) administration [11] in order to reduce the costs, potential side 

effects [12], and environmental issues[13] arising from it. These vCE methods, show the 

potential to synthesize additional or missing [14-16] diagnostic information from existing MRI 

acquisitions, thus potentially streamlining the imaging process. 

This feasibility study builds on these recent works by investigating, if a 2D-U-Net architecture 

might be used to generate images mimicking T2w-fat-satured images from other routine 

sequences used in breast MRI such as T1w, DWI, and dynamic contrast enhanced sequences 

(DCE). We evaluate such virtual T2w-mimicking images (called “VirtuT2”) both in a quantitative 

analysis of image similarity and error metrics, and in a multi-reader qualitative assessment 

study. 

MATERIALS AND METHODS 

Patient cohort and acquisition protocol  

This retrospective study has been approved by the ethics committee of Friedrich-Alexander 

University Erlangen-Nürnberg waiving the need for informed consent. All included breast MRI 

examinations were clinically indicated routine examinations, performed between January 2017 

and June 2020 (age 52±12 years) at the Institute of Radiology, University Clinic Erlangen. The 

clinical indications included preoperative exclusion of multifocal disease, screening in women 

with positive family history of breast cancer, exclusion of recurrent breast cancer, clarification 

of unclear findings in mammography, ultrasound or due to clinical complaints.  
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The examinations were performed using one of two routine 3T MRI scanners (Magentom Skyra 

fit or Magnetom Vida, Siemens Healthineers, Erlangen, Germany). Routine multiparametric 

breast MRI protocol including unenhanced T1w-DIXON, T2w-FS, and multi-b-value DWI (b-

values=50, 750, and 1500 s/mm2) acquisitions together with five T1-weigthed DCE acquisitions 

performed in 60 seconds interval after the intravenous administration of GBCA. Due to artifacts 

which are caused by the silicone in DWI acquisitions, the presence of breast implants was 

defined as an exclusion criterion. Detailed MRI acquisition parameters are available in Table 

1.  

Detailed definition of the final cohort (n=914) based on the inclusion and exclusion criteria is 

presented in Figure 1. The dataset was randomly divided at the examination level into a training 

(n=665), validation (n=74) and independent test set (n=175). During the split it was ensured 

that no data-leakage on the patient level occurred between the datasets. Optimization of the 

training hyperparameters was performed based on the performance on the validation set. The 

independent test set was kept separately until the fixed model was deployed for evaluation of 

this study. 

Data preprocessing: 

MRI acquisitions from each patient were extracted from the clinical PACS system and 

transferred to a local machine for preprocessing using Python (version 3.9.10) with SITK 

framework (version 2.2.1) as following. The Field of View (FoV) of the sequences was 

registered to smallest common volume among all of the sequences of the respective 

examination (in most cases this was the FoV provided by the DWI). Such registration ensures 

full correlation of voxel information among all acquisitions. Further all acquisitions were z-score 

normalized, clamped at values of [-1,15] and min-max rescaled, for the input images, to a 

domain [0,1] and for the T2w-FS acquisition to a domain of [-1,1]. Binary masks of the breast 

volume were generated using an in-house developed algorithm as presented in the 

supplement material.  
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Figure 1: Study design flowchart. Protocol requirements for the examinations were defined as including 
uninterrupted acquisitions of: T1w, T1w-FS, T2w-FS, DWI with multiple b-values including 50,750 and 
1500 s/mm2 as well as a 5 time-point T1w DCE acquisition.  
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Table 1: MRI Protocol 

Sequence Sequence 

Type 

Matrix Size FoV (mm×mm) Slice thickness 

(mm) 

TR 

(ms) 

TE 

(ms) 

IR 

(ms) 

FA 

(º) 

No. of  

Averages 

Fat Saturation 

T1w* 3D-GRE 
448×448×112–

128 

360×360–

430×430 
1.5–1.8 5.97 2.46 - 10 1 None 

T1w-FS 3D-GRE 
448×448×112–

128 

360×360–

430×430 
1.5–1.8 5.97 2.46 - 10 1 

DIXON  

water-phase 

T2w-FS 2D-SE 
448×448×34–

49 

340×340–

430×430 
4 3570–5020 60, 70 230 108 2 STIR 

DWI** 
2D-IR-

DWI-EPI 

256×160–

200×34–49 

350×219–

430×269 
4 6290–9660 66, 70 220, 250  

3/8/20 or 

3/8/15*** 
STIR 

FoV=field of view, TR=repetition time, TE=echo tim, IR=inversion recovery time, DWI=diffusion-weighted imaging, GRE=gradient echo, SE=spin echo, 

EPI=echo-planar imaging, GBCA=gadolinium-based contrast agent, STIR=short TI inversion recovery  

*Acquired before and during the five timepoints after intravenous GBCA injection (gadobutrol; Bayer, Leverkusen, Germany; 0.1 mmol/kg/body weight, injection 

speed=2 mL/s) **DWI scan was acquired using three b-values: 50, 750, and 1500 s/mm2 ***No. of averages for DWI indicates the number of averages for each 

b-value. The first set of values is for the acquisition performed on Skyra-Fit and the second set for that performed on MAGNETOM VIDA. 
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Neural network architecture and training 

A 2D-U-Net network was implemented using Python with PyTorch, MONAI and Lightning 

frameworks as depicted in Figure 2 in similarity to [10].  

Figure 2: 2D-U-Net architecture used for the generation of VirtuT2 images. The network comprises of 
3 encoder- (in blue) and 3 decoder-stages (in orange) connected by a bottleneck stage (in red). The 
input of the network used during training consist of the T1w acquisition (both with and without fat-
saturation), a series of T1w-contrast enhanced acquisition and of the DWI acquisitions with b-values of 
50 and 750 s/mm2. The inputs of the network are passed in the initial stage through a 1×1 convolution 
layer. The initial encoder stage generates n=64 features and the feature number is multiplied by 2 after 
each encoder stage and the bottle-neck resulting in a n=512 maximal number of features. A skip 
connection between the respective levels of the encoder and decoder stages is introduced by 
concatenating the feature maps of the respective encoder-stage to the input of the decoder stage.  
Between the encoder-stages the down-sampling of the image dimensions is performed using a 2×2 
convolution with stride of 2. The up-sampling between the decoder stages is performed using a 
transposed 2×2 convolution. The 2nd and 3rd encoder stage as well as the bottle-neck and the decoder 
stage consist of two sets of: 3×3 convolution layer followed by batch normalization, drop-out (with 
probability of 0.5) and leaky-rectified-linear-activation layers. The final encoder stage is followed by a 
1×1 convolution layer and a tanh activation function.  

 

During training, single slices of the T1w, T1w-FS, DWI acquisitions with b-values of 50 and 

750 s/mm2 and all five T1w-CE acquisitions were used as input channels of the neural network. 

The corresponding slices of the T2w-FS acquisition were selected as the ground truth. Training 

was performed using a loss function which combines L1-norm with structural similarity 

measure (SSIM) in similarity to [17]: 

𝐿(𝜃) = (1 − 𝑆𝑆𝐼𝑀(𝑦, 𝑦𝑖′)) + 𝐿1(𝑦𝑖, 𝑦𝑖′) 

Training was performed on a dedicated work station using a single NIVIDIA V100 GPU (32GB 

RAM). For optimization an ADAM optimizer was used with a learning rate of 10-3. Training was 

performed for n=35 epochs using an n=32 batch-size.  
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Test Set Evaluation: 

After the training, virtual T2w-FS images were generated using the independent test dataset. 

The resulting images were then evaluated quantitatively and in a reader study, performed by 

two board-certified radiologists. 

Quantitative evaluation 

Quantitative metrics evaluated within the full breast volume for the Virtu-T2 images were as 

follows: structural similarity index (SSIM) [18], peak signal-to-noise ratio (PSNR), histogram 

mutual information (HMI), normalized root mean square error (NRMSE), median symmetric 

accuracy (MEDSYMAC) and high frequency error norm (HFEN). All of the metrics were 

evaluated over the volume of the whole breast including breast muscle.  

Qualitative multi-reader study 

To supplement the quantitative analysis a multi-reader study was performed on two subsets 

of the independent test set.  

The two subsets were randomly selected from the full test set as following: 

1. Subset A (n=26 examinations) comprising of breast MRI examinations with 

histopathologically confirmed malignant (mass) lesions. 

2. Subset B (n=26 examinations) comprising of breast MRI examinations with benign 

findings only.  

For both subsets a reader study was performed by two board certified radiologists (R1: D.H. 

15 years of experience and R2: S.B. 10 years of experience in breast MRI). The readers 

performed two reading sessions for each subset with at least two weeks between each reading 

session. During each of the session readers were presented with a total of n=26 cases of 

multiparametric breast MRI of which n=13 cases each were presented including the VirtuT2 

images or the original T2w-FS images. The information about the number of included Virtu-T2 

and T2w-FS images in each reading session was withheld from the readers. The order in which 

cases were presented during both sessions was random. During the reading the following 

tasks were performed: 

1. Readers evaluated whether the presented image overall provides T2w-FS image 

characteristics (e.g. fat saturated appearance of fat, hyperintense depiction of FGT 

proportions, hyperintense depiction of cysts) answering the question with a Yes/No.  

2. Readers were asked to answer whether the presented image is an original T2w-FS 

acquisition or a VirtuT2 image. 

3. Readers were asked to assess the diagnostic image quality (DIQ) using a 5-point 

Likert-like scale using the following scores: 5 = excellent (acceptable for diagnostic 

use), 4 = good (acceptable for diagnostic use), 3 = acceptable (acceptable for 

diagnostic use but with minor issues), 2 = poor (not acceptable for diagnostic use), or 

1 = unacceptable (not acceptable for diagnostic use). For cases which were rated to 
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have an unacceptable or poor diagnostic quality (scores 1 and 2) the readers were 

asked to indicate the reason for such rating as: artefact presence, image resolution, 

image blurring, lack of enhancement or other.  

Additionally, for the first subset which included malignant mass lesions, in similarity to Kaiser 

score evaluation, the readers answered, if is a visible presence of edema around the largest 

lesion which could be associated with malignancy.  

Statistical Analysis: 

Statistical differences in the ordinal evaluations between the T2w-FS and VirtuT2 images were 

investigated using a Wilcoxon Signed Rank test for each of the readers, a p-value of 0.05 was 

considered significant. Inter-reader agreement between the two readers was evaluated using 

the Cohens’s kappa (ƙ) for the diagnostic image quality and for the presence of edema. 

Additionally, Intra-reader agreement between the T2w-FS and VirtuT2 images in regards to 

the presence of edema was also evaluated using Cohen’s kappa. 

RESULTS 

Patient cohort characteristics: 

Detailed information about the full patient cohort can be found in Table 2. Table 3 shows the 

frequency of BI-RADS adapted fibro-glandular tissue (FGT) and background parenchymal 

enhancement (BPE) classes in the independent test set. Among the n=26 cases included in 

the malignant subset used for reading, n=25 cases were identified as a breast cancer of no 

special type (NST) and n=1 as a mucinous carcinoma. Mean size of the malignant lesions was 

20.5±17.1 mm (median 13.4 mm, n=8 cases with lesion size < 10 mm, n=7 cases with lesion 

size >20 mm). 
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Table 2: Demographics of the Training/Validation and Independent Test Cohorts 

 Full dataset Training/Validation set Independent test set 

  Training Validation  

No. of patients 816 567 74 175 

No. of examinations 914 665 74 175 

Split ratio of 

examinations (%) 
100 72.7 8.1 19.1 

Age (year) 52±12 50±12 52±12 51±14 

Routine BI-RADS 

score* 
    

0 20 14 2 4 

1 3 2 0 1 

2  440 328 36 76 

3 70 53 3 14 

4 106 68 10 28 

5 64 50 3 11 

6 211 150 20 41 

*The BI-RADS score refers to the highest BI-RADS score given for an examination during routine 

clinical reading; age is presented as means and standard deviations.  

 

Table 3: Fibro-glandular Tissue (FGT) and Background-Parenchymal Enhancement (BPE) 

FGT scores* BPE scores* 

Independent Test Set (n=175) 

Almost entirely fat  
23 

(13%) 
Minimal 

62  

(35%) 

Scatter fibro-glandular tissue  
34 

(19%) 
Mild  

40  

(22%) 

Heterogeneous fibro-glandular tissue  
40 

(22%) 
Moderate  

32  

(18%) 

Extreme fibro-glandular tissue 
78 

(44%) 
Marked  

41  

(23%) 

*Scores given adapted to the ACR BI-RADS reporting recommendations 
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Evaluation of the VirtuT2 images 

Table 4 shows the mean and standard deviation of the quantitative performance metrics for 

the VirtuT2 images in comparison to original T2w-FS.  

Table 4: Quantitative Values for Comparison between VirtuT2 and T2w-FS images 

metric mean (± standard deviation) 

SSIM ↑ 0.87±0.02 

PSNR [dB] ↑ 24.90±1.89 

HMI ↑ 0.74±0.10 

NRSME [%] ↓ 8.09±1.09 

MEDSYMAC [%] ↓ 1.39±0.50 

HFEN ↓ 0.87±0.07 

SSIM: structural similarity index; PSNR: peak signal-to-noise-ratio; NRMSE: normalized root mean 

square error; MEDSYMAC: median symmetrical accuracy; HFEN: high-frequency error norm; ↓ 

indicates lower values to suggest improvement of network performance; ↑ indicates higher values 

to suggest improvement of network performance; dB=decibel;  

Identification of original and VirtuT2 images 

All Virtu-T2 images (52/52) and T2w-FS images (52/52) were unanimously classified by both 

readers as providing typical characteristics of T2w-FS acquisitions (R1 52/52, R2 52/52). Yet, 

both readers were able to reliably identify the Virtu-T2 images with R1 correctly identifying 

92.3% (48/52) and R2 correctly identifying 94.2% (49/52) of them. Accuracies for R1 in 

classifying original and VirtuT2 images was 96.2% (100/104) and 95.2% (99/104) for R2 

respectively. Comparison of the T2w-FS and VirtuT2 images for both correctly and falsely 

identified cases by both readers are presented in Figure 3.  
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Figure 3: Example of images cases for which the two readers answered whether the respective image 
series looks like an original T2w-FS acquisition or a synthetic VirtuT2 image. The image names below 
each image indicate the respective readers answers with the R1 presented on the left side and R2 on 
the right side. The readers were able to identify the VirtuT2 images in most cases where significant 
blurring in the image is observed. In one case (C) both of the readers mistook a VirtuT2 image for a 
T2w-FS. Notably this image has a low level of blurring. In two cases (D and E) R1 mistook the VirtuT2 
image for a T2w-FS. In two cases R2 (G and H) mistook an original T2w-FS image for a VirtuT2 image.  

Image quality and diagnostic assessment 

Inter-reader agreement for the evaluation of DIQ showed low agreement between the readers 

for T2w-FS images (ƙ=0.10) but a fair agreement for VirtuT2 images (ƙ=0.26) for the individual 

quality scores.  

No significant difference in the DIQ scores given were found for R1 between the T2w-FS and 

VirtuT2 images (p=0.21). However, for R2 a significantly lower median could be observed for 

the VirtuT2 images (p<=0.001). Example of T2w-FS and VirtuT2 images with different DIQ 

scores are presented in Figure 4. Frequencies of the DIQ scores for both T2w-FS acquisition 

and for VirtuT2 are presented in Figure 5. For both of the lower end DIQ scores of 2 given by 

R2 the reason for the score was increased blurring. 
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Figure 4: Example of images cases with different diagnostic image quality (DIQ) ratings given by the 
two readers. The scores above each image indicate the respective readers answers with the R1 
presented on the left side and R2 on the right side. In most of the presented cases the DIQ was higher 
for the T2w-FS images then in the VirtuT2 images. An exception from this is image H in which the fat-
supression didn’t work as intended and the DIQ of the T2w-FS was rated by both readers as only 
acceptable. At the same time two VirtuT2 images (F and G) were rated by R2 as having a poor (score 
2) DIQ. No images in the whole cohort were rated as having am unacceptable quality. 

Figure 5: Frequencies of different DIQ scores given to the original T2w-FS and to the synthetic VirtuT2 
images by the two readers. For Reader 1 no significant difference in the median of the score could be 
observed between the two methods (p=0.21). For Reader 2 a significantly larger portion of the T2w-FS 
acquisitions showed a higher DIQ then the VirtuT2 images (p<0.001).  
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Identification of presence of edema 

With regard to the reading task of identification of presence of edema R1 identified it in n=12 

cases and R2 in n=19 using the T2w-FS acquisitions. At the same time R1 identified the edema 

on n=12 cases on the VirtuT2 images and R2 on n=13. Moderate inter-rater agreement 

(ƙ=0.43) could be observed on the T2w-FS acquisitions. In comparison, for the VirtuT2 images 

only a fair agreement (ƙ=0.36) between the readers could be observed for this task. Between 

the T2w-FS and VirtuT2 images slight (ƙ=0.19) and fair (ƙ=0.23) intra-reader agreements could 

be observed for R1 and R2. If the presence of edema was identified on the original T2w-FS 

acquisition it could also be identified on the VirtuT2 images in only 50% (6/12) and 58% (11/19) 

of cases by R1 and R2 respectively. Figure 6 shows exemplary cases in which presence of 

edema was identified in either the original T2w-FS acquisitions or in the VirtuT2 image. 

Figure 6: Example images of malignant cases with indications whether presence of edema was 
identified by R1/R2 respectively. A score of 1 indicates that the edema was present.  
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DISCUSSION 

This study demonstrates the generation of T2w-FS mimicking images from a multiparametric 

breast MRI protocol to be technically possible using a 2D-U-Net architecture. To our knowledge 

this study is the first in its kind showing that such application of deep learning is possible.  

Our results indicated the VirtuT2 images to comprise typical T2w-FS image characteristics and 

high quantitative similarity metrics. However, the appearance of the VirtuT2 images differed 

enough from the original T2w-FS images for the readers to be reliably identified with a very 

high accuracy of 95-96%. Further, the reading revealed increased presence of blurring 

comprising diagnostic image quality in the VirtuT2 images.  

The performance of the generated VirtuT2 images in regards to the quantitative similarity and 

error metrics were found in comparable ranges of virtually generated T1w contrast-enhanced 

images with an achieved SSIM of 0.87 and a PSNR of 24.90 [5-9]. Expanding the 

interpretability of the quantitative metrics we further included an evaluation of the HFEN, which 

is widely used to assess the level of image blurring [19].  

Recent publications on breast MRI protocols indicated that T2w-FS acquisitions might take-up 

up to approximately 20% of the whole on-table examination time [2; 3]. Whilst only presenting 

a first feasibility of the VirtuT2 its development is motivated by its potential to further streamline 

scanner throughput times without compromising on the available image contrasts for 

diagnostic assessments.  

However, it should be noted that the generated VirtuT2 images are not without flaws and the 

current feasibility status is still far away from clinical applicability, hindered amongst by the 

significant blurring of its generated images. The blurring affected the overall Diagnostic Image 

Quality (DIQ) scores for both of the two readers, although statistically significant difference 

could be observed only for R2. The high value of the HFEN of approx. 0.87 is well in agreement 

with the observed high level of blurring occurring in the VirtuT2 images. The blurring might be 

caused by the resolution of the DWI as relevant information source for the network. Another 

reason for the blurring might be the applied U-Net architecture, as encoder-decoder 

architectures are known for their blurry outputs if large variations in shape and scale is present 

in target regions [20; 21]. Such situation naturally occurs in T2w-FS images where large 

regions of fibro-glandular-tissue occur among areas speckled with small scale nodular or linear 

appearing tissue tracks. Interestingly the observed blurring appears in a similar fashion to 

blurring observed in the vCE example images in the works of Chung et al.[6]. This may point 

towards the architecture’s responsibility for the blurring as both this work and the work by 

Chung et al. are using encoder-decoder architectures. Nevertheless, for a definitive answer on 

this aspect further investigations of other architectures, for example through inclusion of 

attention mechanisms [7; 8] or a complete change of the architecture [7] will be necessary.  
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Further the VirtuT2 images represented visually visible edema only in 50%-58% of cases in 

which the edema was observed in the original T2w-FS acquisitions. However, this evaluation 

is strongly dependent on the reader as it can be seen from the only fair and moderate 

agreements between the readers as well as from the number of cases in which the edema was 

detected in the original acquisitions. Additionally due to its nature this evaluation does not have 

a reference value against which it could be compared against. 

Final limitation is found in the relatively small dataset with only n=914 examinations performed 

on just two scanner types from a single manufacturer with both scanners using 3T magnetic 

field strength and a harmonized acquisition protocol with high-quality DWI acquisitions. These 

limitations affect the generalizability of our method and further investigations of this method on 

larger external datasets should be performed in future studies.  

CONCLUSION 

Our study suggests that a neural network is able to technically generate images which mimic 

the contrast of T2w-FS acquisitions in breast MRI – however with increased blurring as 

compared to acquired T2w-FS data. Further research on this topic is necessary to overcome 

current limitations of this initial technical setup. 
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