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ABSTRACT 22 

Background & aims Suboptimal diets increase morbidity and mortality risk. Epigenetic clocks are 23 

algorithms that can assess health and lifespan, even at a young age, before clinical manifestations of 24 

diseases. We investigated the association between dietary patterns and biological aging in young 25 

adult twins.  26 

Methods The data were drawn from the population-based FinnTwin12 study and consisted of twins 27 

aged 21–25 years (n=826). Food and beverage intakes were assessed using a food frequency 28 

questionnaire. Biological aging was estimated using the epigenetic clocks GrimAge and 29 

DunedinPACE. Latent class analysis was used to identify dietary patterns. The association between 30 

dietary patterns and biological aging was assessed using linear regression modeling at the individual 31 

level, followed by within–twin pair analyses to account for genetic liabilities and shared familial 32 

confounders.  33 

Results Six dietary patterns were identified: 1) High fast food, low fruits and vegetables (F&V), 2) 34 

Plant-based, 3) Health-conscious, 4) Western with infrequent fish, 5) Western with regular fish, and 35 

6) Balanced average. At the individual level, GrimAge acceleration was slower in the Plant-based, 36 

Health-conscious, and Balanced-average patterns compared to the High fast food, low F&V, and 37 

faster in the Western with infrequent fish pattern compared to the Balanced average, regardless of 38 

sex, nonalcoholic energy intake, smoking, and alcohol consumption. After further adjustment for 39 

BMI and sports participation, the strengths of the associations modestly decreased; however, the 40 

difference between the Balanced-average and High fast food, low F&V patterns remained 41 

significant. The pace of aging (DunedinPACE) was slower in the Plant-based pattern compared to 42 

the High fast food, low F&V and the Western with infrequent fish patterns after adjustment for sex, 43 

nonalcoholic energy intake, smoking, and alcohol. The effect sizes were attenuated and reached a 44 

non-significant level when BMI and sports participation were added to the model. Most of the 45 

associations were replicated in the within-pair analyses among all twin pairs and among dizygotic 46 
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twin pairs, but the effect sizes tended to be smaller among monozygotic twin pairs. This suggests 47 

that genetics, but not a shared environment, may partially explain the observed associations 48 

between diet and biological aging.  49 

Conclusion Diets high in fast food, processed red meat, and sugar-sweetened beverages and low in 50 

fruits and vegetables are associated with accelerated biological aging in young adulthood. The 51 

clustering effect of lifestyle factors and genetic confounders should be considered when interpreting 52 

the findings. 53 

Keywords: diet, nutrition, biological aging, epigenetic clock, twin study   54 
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INTRODUCTION 55 

Diet quality is a modifiable lifestyle factor that significantly impacts mortality and morbidity risks 56 

(1–3). Diet-related noncommunicable diseases, such as cardiovascular diseases and type 2 diabetes, 57 

are among the leading causes of death worldwide (4,5). Health-promoting diets—that is, those rich 58 

in vegetables, fruits, legumes, nuts, whole grains, vegetable oils, and fish and low in red and 59 

processed meat, high-fat dairy, and refined carbohydrates—play a crucial role in reducing the risk 60 

of these diseases (2,3) and all-cause mortality (1). 61 

One mechanism by which diet can influence health and lifespan involves changes in the epigenome, 62 

which further modify pathways leading to diseases (6). Epigenetic modifications alter gene 63 

expression without changing the DNA sequence (7). The most well-established and valuable 64 

epigenetic marker in human disease studies is DNA methylation (DNAm) (8,9). This marker 65 

typically involves the attachment of a methyl group to a cytosine-phosphate-guanine (CpG) 66 

dinucleotide on a DNA strand (10). The activity of DNAm varies depending on its genomic 67 

location. Methylation of DNA promoters often suppresses gene expression, whereas methylation of 68 

gene bodies can enhance gene expression (11–13). Although genetic factors contribute to DNAm, 69 

environmental and lifestyle factors also play a significant role in this process (14). Genetic factors 70 

seem to play a larger role in young individuals, whereas environmental and lifestyle factors explain 71 

more of the variation in DNAm in older cohorts (14). 72 

Epigenetic alterations are one of the classical hallmarks of aging (15), and DNAm status at a set of 73 

specific CpG sites can be used to estimate individuals’ biological age. To date, several epigenetic 74 

clocks (i.e., machine learning algorithms that utilize different CpG sites) have been validated to 75 

predict aging-related phenotypes (16,17). The first two widely used clocks, the Hannum and 76 

Horvath clocks, were developed to estimate chronological age (18,19). More recent “second- and 77 

third-generation clocks,” GrimAge and DunedinPACE, were developed to predict lifespan and the 78 

pace of aging, respectively, rather than chronological age (20,21). For GrimAge, the difference 79 
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between the estimated biological age and chronological age indicates age acceleration, whereas 80 

DunedinPACE directly provides an index of the pace of aging—that is, an average rate of years of 81 

biological aging per year of chronological aging. Increased age acceleration and an increased pace 82 

of aging have been shown to predict morbidity and mortality in several cohorts (20–24).  83 

Some observational studies have found a relationship between higher diet quality and age 84 

deceleration (25–29). However, most current evidence comes from middle-aged and older adults. 85 

During young adulthood (between the ages of 18 and 35), individuals transition from adolescence to 86 

a stage where they begin to manage the responsibilities associated with independent living (30). 87 

This phase of life may involve leaving the parental home, starting work or academic education, and 88 

beginning a relationship or parenthood, all of which have the potential to affect dietary patterns 89 

(30–32). It has been reported that diet quality tends to decrease during the transition from 90 

adolescence to young adulthood (33). As diseases usually take decades to manifest, it is important 91 

for disease prevention to investigate the link between diet and health from an early age before 92 

clinical signs of age-related diseases appear. Epigenetic clocks, especially newer ones, emerge as a 93 

potential metric for this purpose.  94 

Previous studies examining the relationship between diet and biological aging have not accounted 95 

for genetic liability or shared familial confounders. In addition, previous studies investigating the 96 

association between diet and biological aging have used theory-based a priori methods, i.e., dietary 97 

indices, to asses diet quality (25–28). Instead, a posteriori methods provide a hypothesis-free, 98 

empirically informed approach to analyzing dietary patterns, which are the overall combinations of 99 

foods and beverages typically consumed (3). Latent class analysis (LCA) is one such person-100 

oriented, data-driven method used to identify unobserved subgroups within a population based on 101 

patterns of responses across multiple observed variables (34). In this paper, we investigated the 102 

association between LCA-derived dietary patterns and biological aging in young adult twins. In 103 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.25.24309391doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.25.24309391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

addition to individual-level analyses, we employed within–twin pair analyses to account for shared 104 

environment and genetics.  105 

 106 

MATERIALS AND METHODS 107 

Study design and participants 108 

This study utilized data from the fourth wave of the intensively studied sample of the FinnTwin12 109 

study, collected between 2006 and 2009. FinnTwin12 is a population-based longitudinal study 110 

comprising Finnish twins born between 1983 and 1987 (35,36). The intensively studied sample 111 

(1035 families) was created through random sampling from each birth cohort when the twins were 112 

11–12 years old. The sample was enriched to include individuals at familial risk of alcoholism. 113 

Specifically, all remaining twins in each cohort, where one or both parents exceeded the threshold 114 

on a questionnaire assessing alcoholism (the Malmö-modified Michigan Alcoholism Screening 115 

Test; Mm-MAST 37), were added to the randomly selected sample. These families comprised 28% 116 

of the overall sample. At the age of 14, 1852 twins were interviewed and later invited to participate 117 

in the fourth study wave as young adults. 118 

The data for the fourth wave were gathered during in-person study visits when the twins were 119 

between the ages of 20 and 26 years. A total of 1347 twins (73% participation rate) underwent 120 

assessments at this phase. Dietary data were available for 1294 participants. Of these, 839 also had 121 

epigenome data from blood samples. Four participants later withdrew their consent to participate in 122 

the study, eight participants were excluded due to incomplete dietary data (>8 items missing in the 123 

food frequency questionnaire), and one was excluded due to implausibly low energy intake (<600 124 

kcal/day in females). This resulted in a final sample size of 826 for the individual analyses. For the 125 

within–twin pair analyses, 100 individuals for whom we did not have valid data on their cotwin 126 
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were excluded from the data, resulting in a sample of 726 individuals—that is, 363 complete twin 127 

pairs of which 206 were dizygotic (DZ) and 157 monozygotic (MZ). 128 

All participants provided written informed consent. The data were collected according to the 129 

principles of the Declaration of Helsinki, and the study was approved by the Institutional Review 130 

Board of Indiana University and the ethics committees of the University of Helsinki and Helsinki 131 

University Central Hospital (113/E3/2001 and 346/E0/05). 132 

Dietary intake 133 

Habitual dietary intake was assessed through a food frequency questionnaire containing 52 foods 134 

and nonalcoholic beverages. A detailed description of the dietary assessments was provided 135 

elsewhere (38). Briefly, the participants were asked about the typical frequency of 52 foods and 136 

nonalcoholic beverages consumed during the previous 12 months. Additionally, they reported the 137 

number of slices of rye bread, whole grain bread, and white bread consumed daily. The participants 138 

also reported the amount of fat spread per slice of bread. The intake of each food and beverage item 139 

in grams per day and the daily macronutrient and nonalcoholic energy intake were calculated using 140 

the national computer-based food composition database Fineli (www.fineli.fi).  141 

DNA methylation and biological age 142 

Genomic DNA was isolated from venous blood samples using commercial kits. DNA samples of 1 143 

µg were then bisulfite-converted using an EZ-96 DNA Methylation-Gold Kit (Zymo Research, 144 

Irvine, CA) following the manufacturer’s instructions. The samples from both twins were 145 

distributed on the same plate to minimize potential batch effects. Measurements of DNA 146 

methylation were performed using Illumina’s Infinium HumanMethylation450 BeadChip (covering 147 

over 450,000 CpGs) for 742 samples and the Infinium MethylationEPIC BeadChip (covering 148 

850,000 CpGs; Illumina, San Diego, CA) for 84 samples. Methylation data were combined and 149 
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preprocessed using the R package meffil (39). The preprocessing steps have been previously 150 

described in detail (40).  151 

Two epigenetic clocks—namely, principal component (PC)–based GrimAge (20,41) and 152 

DunedinPACE (21)—were used in this study. GrimAge, established in 2019, uses 1030 CpGs to 153 

predict time-to-death and is a composite measure incorporating chronological age, sex, and DNAm-154 

based surrogate biomarkers related to seven plasma proteins and smoking pack-years (20). To 155 

increase reproducibility, we utilized the PC version of GrimAge (PC-GrimAge) in the analysis 156 

because it is less sensitive to technical noise arising from DNAm data compared to the original 157 

DNAm GrimAge (41). DunedinPACE, established in 2022, is an updated version of the 2020 clock 158 

DunedinPoAm (42). It was trained to predict changes in 19 biomarkers from age 26 to age 45, 159 

utilizing 173 CpGs to forecast the pace of aging (21).  160 

PC-GrimAge and DunedinPACE estimates were produced using R packages 161 

(https://github.com/MorganLevineLab/PC-Clocks and https://github.com/danbelsky/DunedinPACE, 162 

respectively; 18,19). PC-GrimAge acceleration (AAPC-Grim), which reflects the difference 163 

between chronological age and biological age assessed by PC-GrimAge, was calculated as the 164 

residual from a regression model in which the estimated biological age was regressed on 165 

chronological age. The epigenetic aging measures were screened for outliers (values more than 5 166 

standard deviations from the mean). No outliers were detected.  167 

Lifestyle-related covariates 168 

BMI (kg/m2) was calculated using the height and weight measured at the study visit. Sports-related 169 

physical activity was assessed using the Baecke questionnaire (43). The participants reported the 170 

number of months per year and hours per week they participated in their two most regularly 171 

practiced types of exercise. The sport index was calculated based on the volumes and intensities of 172 

the reported activities, as described by Baecke et al. (43) and Mustelin et al. (44).  173 
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Smoking status, categorized as never smokers, former smokers, occasional smokers, and daily 174 

smokers, was self-reported by the participants. The number of servings of beer, wine, spirits, and 175 

other alcoholic beverages consumed during a typical week was assessed through a detailed 176 

interview as part of the Semi-Structured Assessment of Genetics of Alcoholism (SSAGA; 45). To 177 

calculate alcohol intake in grams, the number of servings of each beverage type consumed per week 178 

was multiplied by the respective portion sizes and alcohol content. This yielded the total weekly 179 

alcohol intake. Subsequently, the weekly alcohol intake in grams was divided by 7 to determine the 180 

average daily intake. 181 

Statistical analyses 182 

We employed LCA to identify different dietary patterns. The intake of each food and nonalcoholic 183 

beverage item was used as an indicator variable. Prior to conducting LCA, the items were log-184 

transformed due to their skewed distributions. For indicators with a strong floor effect (8 out of 55 185 

indicators), the variables were recoded as binary, indicating whether or not the participants 186 

consumed the corresponding food item. An LCA model with 1–7 classes was fitted. The 187 

classification was based on the means and variations of the continuous indicator variables and the 188 

conditional item probabilities of the binary indicators. In each step, we used the following indices to 189 

evaluate the goodness of fit: Akaike’s information criterion, the Bayesian information criterion 190 

(BIC), and the sample size–adjusted BIC (aBIC). Lower values of the information criteria suggest a 191 

better fit for the model. Moreover, we used likelihood-based tests—namely, the Vuong–Lo–192 

Mendell–Rubin likelihood ratio test (VLMR-LRT) and the Lo–Mendell–Rubin (LMR) test—to 193 

assess whether adding a class led to a statistically significant improvement in model fit. A low p-194 

value suggests that the model with one class less should be rejected. In each step, classification 195 

quality was assessed using the average posterior probabilities for the likeliest latent class 196 

membership (AvePP) and the entropy values. Entropy values higher than 0.8 indicate that the 197 

classification uncertainty is low (46). AvePPs close to 1 indicate a clear classification. To simplify 198 
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further analysis, the classification error was ignored, and each participant was assigned to the class 199 

for which the posterior membership probability was the largest (modal assignment). 200 

Linear regression modeling was conducted to study the differences in biological aging between 201 

classes with different dietary patterns. Covariates were sequentially added to the model. The 202 

standard errors were corrected for nested sampling within families using the “type=complex” option 203 

in Mplus. Following these individual-level analyses, the associations were estimated at the within–204 

twin pair level using multilevel models in all twin pairs and separately for MZ and DZ pairs (47). 205 

This approach addresses shared environmental factors, either measured or unmeasured, across all 206 

twin pairs. Additionally, within MZ pairs, which share all their genetic variants, this method 207 

accounts for genetic influences, while in DZ twin comparisons, it addresses, on average, 50% of the 208 

segregating genetic influences. 209 

We also assessed whether sex, nonalcoholic energy intake, smoking status, alcohol consumption, 210 

BMI, or sports participation may modify the impact of diet on biological aging by incorporating an 211 

interaction term into our models. The Wald test was used to test the significance of the interaction 212 

term.  213 

Descriptive statistics were analyzed using SPSS version 28.0 (Armonk, NY: IBM Corp). LCA and 214 

regression modeling were conducted using Mplus software version 8.2 (48). The parameters of the 215 

models were estimated using the full information maximum likelihood (FIML) method with robust 216 

standard errors. This approach produces unbiased parameter estimates when data are missing at 217 

random (MAR). In all statistical tests, the alpha level of significance was set at 0.05. 218 

 219 

RESULTS 220 

The demographic and dietary characteristics of the whole sample and stratified by sex are presented 221 

in Table 1. On average, the participants were 22.4 (0.7) years old, with an age range of 21–25 years, 222 
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with 58.2% being female. Compared to females, males had a higher BMI and alcohol intake and 223 

smoked more frequently. In addition, males exhibited higher absolute energy and macronutrient 224 

intakes, while females consumed a higher percentage of carbohydrates relative to their total energy 225 

intakes. 226 

Table 1. Demographic and dietary characteristics of the whole sample and stratified by sex. 227 

 Whole sample 
(n=826) 

Males  
(n=345) 

Females 
(n=481) 

Age, years, mean (SD) 22.4 (0.7) 22.5 (0.7) 22.4 (0.7) 
Sex     
     Males, n (%) 345 (41.8) - - 
     Females, n (%) 481 (58.2) - - 
Zygosity    
     MZ, n (%) 342 (41.4)a 127 (36.9)b 215 (44.7) 
     SS-DZ, n (%) 262 (31.7)a 117 (34.0)b 145 (30.1) 
     OS-DZ, n (%) 221 (26.8)a 100 (29.1)b 121 (25.2) 
BMI, kg/m2, median (25th, 75th percentile) 22.6 (20.8, 25.1) 23.5 (21.7, 25.4) 22.1 (20.3, 24.5) 
The Baecke sport index, mean (SD) 3.0 (0.8)c 3.1 (0.8)d 2.9 (0.8)e 

Smoking status    
     Never, n (%) 438 (53.0) 165 (47.8) 273 (56.8) 
     Former, n (%) 69 (8.4) 36 (10.4) 33 (6.9) 
     Occasional, n (%) 91 (11.0) 37 (10.7) 54 (11.2) 
     Daily, n (%) 228 (27.6) 107 (31.0) 121 (25.2) 
Alcohol intake, g/d, median (25th,75th percentile) 7.7 (0.0, 17.1) 12.0 (1.7, 25.3) 5.1 (0.0, 12.0) 
Nonalcoholic energy intake, kcal/d, mean (SD) 2191 (650) 2543 (683) 1938 (489) 
Carbohydrate intake, g/d, mean (SD) 281 (82) 313 (88) 258 (69) 
Carbohydrate intake, E%, mean (SD) 46.8 (5.2) 45.0 (4.9) 47.9 (5.1) 
Protein intake, g/d, mean (SD) 89 (30) 106 (32) 76 (21) 
Protein intake, E%, mean (SD) 16.2 (2.5) 16.7 (2.4) 15.8 (2.5) 
Fat intake, g/d, mean (SD) 74 (27) 87 (28) 65 (21) 
Fat intake, E%, mean (SD) 30.2 (4.8) 30.8 (4.6) 29.7 (5.0) 
a n=825; b n=344; c n=800; d n=338; e n=462 228 

SD, standard deviation; MZ, monozygotic twins; SS-DZ, same-sex dizygotic twins; OS-DZ, opposite-sex dizygotic 229 

twins; BMI, body mass index; E%, energy percentage. 230 

 231 

The LCA models with 1 to 7 classes are shown in Table S1. The VLMR-LRT and LMR test 232 

indicated that even a 2-class model would be sufficient. However, the model fit improved based on 233 

the information criteria until the inclusion of the sixth class in the model. The entropy reached its 234 

maximum level in the sixth step as well. Consequently, a 6-class solution was selected for further 235 

analysis.  236 

Fig. 1 shows the mean consumption of each food for different dietary patterns. The probabilities of 237 

consumption of different food items treated as binary variables in the LCA are presented in a 238 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.25.24309391doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.25.24309391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

separate figure in the Supplement (Fig. S1). We named the dietary patterns as follows: 1) High fast 239 

food, low fruits and vegetables (F&V), 2) Plant-based, 3) Health-conscious, 4) Western with 240 

infrequent fish, 5) Western with regular fish, and 6) Balanced average. 241 

The High fast food, low F&V pattern was characterized by relatively high intakes of high-fat, 242 

processed meat, fast food (i.e., hamburgers, pizza, pastry, fried potatoes, and French fries), sugar-243 

sweetened beverages, and margarine-butter blend. In turn, individuals with this dietary pattern 244 

consumed lower quantities of vegetables, fruits, berries, grain products, fish, yogurt, low-fat cheese, 245 

fat-free milk, and vegetable oils. Overall, participants in the High fast food, low F&V pattern 246 

reported a relatively low frequency of food item consumption. 247 

The participants in the Plant-based pattern tended to consume high amounts of vegetables, fruits, 248 

berries, porridge, muesli or cereals, chocolate, yogurt, tea, and vegetable oils and low quantities of 249 

fast food, fish, meat, boiled or mashed potatoes, and soft drinks. 250 

The participants in the Health-conscious pattern favored low-fat products, such as low-fat meat, fat-251 

free milk, and low-fat cheese. Their intake of vegetables, fruits, berries, rye bread, and porridge was 252 

also high. In turn, the intake of fast food, high-fat meat, soft drinks, and fruit juices was low in the 253 

Health-conscious pattern. 254 

The Western with infrequent fish pattern was characterized by high intakes of meat, fast food, soft 255 

drinks, and margarine-butter blend and lower intakes of rye bread, porridge, boiled potatoes, 256 

vegetables, fruits, berries, yogurt, low-fat cheese, fish, and vegetable oils. This pattern was 257 

relatively similar to the High fast food, low F&V pattern; however, the latter consumed even lower 258 

amounts of vegetables, fruits, and berries. 259 

The participants with a Western in regular fish dietary pattern consumed high amounts of rice or 260 

pasta, meat, fish, fast food, sugar-free drinks, soft drinks, fruit juice, low-fat milk, coffee, and 261 

margarine-butter blend and relatively low amounts of vegetables, fruits, berries, desserts, and 262 
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vegetable oils. Overall, the participants in this pattern reported high intakes of different food items. 263 

Thus, the absolute and relative intakes of vegetables, fruits, and berries were higher in this pattern 264 

than in the High fast food, low F&V pattern. 265 

Finally, the participants in the Balanced-average dietary pattern tended to consume high amounts of 266 

rye bread, porridge, fish, vegetables, fruits, berries, desserts, and tea and lower amounts of high-fat 267 

meat, margarine-butter blend, and coffee, but the intake of other food and beverage items was 268 

average.  269 

The characteristics of the participants with different dietary patterns are presented in Table S2. In 270 

general, males tended to be in the majority in the Western with infrequent fish and Western with 271 

regular fish dietary patterns; these groups were also characterized by the highest BMIs, alcohol 272 

consumption, and nonalcoholic energy and fat intakes. Instead, females predominated in the groups 273 

with Plant-based, Health-conscious, and Balanced-average dietary patterns. These patterns included 274 

the highest rates of never smokers and were characterized by relatively low alcohol intake and 275 

higher carbohydrate consumption relative to the total energy intake.  276 

The individual-level associations between dietary patterns and biological aging among the entire 277 

sample are presented in Fig. 2. The High fast food, low F&V pattern was treated as the reference 278 

group, as it exhibited the highest age acceleration and pace of aging in Model 1 (adjusted for family 279 

relatedness, daily nonalcoholic energy intake, and sex). Compared to the High fast food, low F&V 280 

pattern, AAPC-Grim was slower in the Plant-based (β=-0.122, 95% confidence interval [CI] -0.207, 281 

-0.037), Health-conscious (β=-0.171, 95% CI -0.269, -0.073), and Balanced-average patterns (β=-282 

0.198, 95% CI -0.298, -0.099) in Model 1. After further adjustment for smoking status and alcohol 283 

intake (Model 2), the strength of these associations decreased but remained statistically significant 284 

(β=-0.077, 95% CI -0.152, -0.002; β=-0.112, 95% CI -0.200, -0.025; and β=-0.148, 95% CI -0.236, 285 

-0.061, respectively). After additional adjustment for the BMI and the Baecke sport index (Model 286 

3), the strength of the associations was further attenuated, and the associations of the Plant-based 287 
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and Balanced-average patterns with the High fast food, low F&V pattern became statistically 288 

insignificant (β=-0.059, 95% CI -0.133, 0.016; β=-0.087, 95% CI -0.178, 0.005, respectively). 289 

However, the association between the Balanced-average and the High fast food, low F&V patterns 290 

remained statistically significant in Model 3 (β=-0.131, 95% CI -0.218, -0.044; Fig. 2). 291 

In addition to using the High fast food, low F&V pattern as a reference group, we also conducted 292 

pairwise comparisons with other classes serving as the reference. In these comparisons, AAPC-293 

Grim was faster in the Western with infrequent fish pattern compared to the Balanced-average 294 

pattern in Models 1 and 2 (β=0.134, 95% CI 0.039, 0.229 and β=0.093, 95% CI 0.004, 0.183, 295 

respectively; results not shown). In Model 3, the effect size continued to attenuate from Models 1 296 

and 2, with the association reaching a non-significant level (β=0.077, 95% CI -0.010, 0.164). In 297 

addition, in Model 1, AAPC-Grim was slower in the Health-conscious pattern compared to the 298 

group with a Western with infrequent fish dietary pattern (β=-0.100, 95% CI -0.188, -0.011). The 299 

effect sizes were attenuated in Models 2 and 3, with the association reaching a non-significant level 300 

(β=-0.052, 95% CI -0.139, 0.035 and β=-0.028, 95% CI -0.116, 0.061 in Models 2 and 3, 301 

respectively). Furthermore, AAPC-Grim was faster in the group with a Western with regular fish 302 

pattern than in that with a Balanced-average pattern in Model 1 (β=0.104, 95% CI 0.011, 0.197), 303 

with the effect sizes reducing to statistically insignificant levels in Models 2 (β=0.030, 95% CI -304 

0.056, 0.115) and 3 (β=0.024, 95% CI -0.059, 0.107). No other statistically significant differences 305 

were observed in pairwise comparisons for AAPC-Grim.  306 

Regarding DunedinPACE, the only significant difference from the High fast food, low F&V pattern 307 

was observed in the Plant-based pattern, which exhibited a slower pace of aging in Models 1 and 2 308 

(β=-0.134, 95% CI -0.223, -0.045 and β=-0.109, 95% CI -0.194, -0.023, respectively). The strength 309 

of this association was modestly attenuated and became statistically non-significant in Model 3 (β=-310 

0.080, 95% CI -0.164, 0.004; Fig. 2). In other pairwise comparisons, the Plant-based pattern was 311 

associated with a slower pace of aging compared to the Western with infrequent fish pattern in 312 
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Models 1 and 2 (β=-0.106, 95% CI -0.186, -0.026 and β=-0.085, 95% CI -0.164, -0.006, 313 

respectively; results not shown). The strength of this association continued to decrease and became 314 

statistically non-significant in Model 3 (β=-0.057, 95% CI -0.132, 0.018). Additionally, the pace of 315 

aging was slower in the Plant-based pattern compared to the Western with frequent fish pattern in 316 

Model 1 (β=-0.101, 95% CI -0.196, -0.006), but the effect sizes decreased in Models 2 and 3 (β=-317 

0.059, 95% CI -0.153, 0.035 and β=-0.039, 95% CI -0.127, 0.050, respectively). 318 

The associations between dietary patterns and biological aging stratified by sex are presented in 319 

Supplementary Figures (Fig. S2, Fig. S3). Regarding AAPC-Grim, no major differences were 320 

observed between the sexes, and the effect sizes were approximately similar to those observed in 321 

the whole sample. However, when DunedinPACE was used as an outcome variable, the 322 

associations were stronger among males than females. Among males, the pace of aging was 323 

significantly slower in the Balanced-average pattern compared to the High fast food, low F&V 324 

pattern in all Models (β=-0.164, 95% CI -0.283, -0.045; β=-0.121, 95% CI -0.235, -0.007; and β=-325 

0.123, 95% CI -0.232, -0.013 in Models 1, 2, and 3, respectively). In contrast, most effect sizes 326 

among females were close to zero. 327 

We also tested for potential interactions in the individual-level analyses in Model 3 to evaluate 328 

whether sex- or lifestyle-related covariates may modify the association between diet and biological 329 

aging. An interaction was observed between BMI and dietary patterns in a model with AAPC-Grim 330 

(p<0.001; Fig. S4). Since it was thought that the association between BMI and biological aging 331 

could be curvilinear, we conducted a sensitivity analysis in which the quadratic term of BMI and its 332 

interactions with diet were included in the model. An interaction between the quadratic term and 333 

dietary patterns was observed (p=0.006), indicating a curvilinear association that varies across 334 

dietary patterns (Fig. 3). At low levels of BMI, biological aging was accelerated in High fast food, 335 

low F&V pattern compared to other dietary patterns. The interaction term between BMI and diet 336 

was non-significant in a model with DunedinPACE (p=0.350). The association between diet and 337 
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both of the epigenetic aging measures was independent of sex, nonalcoholic energy intake, smoking 338 

status, alcohol consumption, and the Baecke sport index (p for interaction>0.05 in all).  339 

Furthermore, we examined the similarity of the MZ and DZ twin pairs in terms of dietary pattern 340 

membership by comparing the proportions of concordant and discordant twin pairs. Among the MZ 341 

pairs, the ratio of the proportions of concordant twin pairs for dietary pattern membership to 342 

discordant pairs was 0.78 (43.9%/56.1%). The corresponding ratio among the DZ pairs was 0.32 343 

(24.3%/75.7%). The higher proportion of concordant pairs among the MZ compared to the DZ twin 344 

pairs suggests genetic influences on dietary habits. The results of the within-pair analyses are 345 

presented in Figs. 4 and 5. The associations observed in the individual-level analyses were 346 

replicated in the within–twin pair analyses conducted for all twin pairs and DZ twin pairs; however, 347 

the effect sizes tended to be smaller for the MZ twin pairs, particularly in our fully adjusted models. 348 

 349 

DISCUSSION 350 

In this study, we investigated the associations between LCA-derived dietary patterns and biological 351 

aging among young adult twin pairs, both at the individual and within–twin pair levels. In general, 352 

diets emphasizing higher consumption of fruits and vegetables and lower intakes of meat, fast food, 353 

and sugar-sweetened beverages were associated with slower biological aging, while diets low in 354 

fruits and vegetables and high in meat, fast food, and sugar-sweetened beverages were linked to 355 

faster biological aging. However, the strengths of the associations were significantly attenuated 356 

when additional lifestyle factors were considered covariates. The associations between diets and 357 

biological aging differed according to sex when DunedinPACE was used to estimate biological 358 

aging but not when PC-GrimAge was applied. The associations found at the individual level were 359 

replicated at the within-pair level in all pairs and in the DZ pairs but were attenuated in the MZ 360 

pairs, suggesting the presence of genetic confounding. 361 
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Previous studies have mostly assessed diet quality using different dietary indices and have shown 362 

that higher-quality dietary patterns are associated with decreased biological aging (25–29,49,50). 363 

For example, two studies (25,26) found an association between lower Dietary Approaches to Stop 364 

Hypertension (DASH) scores (i.e., lower-quality diets) and age acceleration. Kresovich et al. (25) 365 

examined the links between the Healthy Eating Index, Alternative Healthy Eating Index, and 366 

Alternative Mediterranean diet with age acceleration and found inverse associations between all 367 

these metrics and age acceleration, indicating that higher diet quality is associated with slower age 368 

acceleration. In addition, Li et al. (27) found a link between higher scores of the Alternative Healthy 369 

Eating Index, the Mediterranean Dietary Score, and the Dietary Inflammatory Index with slower 370 

biological aging, both cross-sectionally and longitudinally. While the above-mentioned studies were 371 

conducted in middle-aged and older adults, Thomas et al. (28) reported that an association between 372 

a higher Mediterranean diet score and younger biological age was also observed among 20–40-373 

year-old participants. 374 

Dietary indices are, however, different from the LCA-derived dietary patterns used in this study. 375 

The former is a theory-based method, whereas LCA is a data-driven approach, therefore able to 376 

identify unobserved subgroups within a population instead of theory-driven index scores. Thus, our 377 

results are not directly comparable to those of earlier studies. However, the dietary patterns 378 

associated with slower biological aging in our study have similar characteristics to those with high 379 

dietary index scores, such as high intake of vegetables and fruits and low intake of processed meat 380 

and sugar-sweetened beverages. 381 

One potential mechanism that may underlie the association between a healthier diet and slower 382 

biological aging could involve the intake of polyphenols. Polyphenols (i.e., phenolic acids, 383 

flavonoids, stilbenoids, and lignans) are found mainly in vegetables, fruits, berries, nuts, herbs, soy, 384 

tea, coffee, cocoa, and olive oil (51). Polyphenols have been reported to cause both direct and 385 

indirect modifications to the levels and activity of DNA methyltransferases (DNMTs) (52). DNMTs 386 
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are enzymes that transfer a methyl group to the 5-carbon position of cytosine and are thus 387 

responsible for both de novo methylation processes and their maintenance (53). Hence, diets rich in 388 

polyphenols may result in favorable changes in DNAm levels and at least partly explain the slower 389 

age acceleration observed in patterns with high intakes of vegetables and fruits. 390 

Moreover, high consumption of red meat is associated with accelerated biological aging when 391 

estimated by the Horvath clock, PhenoAge, and GrimAge metrics (20,54,55). Consistent with these 392 

findings, we also observed that dietary patterns rich in red meat and processed red meat (e.g., 393 

salami, sausage dishes) were associated with faster biological aging compared to diets with lower 394 

meat intake. Potential mechanisms behind these associations include the detrimental effects of high 395 

intakes of heme iron and the presence of heterocyclic amines (HAAs) and polycyclic aromatic 396 

hydrocarbons (PAHs) found on the surface of charred meat, all of which have been suggested to 397 

have carcinogenic effects (56). Additionally, saturated fats found in meat, as well as sodium and 398 

nitrates found in processed red meat, have been associated with an increased risk of cardiovascular 399 

diseases and cancer (56,57). However, it was not within the scope of our study to investigate the 400 

role of a single food item in biological aging. In fact, since high meat consumption coincided with 401 

low vegetable intake and high consumption of sugar-sweetened beverages, it is impossible to isolate 402 

the specific role of red meat consumption from other dietary characteristics. 403 

It has been shown that modifiable lifestyle habits, such as smoking, alcohol consumption, physical 404 

activity, and dietary choices, tend to cluster among both adolescents and adults (58–61). In line with 405 

this finding, we found that smoking status, alcohol intake, BMI, and sports participation varied 406 

across the different dietary patterns. Therefore, as seen in Figs. 2, 4, and 5, the strengths of the 407 

observed associations between diet and biological aging decreased after adjusting for other lifestyle 408 

factors. This suggests that although dietary factors may be at least partially independently 409 

associated with biological aging, some associations appear to be confounded by other aspects of 410 

lifestyle. For example, Thomas et al. (28) reported that the associations between a healthy diet and 411 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.25.24309391doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.25.24309391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

physical activity with younger biological age were additive, in that low diet quality can be partially 412 

compensated by higher physical activity levels. In addition, obesity was associated with older 413 

biological age compared to normal weight, even in participants with a high diet quality (28). 414 

Regarding sex differences, we found that the associations between diet and biological aging did not 415 

differ between males and females when PC-GrimAge was used as an outcome variable. However, 416 

we found a difference between sexes regarding the pace of aging, with the association being strong 417 

in males and nonexistent in females after adjusting for other lifestyle factors. This finding is in 418 

contrast to the results of a previous study (28), which found that the effect sizes in the association 419 

between the Mediterranean Diet score and the PhenoAge metric were slightly stronger in females 420 

than in males. As few studies have investigated the correlation between diet and biological aging 421 

separately for both sexes, further studies with larger sample sizes and different biological aging 422 

metrics should address this issue.  423 

Interestingly, we found an interaction between BMI and dietary patterns in the AAPC-Grim model. 424 

More specifically, among individuals with low BMI values, biological aging was accelerated in the 425 

High fast food, low F&V group compared to all other groups, whereas among those with higher 426 

BMI values (especially those with overweight or obesity), AAPC-Grim yielded lower values in the 427 

High fast food, low F&V group. Our results suggest that among individuals with diets characterized 428 

by low consumption of vegetables, fruits, and berries and relatively high intake of meat, fast foods, 429 

and sugar-sweetened beverages, a lower BMI may be associated with greater age acceleration 430 

compared to individuals with similar diets but higher BMIs. The mechanisms behind this 431 

phenomenon remain elusive but may be related to low or inadequate intake of essential nutrients in 432 

those with low BMI. At the same time, we cannot exclude the possibility that some confounders 433 

were not addressed in our analysis. For instance, genetic predispositions, certain diseases, stress, 434 

socioeconomic status, or unmeasured lifestyle factors may have influenced our findings. However, 435 
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the results indicate a synergistic influence of diet and BMI on biological aging, at least when 436 

AAPC-Grim is used as the metric for biological aging. 437 

Our findings of more similar dietary patterns among MZ twins compared to DZ twins align with the 438 

results of earlier studies showing that among adults, genetic factors explain dietary patterns more 439 

than the shared childhood and youth environment (62–64). In addition, our finding that the 440 

associations observed in the individual-level analyses were replicated at the pairwise level among 441 

all pairs and among the DZ pairs suggests that shared environmental factors might not explain the 442 

observed associations between diet and biological aging. In contrast, the smaller effect sizes in the 443 

MZ twin pairs compared with the DZ twin pairs suggest that the relationship between diet and 444 

biological aging may be at least partially confounded by genetics. 445 

Our study is not without limitations. First, the data were collected at one time point, thus limiting 446 

the interpretation of causal associations. However, reverse causality seems unlikely to explain our 447 

findings, as biological aging is not expected to influence dietary habits. Instead, residual 448 

confounding likely influenced our results, as demonstrated by the decreased effect sizes with the 449 

addition of covariates. The possibility that some residual confounders may still affect our fully 450 

adjusted models cannot be excluded. Second, the study participants were all of European ancestry 451 

based on genetic testing, which may limit the generalizability of our results to other ethnic groups. 452 

Third, dietary intakes were self-reported, which raises the possibility of misreporting. Finally, our 453 

study had a relatively small sample size, particularly in the Plant-based pattern, which may have led 454 

to limited statistical power to detect differences between dietary patterns. However, the strengths of 455 

our study include a high response rate, the utilization of a population-based cohort group, a twin 456 

study design, the use of the most recent biological aging metrics, and a person-centered approach to 457 

analyzing dietary patterns (i.e., LCA).  458 

 459 
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CONCLUSION 460 

Our results suggest that diets low in fruits and vegetables and high in meat, fast food, and soft 461 

drinks are already associated with faster biological aging in young adulthood compared with diets 462 

high in fruits and vegetables and low in processed red meat and sugar-sweetened beverages. The 463 

findings of this study indicate that adhering to the recommended dietary habits from a young age 464 

may mitigate age-related health risks later in life. However, sex differences, variations in the 465 

metrics used to measure biological aging, clustering effects of healthy and unhealthy lifestyle habits 466 

on biological aging, and genetic confounding need to be considered when interpreting the findings.  467 
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Figure legends 670 

Fig. 1. Mean consumption of selected food items by dietary patterns derived from latent class 671 

analysis. The mean values are presented on a Z-score scale.  672 

 673 

Fig. 2. Differences between the dietary patterns in A) principal component-based GrimAge 674 

acceleration and B) the pace of aging (measured by the DunedinPACE estimator): individual-level 675 

analysis. 676 

Model 1 was adjusted for family relatedness, total nonalcoholic energy intake, and sex; Model 2 677 

was adjusted for the covariates in Model 1 plus smoking status and daily alcohol intake; and Model 678 

3 was adjusted for the covariates in Model 2 plus BMI and the Baecke sport index. 679 

F&V, fruits and vegetables; B, standardized regression coefficient; CI, confidence interval; Ref., 680 

reference group. 681 

 682 

Fig. 3. Differences in principal component-based GrimAge acceleration at different BMI levels 683 

between dietary patterns in comparison to the High fast food, low fruits and vegetables (A–E). The 684 

estimated means were obtained from the linear regression model, and the gray areas depict the 95% 685 

confidence intervals. 686 

AAPC-Grim, principal component-based GrimAge acceleration; BMI, body mass index. 687 

 688 

Fig. 4. Differences in principal component-based GrimAge acceleration between dietary patterns in 689 

A) all pairs, B) monozygotic twin pairs, and C) dizygotic twin pairs: within-pair analysis. 690 

Model 1 was adjusted for family relatedness, total nonalcoholic energy intake, and sex; Model 2 691 

was adjusted for the covariates in Model 1 plus smoking status and daily alcohol intake; and Model 692 

3 was adjusted for the covariates in Model 2 plus BMI and the Baecke sport index. 693 
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F&V, fruits and vegetables; B, standardized regression coefficient; CI, confidence interval; Ref., 694 

reference group. 695 

 696 

Fig. 5. Differences in the pace of aging (measured by the DunedinPACE estimator) between dietary 697 

patterns in A) all pairs, B) monozygotic twin pairs, and C) dizygotic twin pairs: within-pair 698 

analysis. 699 

Model 1 was adjusted for family relatedness, total nonalcoholic energy intake, and sex; Model 2 700 

was adjusted for the covariates in Model 1 plus smoking status and daily alcohol intake; and Model 701 

3 was adjusted for the covariates in Model 2 plus BMI and the Baecke sport index. 702 

F&V, fruits and vegetables; B, standardized regression coefficient; CI, confidence interval; Ref., 703 

reference group. 704 

 705 

Fig. S1. Probabilities of consumption for food items treated as binary variables by dietary patterns 706 

derived from latent class analysis.  707 

 708 

Fig. S2. Differences in principal component-based GrimAge acceleration between dietary patterns 709 

among A) males and B) females: individual-level analysis. 710 

Model 1 was adjusted for family relatedness, total nonalcoholic energy intake, and sex; Model 2 711 

was adjusted for the covariates in Model 1 plus smoking status and daily alcohol intake; and Model 712 

3 was adjusted for the covariates in Model 2 plus BMI and the Baecke sport index. 713 

F&V, fruits and vegetables; B, standardized regression coefficient; CI, confidence interval; Ref., 714 

reference group. 715 

 716 

Fig. S3. Differences in the pace of aging (measured by the DunedinPACE estimator) between 717 

dietary patterns among A) males and B) females: individual-level analysis. 718 
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Model 1 was adjusted for family relatedness, total nonalcoholic energy intake, and sex; Model 2 719 

was adjusted for the covariates in Model 1 plus smoking status and daily alcohol intake; and Model 720 

3 was adjusted for the covariates in Model 2 plus BMI and the Baecke sport index. 721 

F&V, fruits and vegetables; B, standardized regression coefficient; CI, confidence interval; Ref., 722 

reference group. 723 

 724 

Fig. S4. Differences in principal component-based GrimAge acceleration at different BMI levels 725 

between dietary patterns in comparison to the High fast food, low fruits and vegetables pattern (A–726 

E). The estimated means were obtained from the regression model with quadratic terms of BMI, 727 

and the gray areas depict the 95% confidence intervals. 728 

AAPC-Grim, principal component-based GrimAge acceleration; BMI, body mass index. 729 
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Ref.

−0.098  ( −0.223 −  0.027 )
−0.215  ( −0.342 − −0.088 )
−0.052  ( −0.181 −  0.077 )
−0.062  ( −0.197 −  0.073 )
−0.187  ( −0.314 − −0.060 )

 
Ref.

−0.039  ( −0.137 −  0.059 )
−0.129  ( −0.239 − −0.019 )
−0.037  ( −0.143 −  0.069 )
−0.082  ( −0.192 −  0.028 )
−0.128  ( −0.234 − −0.022 )

 
Ref.

−0.034  ( −0.132 −  0.064 )
−0.121  ( −0.233 − −0.009 )
−0.053  ( −0.159 −  0.053 )
−0.095  ( −0.203 −  0.013 )
−0.126  ( −0.232 − −0.020 )

−0.3 −0.2 −0.1 0 0.1
B (95% CI)

B) Monozygotic twin pairs (n=157 pairs)

Model 1
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 2
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 3
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average

 
Ref.

−0.025  ( −0.203 −  0.153 )
−0.247  ( −0.474 − −0.020 )
−0.087  ( −0.305 −  0.131 )
−0.146  ( −0.367 −  0.075 )
−0.128  ( −0.351 −  0.095 )

 
Ref.

 0.030  ( −0.113 −  0.173 )
−0.163  ( −0.367 −  0.041 )
 0.000  ( −0.180 −  0.180 )
−0.084  ( −0.258 −  0.090 )
−0.082  ( −0.270 −  0.106 )

 
Ref.

 0.071  ( −0.072 −  0.214 )
−0.079  ( −0.297 −  0.139 )
 0.025  ( −0.155 −  0.205 )
−0.064  ( −0.240 −  0.112 )
−0.001  ( −0.201 −  0.199 )

−0.3 −0.2 −0.1 0 0.1
B (95% CI)

C) Dizygotic twin pairs (n=206 pairs)

Model 1
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 2
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 3
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average

 
Ref.

−0.117  ( −0.264 −  0.030 )
−0.199  ( −0.350 − −0.048 )
−0.066  ( −0.233 −  0.101 )
−0.046  ( −0.203 −  0.111 )
−0.220  ( −0.367 − −0.073 )

 
Ref.

−0.057  ( −0.171 −  0.057 )
−0.111  ( −0.238 −  0.016 )
−0.072  ( −0.207 −  0.063 )
−0.098  ( −0.227 −  0.031 )
−0.152  ( −0.275 − −0.029 )

 
Ref.

−0.061  ( −0.175 −  0.053 )
−0.124  ( −0.253 −  0.005 )
−0.083  ( −0.220 −  0.054 )
−0.111  ( −0.238 −  0.016 )
−0.166  ( −0.288 − −0.044 )

−0.3 −0.2 −0.1 0 0.1
B (95% CI)
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A) All twin pairs (n=363 pairs)

Model 1
   High fast food. low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 2
   High fast food. low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 3
   High fast food. low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average

 
Ref.

−0.149  ( −0.274 − −0.024 )
−0.158  ( −0.285 − −0.031 )
−0.034  ( −0.165 −  0.097 )
−0.043  ( −0.178 −  0.092 )
−0.094  ( −0.227 −  0.039 )

 
Ref.

−0.113  ( −0.227 −  0.001 )
−0.112  ( −0.232 −  0.008 )
−0.030  ( −0.150 −  0.090 )
−0.060  ( −0.182 −  0.062 )
−0.063  ( −0.185 −  0.059 )

 
Ref.

−0.096  ( −0.202 −  0.010 )
−0.088  ( −0.208 −  0.032 )
−0.043  ( −0.159 −  0.073 )
−0.070  ( −0.186 −  0.046 )
−0.051  ( −0.169 −  0.067 )

−0.3 −0.2 −0.1 0 0.1
B (95% CI)

B) Monozygotic twin pairs (n=157 pairs)

Model 1
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 2
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 3
   High fast food, low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average

 
Ref.

−0.174  ( −0.343 − −0.005 )
−0.174  ( −0.364 −  0.016 )
−0.063  ( −0.255 −  0.129 )
−0.131  ( −0.323 −  0.061 )
−0.031  ( −0.217 −  0.155 )

 
Ref.

−0.131  ( −0.278 −  0.016 )
−0.128  ( −0.312 −  0.056 )
−0.018  ( −0.198 −  0.162 )
−0.095  ( −0.273 −  0.083 )
−0.007  ( −0.183 −  0.169 )

 
Ref.

−0.088  ( −0.235 −  0.059 )
−0.054  ( −0.246 −  0.138 )
−0.004  ( −0.184 −  0.176 )
−0.085  ( −0.265 −  0.095 )
 0.057  ( −0.131 −  0.245 )

−0.3 −0.2 −0.1 0 0.1
B (95% CI)

C) Dizygotic twin pairs (n=206 pairs)

Model 1
   High fast food. low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 2
   High fast food. low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average
Model 3
   High fast food. low F&V
   Plant−based 
   Health−conscious
   Western with infrequent fish
   Western with regular fish
   Balanced average

 
Ref.

−0.137  ( −0.292 − 0.018 )
−0.155  ( −0.320 − 0.010 )
−0.032  ( −0.208 − 0.144 )
−0.029  ( −0.196 − 0.138 )
−0.128  ( −0.300 − 0.044 )

 
Ref.

−0.098  ( −0.237 − 0.041 )
−0.104  ( −0.255 − 0.047 )
−0.043  ( −0.204 − 0.118 )
−0.073  ( −0.224 − 0.078 )
−0.091  ( −0.248 − 0.066 )

 
Ref.

−0.090  ( −0.215 − 0.035 )
−0.101  ( −0.244 − 0.042 )
−0.059  ( −0.210 − 0.092 )
−0.086  ( −0.227 − 0.055 )
−0.101  ( −0.244 − 0.042 )

−0.3 −0.2 −0.1 0 0.1
B (95% CI)
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