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Abstract 

Multi-label classification of unstructured electronic health records (EHR) is challenging due to the semantic 

complexity of textual data. Identifying the most effective machine learning method for EHR classification is useful 

in real-world clinical settings. Advances in natural language processing (NLP) using large language models 

(LLMs) offer promising solutions. Therefore, this experimental research aims to test the effects of zero-shot and 

few-shot learning prompting, with and without parameter-efficient fine-tuning (PEFT) and retrieval-augmented 

generation (RAG) of LLMs, on the multi-label classification of unstructured EHR data from residential aged care 

facilities (RACFs) in Australia. The four clinical tasks examined are agitation in dementia, depression in dementia, 

frailty index, and malnutrition risk factors, using the Llama 3.1-8B. Performance evaluation includes accuracy, 

macro-averaged precision, recall, and F1 score, supported by non-parametric statistical analyses. Results indicate 

that both zero-shot and few-shot learning, regardless of the use of PEFT and RAG, demonstrate equivalent 

performance across the clinical tasks when using the same prompting template. Few-shot learning consistently 

outperforms zero-shot learning when neither PEFT nor RAG is applied. Notably, PEFT significantly enhances 

model performance in both zero-shot and few-shot learning; however, RAG improves performance only in few-

shot learning. After PEFT, the performance of zero-shot learning is equal to that of few-shot learning across 

clinical tasks. Additionally, few-shot learning with RAG surpasses zero-shot learning with RAG, while no 

significant difference exists between few-shot learning with RAG and zero-shot learning with PEFT. These 

findings offer crucial insights into LLMs for researchers, practitioners, and stakeholders utilizing LLMs in clinical 

document analysis. 

Keywords: Natural language processing, Large language models, Electronic health records, Machine learning, 

Multi-label classification, Llama 

1 Introduction 

A substantial amount of medical predictive models have been trained, tested, and published, yet the majority of 

them have never been deployed into the clinical setting, which is coined "a last mile problem" [1]. This is because 

most of these predictive models are developed to handle structured health data, while much important clinical 

information is captured in free-text clinical notes, which introduces complexity for model development and 

deployment. 

Electronic health records in RACFs in Australia are digitized systems designed to collect, store, and display data 

about clients' demographics, medical diagnoses, assessments, progress notes, charts, and forms [1]. Similar to 

other healthcare settings [1], besides the structured diagnosis data, much important clinical information in RACFs 

is captured in unstructured, narrative, free-text nursing progress notes. Because free text is a more expressive and 
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natural way for care staff to record care encounters and communicate among team members, these notes are often 

updated. They, thus, are the closest to real-time reflection of an older person's health condition. Therefore, 

effectively extracting information from unstructured clinical notes in EHR is essential to support clinical decision-

making, improve aged care quality, and advance translational research.  

Multi-label classification assigns multiple labels or categories to a single input instance. Multi-label classification 

of free-text data is a specialized area in machine learning and natural language processing (NLP). It involves the 

automated extraction of entities, concepts, events, and their relations from unstructured text [2], a challenging task 

because text data often has different meanings and interpretations [3] and requires precise and expeditious 

information extraction [4]. Previous works in multi-label classification of EHR text using NLP have explored 

various approaches. Rule-based systems, including MERKI, MedLEE, SymText, NegEx, MedEx, MedXN, 

MetaMap, KnowledgeMap, HITEx, and ContextD, have been effectively utilized for this purpose [5-9]. These 

systems depend on predefined rules and specialized medical dictionaries to extract and categorize information 

from unstructured text. Although rule-based systems are known for their simplicity, their performance can decline 

if the narrative text includes terms not covered by the lexical resources [10].  

Recently, algorithms like naïve Bayes, k-nearest neighbour, conditional random field, support vector machine, 

logistic regression, decision tree, random forest, and artificial neural networks have been employed for 

classification tasks in NLP [11]. Notably, transformer-based encoder-type language models, particularly various 

BERT models such as ClinicalBERT, SciBERT, and RoBERTa, have been applied to multi-label classification 

tasks using unstructured EHR data. For example, BERT models have been fine-tuned to handle the semantic 

complexity of EHR data, demonstrating effectiveness in assigning multiple labels to clinical notes [13]. Despite 

the advancement of various BERT models, Clinical NLP remains a labour-intensive process that demands a 

substantial amount of expertise and human efforts to prepare the training data [1, 12]. This limitation has hindered 

the practical application of the early NLP technique in information extraction from the unstructured, free-text 

EHR. Privacy and confidentiality concerns also hinder manual curation efforts and the sharing of annotated 

medical corpora [13].  

The recent advancements in LLMs, such as GPT variants, T5, OPT, and Llama [2], have demonstrated the ability 

of these decoder models to generate text that is not only human-like but also surpasses human-level performance 

in specific tasks [2]. These models, when combined with machine learning techniques like pre-training, fine-

tuning, retrieval augmented generation (RAG) and prompt-based learning [14], offer transformative potential for 

NLP, enabling the development of automated and adaptable systems that can extract valuable insights from the 

free-text EHR. This marks a significant step towards integrating health predictive models into real-world clinical 

systems.  

 

We are still in the early days of applying generative AI-based LLMs to extract clinical insights from the free-text 

EHR. While LLMs have shown potential in answering clinical questions [4, 15, 16] and extracting clinical data 

from public health data sets [17], their practical application in specific tasks using clinical data produced in real-

world clinical settings remains limited [4, 12, 17, 18]. It is yet to be determined whether prompt engineering for 

LLMs can meet the stringent safety standards required for healthcare applications, given their limitations in 

generating outputs that may contain disinformation, misinformation, bias or hallucinations [4, 19]. The optimal 

prompting strategies for healthcare information extraction, whether zero-shot or few-shot learning, using PEFT 

or RAG, in various contexts, remain unclear.  

A prompt is an input a user enters to instruct an LLM to automatically generate sequential output [20]. An LLM 

uses pattern matching to identify the relationships between the words, phrases, and concepts in the prompt and 

connect these with the patterns learned from the previous training. It then uses natural language generation to 

respond in a human-understandable format. Prompts enable the model to adapt and comprehend specific 

information in a new domain, leveraging its learned knowledge stored within the pre-trained models like Llama 

3, thereby expanding the model’s applicability and effectiveness.  Prompt learning reduces the need to introduce 

new parameters or extensive retraining of the model using labelled data for various tasks, thus improving 

efficiency and reducing computational resources required for machine learning.  
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Extracting symptoms of various geriatric diseases is essential for symptom assessment, early disease diagnosis, 

personalised treatment, and improving patient outcomes. To date, there is no reporting of practical tools to execute 

this multi-label classification task accurately and reliably from free-text notes in an EHR system. There is also a 

lack of prior research on the difference in performance between zero-shot and few-shot learning for the same 

clinical classification task and the effect of PEFT or RAG on the tasks. As healthcare demands high safety 

standards for machine learning, it is imperative to conduct experimental comparisons of the performances of 

various machine learning methods. Understanding machine learning methods, e.g., prompting behaviour, is also 

crucial for the safe and effective deployment of LLMs in healthcare settings.  

Therefore, we compared zero-shot and few-shot learning, with and without PEFT or RAG, on multi-label clinical 

classification tasks. In this study, we included four clinical tasks with careful consideration of the following 

factors: (1) the information is recorded in the free text nursing progress notes; (2) the information meets aged care 

information needs; and (3) the research team has curated labelled datasets to allow model training, validation, and 

testing to evaluate machine learning performance. We identified four clinical tasks: agitation in dementia, 

depression in dementia, frailty index and malnutrition risk factors (see Table 1). Each task has various numbers 

of labels, ranging from 13 to 83.  

Table 1: Clinical tasks for multi-label classification.  

Clinical Tasks Label Names Number of Labels 

Agitation in dementia Disruptive vocalisation, verbally 

aggressive behaviour, arguing, 

complaining, cursing, threat, using 

abusive language, using accusatory 

language, using foul language, using 

hostile language, using obscene 

language, using profane language, 

verbally nonaggressive behaviour, 

ceaseless talking, constant repetition of 

word, constant unwarranted requests 

for attention, constant unwarranted 

requests for help, constant 

unwarranted requests for reassurance, 

echolalia, groaning, grunting, howling, 

making bizarre noise, rambling, 

repetitive questioning, roaring, 

screaming, shouting, speaking in 

excessively loud voice, emotional 

distress, anger, frustration, irritability, 

mood swing, negativism, outburst, 

physically aggressive behaviour, 

biting, destroying property, fighting, 

grabbing, hitting, hurting self, hurting 

someone, kicking, pushing, resisting, 

scratching, shoving, slamming, 

spitting on people, staring, striking 

people, tearing, throwing object, 

physically nonaggressive behaviour, 

constant manipulation of object, 

fidgeting, gesturing, hand wringing, 

inappropriate dressing, inappropriate 

handling object, inappropriate 

undressing, pacing, pointing finger, 

repetitive physical mannerism, 

restlessness, rocking, rummaging, 

searching, wandering, bruxism, 

resisting, punching, absconding, 

83 
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calling out, physical agitation, facial 

grimacing, moving furniture, hoard 

items, intrusive of others privacy, gets 

up and down from constantly, 

urinating on the floor 

Depression in dementia Diminished ability of thinking, feeling 

discouraged, feeling empty, feeling 

hopeless, feeling of excessive guilt, 

feeling sad, feeling worthless loss of 

energy, loss of interest, loss of 

pleasure, suicidal ideation, suicide, 

suicide attempt, tearfulness 

13 

Frailty index Activity limitation, anaemia and 

haematinic deficiency, arthritis, atrial 

fibrillation, cerebrovascular disease, 

chronic kidney disease, diabetes, 

dizziness, dyspnoea, falls, foot 

problems, fragility fracture, hearing 

impairment, heart failure, heart valve 

disease, housebound, hypertension, 

hypotension/syncope, ischaemic heart 

disease, memory and cognitive 

impairment, mobility and transfer 

problems, osteoporosis, Parkinsonism 

and tremor, peptic ulcer, peripheral 

vascular disease, polypharmacy, 

requirement for care, respiratory 

disease, skin ulcer, sleep disturbance, 

social vulnerability, thyroid disease, 

urinary incontinence, urinary system 

disease, visual impairment, weight loss 

and anorexia 

36 

Risk factors for malnutrition Anxiety, bowel blockage, cancer, chest 

infection, chronic wound, confusion, 

constipation, delirium, dementia, 

depression, diabetes, diarrhoea, 

difficulty swallow, dysphagia, eating 

disorder, food preference, frailty, 

gastritis, heart disease, HIV, hospital 

admission, isolation, kidney disease, 

liver disease, malabsorption 

medication, nausea, Parkinson, 

pneumonia, poor appetite, poor intake, 

poor oral health, pressure ulcer, sepsis, 

stroke, suboptimal intake, surgery, 

vomiting 

37 

 

We designed experiments to test the research hypotheses (see Table 2).  
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Table 2: Research hypotheses in the study.  

Hypothesis Null Hypothesis  Alternative Hypothesis  

1 Zero-shot and few-shot learning with similar 

prompting templates have the different level 

of performance when applied to multi-label 

classification for various clinical tasks. 

Zero-shot and few-shot learning with similar 

prompting templates have the same level of 

performance when applied to multi-label 

classification for various clinical tasks. 

2 Few-shot learning does not perform better 

than zero-shot learning for the multi-label 

classification of the same clinical task. 

Few-shot learning performs better than zero-

shot learning for the multi-label classification 

of the same clinical task. 

3 Parameter-efficient fine-tuning does not 

improve the performance of either zero-shot or 

few-shot learning. 

Parameter-efficient fine-tuning improves the 

performance of both zero-shot and few-shot 

learning. 

4 Zero-shot learning does not reach the same 

level of performance as few-shot learning for 

the same clinical task after PEFT. 

Zero-shot learning reaches the same level of 

performance as few-shot learning for the 

same clinical task after PEFT. 

5 Fine-tuning for one clinical task does not 

impact model performance across other 

clinical tasks. 

Fine-tuning for one clinical task impacts 

model performance across other clinical 

tasks. 

6 Retrieval augmented generation does not 

improve the performance of both zero-shot 

and few-shot learning. 

Retrieval augmented generation improves the 

performance of both zero-shot and few-shot 

learning. 

7 Zero-shot learning does not reach the same 

level of performance as few-shot learning for 

the same clinical task with RAG. 

Zero-shot learning reaches the same level of 

performance as few-shot learning for the 

same clinical task with RAG. 

8 Few-shot learning with RAG and zero-shot 

learning with PEFT do not have the same 

performance levels in multi-label 

classification. 

Few-shot learning with RAG and zero-shot 

learning with PEFT has the same 

performance levels in multi-label 

classification. 

2 Methodology  

We conducted the experiment in seven stages: generative AI-based large language model selection, data set 

selection, data preprocessing, designing prompt templates for zero-shot and few-short learning in each clinical 

task, machine learning methods execution, model performance evaluation and statistical analysis. 

2.1 Ethics approval 

The Human Research Ethics Committee of the University of Wollongong approved the study (Ethics Number 

2019/159). 

2.2 Generative AI-based LLM selection 

We selected the Llama 3.1-8B-parameter model as the generative AI-based LLM. The selection considered the 

following factors: (1) the optimal model in terms of open source and favourable review at the time of the experiment; 

(2) practical considerations regarding the availability of GPU resources; (3) feasibility for local server deployment, 

convenience and control over usage; (4) compliance with health data privacy regulations in Australia; (4) the 

presence of diverse variants spawned through fine-tuning, including Alpaca, Baizem, Koala, and Vicuna [2]. We 

obtained the Llama 3.1 8B-parameter model from the Hugging Face repository (https://huggingface.co/meta-

llama/Meta-Llama-3.1-8B-Instruct). 

2.3 Data set selection 

De-identified demographic data and free-text nursing progress notes were collected for the same population of 

older people living in 40 RACFs in New South Wales, Australia, from 2019 to 2021. The structured demographic 

information included masked sequence numbers for client de-identification, age, and gender. The unstructured 

nursing notes included nursing assessment and progress reporting. They documented clients' daily activities, care 

staff’s clinical observations, assessments of client’s care needs (including risk factors), and carer interventions.  
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2.4 Data preprocessing 

Text preprocessing involved the removal of URLs and non-textual characters, such as extra delimiters and 

empty spaces in the dataset. We made a choice not to exclude stop words because many of them, like "a," "be," 

"very," "should," etc., held semantic relevance to the content [21].  

2.5 Designing prompt templates for zero-shot and few-short learning in each clinical task 

First, we selected prompt-based training via zero-shot and few-shot learning.  

2.5.1 Zero-shot learning 

Zero-shot learning uses single-prompt instruction to train LLMs for specific NLP tasks, directly applying 

previously trained models to predict both seen and unseen classes without using any labelled training instances 

[22]. Zero-shot learning has achieved impressive performance in a variety of NLP tasks, such as summarization, 

dialogue generation, and question-answering [4]. Ge et al. use zero-shot learning to extract six data elements from 

patients' abdominal imaging reports using an API implementation of the OpenAI GPT-3.5 turbo LLM, achieving 

an overall high accuracy of 88.9% [23]. They find that the level of accuracy of zero-shot learning reduces with 

more complex use cases. Their findings prove the feasibility of using general-purpose LLMs to extract structured 

information from clinical data with minimal technical expertise.  

2.5.2 Few-shot learning 

Few-shot learning, also coined as in-context learning, refers to the ability of LLMs to perform tasks guided by a 

small set of representative examples provided in the prompt [24, 25]. These in-context examples not only teach 

the LLM the mapping from inputs to outputs but also activate the LLM's parametric knowledge. Only requiring a 

handful of labelled training examples is a clear advantage of few-shot learning, making it data-efficient and 

accessible to knowledge domain users without expertise in machine learning [24]. Few-shot learning is 

particularly useful in situations where annotating text data is not convenient or expensive. Domain experts can 

quickly create a generative AI system for a new task by only providing a few examples. Importantly, few-shot 

learning does not change the underlying model weights [26]. This allows for efficient adaptation to new tasks 

without risking the loss of previously learned knowledge. However, the performance of few-shot learning varies 

and is highly task-dependent [24]. Its accuracy is also sensitive to the choice of prompt templates and in-context 

examples. Prior research finds that using semantically similar in-context examples to those with prior success can 

significantly enhance the performance of few-shot learning [27].  

We adopted the zero-shot and few-shot learning template developed by Abdallaha et al. [28] to construct our 

prompt (see Figure 1).  

 

 

 

 

 

 

 

 

 

 

Figure 1: Prompt template adapted from Abdallaha et al. [28]. 

 

The final prompts used in our experiment are listed in Table 3. The example results generated from the final 

prompts are showcased in Supplementary Table 1.  
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Table 3: Prompts used in this study. 

Prompt Learning 

Technique 

Domain Prompt 

Zero-shot  Agitation in dementia As a nursing expert, you are tasked with reviewing a nursing 

progress note for a resident with dementia residing in a 

Residential Aged Care environment. The note may contain 

one or more symptoms indicative of agitation in dementia, 

including but not limited to disruptive vocalisation, verbally 

aggressive behaviour, arguing, complaining, cursing, threat, 

using abusive language, using accusatory language, using 

foul language, using hostile language, using obscene 

language, using profane language, verbally nonaggressive 

behaviour, ceaseless talking, constant repetition of word, 

constant unwarranted requests for attention, constant 

unwarranted requests for help, constant unwarranted requests 

for reassurance, echolalia, groaning, grunting, howling, 

making bizarre noise, rambling, repetitive questioning, 

roaring, screaming, shouting, speaking in excessively loud 

voice, emotional distress, anger, frustration, irritability, mood 

swing, negativism, outburst, physically aggressive 

behaviour, biting, destroying property, fighting, grabbing, 

hitting, hurting self, hurting someone, kicking, pushing, 

resisting, scratching, shoving, slamming, spitting on people, 

staring, striking people, tearing, throwing object, physically 

nonaggressive behaviour, constant manipulation of object, 

fidgeting, gesturing, hand wringing, inappropriate dressing, 

inappropriate handling object, inappropriate undressing, 

pacing, pointing finger, repetitive physical mannerism, 

restlessness, rocking, rummaging, searching, wandering, 

bruxism, resisting, punching, absconding, calling out, 

physical agitation, facial grimacing, moving furniture, hoard 

items, intrusive of others privacy, gets up and down from 

constantly, urinating on the floor.  

 

Please follow these steps. 

1. Identify any symptoms of agitation. 

2. If symptoms of agitation are evident, please list 

them. 

Few-shot Agitation in dementia As a nursing expert, you are tasked with reviewing a nursing 

progress note for a resident with dementia residing in a 

Residential Aged Care environment. The note may contain 

one or more symptoms indicative of agitation in dementia, 

including but not limited to disruptive vocalisation, verbally 

aggressive behaviour, arguing, complaining, cursing, threat, 

using abusive language, using accusatory language, using 

foul language, using hostile language, using obscene 

language, using profane language, verbally nonaggressive 

behaviour, ceaseless talking, constant repetition of word, 

constant unwarranted requests for attention, constant 

unwarranted requests for help, constant unwarranted requests 

for reassurance, echolalia, groaning, grunting, howling, 

making bizarre noise, rambling, repetitive questioning, 

roaring, screaming, shouting, speaking in excessively loud 

voice, emotional distress, anger, frustration, irritability, mood 

swing, negativism, outburst, physically aggressive 

behaviour, biting, destroying property, fighting, grabbing, 

hitting, hurting self, hurting someone, kicking, pushing, 

resisting, scratching, shoving, slamming, spitting on people, 

staring, striking people, tearing, throwing object, physically 

nonaggressive behaviour, constant manipulation of object, 
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fidgeting, gesturing, hand wringing, inappropriate dressing, 

inappropriate handling object, inappropriate undressing, 

pacing, pointing finger, repetitive physical mannerism, 

restlessness, rocking, rummaging, searching, wandering, 

bruxism, resisting, punching, absconding, calling out, 

physical agitation, facial grimacing, moving furniture, hoard 

items, intrusive of others privacy, gets up and down from 

constantly, urinating on the floor. 

 

Please follow these steps. 

1. Identify any symptoms of agitation. 

2. If symptoms of agitation are evident, please list 

them. 

 

Example 1: You have identified that the resident exhibits 

agitation symptoms, including physical agitation/aggression 

and verbal behaviors, including verbal disruption, calling 

out, and screaming, as documented in the note below. 

“Jenny, who suffers from vascular dementia, displays 

confusion, disorientation, and notable physical 

agitation/aggression and verbal behaviours. She exhibits 

verbal disruption, calling out and screaming, which disturbs 

others. Jenny frequently requires staff assistance for 

reassurance, comfort, and distraction using strategies such as 

music therapy, playing cards, or engaging in simple puzzles. 

Additionally, when highly distressed, staff contact her 

daughter to speak with her for comforting purposes. 

Although she can follow simple instructions, at times, she 

experiences considerable distress.” 

 

Example 2: You have identified that the resident exhibits 

agitation symptoms, including wandering, frightening 

others, refusing care, and arguing, as documented in the note 

below. 

 

"Elli faces challenges with poor balance and is at risk of falls 

due to impulsivity and reduced balance. Staff supervise Elli's 

transfers and mobility using a 4-wheelie walker. As Elli's 

dementia progresses, she tends to wander into other residents' 

rooms, mistakenly believing they occupy her bed. This 

behaviour frightens other residents, resulting in arguments. 

Staff frequently intervene, redirect Elli, and provide extra 

reassurance and diversion throughout the day. As her 

dementia advances, Elli lacks insight into her care needs. She 

adamantly refuses staff assistance changing her continence 

aids and attending to her hygiene. Due to this progression, 

staff guide her through mealtimes, set the table, provide 

cutlery, and supervise and encourage her during meals and 

drinks.” 

 

Zero-shot Frailty index As a nursing expert, you are tasked with reviewing a nursing 

progress note for a resident residing in a Residential Aged 

Care environment. The note may contain one or more frailty 

index, including but not limited to activity limitation, 

anaemia and haematinic deficiency, arthritis, atrial 

fibrillation, cerebrovascular disease, chronic kidney disease, 

diabetes, dizziness, dyspnoea, falls, foot problems, fragility 

fracture, hearing impairment, heart failure, heart valve 

disease, housebound, hypertension, hypotension/syncope, 

ischaemic heart disease, memory and cognitive impairment, 
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mobility and transfer problems, osteoporosis, Parkinsonism 

and tremor, peptic ulcer, peripheral vascular disease, 

polypharmacy, requirement for care, respiratory disease, skin 

ulcer, sleep disturbance, social vulnerability, thyroid disease, 

urinary incontinence, urinary system disease, visual 

impairment, weight loss and anorexia. 

 

Please follow these steps. 

1. Identify any frailty index. 

2. If the frailty index is evident, please list them along 

with the corresponding evidence in the note. 

Few-shot  Frailty index As a nursing expert, you are tasked with reviewing a nursing 

progress note for a resident residing in a Residential Aged 

Care environment. The note may contain one or more frailty 

index, including but not limited to activity limitation, 

anaemia and haematinic deficiency, arthritis, atrial 

fibrillation, cerebrovascular disease, chronic kidney disease, 

diabetes, dizziness, dyspnoea, falls, foot problems, fragility 

fracture, hearing impairment, heart failure, heart valve 

disease, housebound, hypertension, hypotension/syncope, 

ischaemic heart disease, memory and cognitive impairment, 

mobility and transfer problems, osteoporosis, Parkinsonism 

and tremor, peptic ulcer, peripheral vascular disease, 

polypharmacy, requirement for care, respiratory disease, skin 

ulcer, sleep disturbance, social vulnerability, thyroid disease, 

urinary incontinence, urinary system disease, visual 

impairment, weight loss and anorexia. 

 

Please follow these steps. 

1. Identify any frailty index. 

2. If the frailty index is evident, please list them along 

with the corresponding evidence in the note. 

 

Example 1: You have identified that the resident exhibits a 

frailty index, including mobility and transfer problems, based 

on the evidence that the resident mobilises with a wheelie 

walker, as documented in the note below. 

"Ethan utilises a wheelie walker for mobility, and staff 

members provide supervision during his use of a chair lift. 

All of Ethan's meals take place in the dining room, with staff 

members responsible for pouring his drinks. Despite these 

assistance needs, Skeet maintains a healthy appetite." 

 

Example 2: You have identified that the resident exhibits a 

frailty index, including a skin ulcer, based on the evidence 

that the resident's wound shows an unchanged state with a 

small amount of exudate in the same cavity, as documented 

in the note below. 

" Wound location: Left foot. Date: 04/01/2020. Evaluation: 

The wound has remained unchanged since 02/01/2020, with 

the same cavity showing small exudate. The resident reports 

no pain except when the dressing is attended to. Scheduled 

for a specialist review next week." 

 

Zero-shot Depression in dementia  As a nursing expert, you are tasked with reviewing a nursing 

progress note for a resident with dementia residing in a 

Residential Aged Care environment. The note may contain 

one or more symptoms of depression, including but not 

limited to diminished ability of thinking, feeling 

discouraged, feeling empty, feeling hopeless, feeling of 
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excessive guilt, feeling sad, feeling worthless loss of energy, 

loss of interest, loss of pleasure, suicidal ideation, suicide, 

suicide attempt, tearfulness. 

 

Please follow these steps. 

1. Identify any symptoms of depression. 

2. If symptoms of depression are evident, please list 

them. 

Few-shot Depression in dementia As a nursing expert, you are tasked with reviewing a nursing 

progress note for a resident with dementia residing in a 

Residential Aged Care environment. The note may contain 

one or more symptoms of depression, including but not 

limited to diminished ability of thinking, feeling 

discouraged, feeling empty, feeling hopeless, feeling of 

excessive guilt, feeling sad, feeling worthless loss of energy, 

loss of interest, loss of pleasure, suicidal ideation, suicide, 

suicide attempt, tearfulness. 

 

Please follow these steps. 

1. Identify any symptoms of depression. 

2. If symptoms of depression are evident, please list 

them. 

 

Example 1: You have identified that the resident exhibits 

depression symptoms, including apathy and refusal of 

hygiene care, as documented in the note below. 

"Due to Peter's depression, he is apathetic and refuses 

hygiene care. Staff need to reapproach Peter multiple times 

per day and spend extra time with him, providing 

encouragement and reassurance and explaining the 

importance of attending to hygiene care. He enjoys mass and 

music." 

 

Example 2: You have identified that the resident exhibits a 

depression symptom, including a lack of motivation, as 

documented in the note below. 

"Due to John's depression, John does not want to mobilise 

using mobility aids. He does not want to use a 4-wheelie 

walker or walking stick. Staff need to help get him up from 

bed and help sit him in a wheelchair for meals or outings after 

persuasion and encouragement." 

Zero-shot Malnutrition risk 

factors 

As a nursing expert, you are tasked with reviewing a nursing 

progress note for a resident residing in a Residential Aged 

Care environment. The note may contain one or more 

malnutrition risk factors, including but not limited to anxiety, 

bowel blockage, cancer, chest infection, chronic wound, 

confusion, constipation, delirium, dementia, depression, 

diabetes, diarrhoea, difficulty swallow, dysphagia, eating 

disorder, food preference, frailty, gastritis, heart disease, 

HIV, hospital admission, isolation, kidney disease, liver 

disease, malabsorption medication, nausea, Parkinson, 

pneumonia, poor appetite, poor intake, poor oral health, 

pressure ulcer, sepsis, stroke, suboptimal intake, surgery, 

vomiting. 

 

Please follow these steps. 

1. Identify any risk factors of malnutrition. 

2. If risk factors of malnutrition are evident, please list 

them. 
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Few-shot  Malnutrition risk 

factors 

As a nursing expert, you are tasked with reviewing a nursing 

progress note for a resident residing in a Residential Aged 

Care environment. The note may contain one or more 

malnutrition risk factors, including but not limited to As a 

nursing expert, you are tasked with reviewing a nursing 

progress note for a resident residing in a Residential Aged 

Care environment. The note may contain one or more 

malnutrition risk factors, including but not limited to anxiety, 

bowel blockage, cancer, chest infection, chronic wound, 

confusion, constipation, delirium, dementia, depression, 

diabetes, diarrhoea, difficulty swallow, dysphagia, eating 

disorder, food preference, frailty, gastritis, heart disease, 

HIV, hospital admission, isolation, kidney disease, liver 

disease, malabsorption medication, nausea, Parkinson, 

pneumonia, poor appetite, poor intake, poor oral health, 

pressure ulcer, sepsis, stroke, suboptimal intake, surgery, 

vomiting. 

 

Please follow these steps. 

1. Identify any risk factors of malnutrition. 

2. If risk factors of malnutrition are evident, please list 

them. 

 

Example 1: You have identified that the resident exhibits a 

malnutrition risk factor, including confusion, as documented 

in the note below. 

" John requires comprehensive assistance with his hygiene 

and toileting needs due to his confusion. He experiences 

incontinence of both urine and feces, necessitating the use of 

pads around the clock. A nurse is responsible for assisting 

him with toileting, changing his pads, cleansing his groin 

area, and applying barrier cream to mitigate the risk of skin 

issues or breakdown.” 

 

Example 2: You have identified that the resident exhibits a 

malnutrition risk factor, including constipation, as 

documented in the note below. 

" Peter requires the assistance of a nurse for his hygiene and 

toileting needs, primarily due to his unsteady gait. He utilises 

pads due to incontinence issues. Additionally, he is prone to 

constipation and receives aperients as necessary. The current 

intervention measures in place have proven to be effective." 

 

2.6 Machine learning methods execution 

We selected Llama 3.18B with PEFT, prompt-based learning (without PEFT or RAG), and RAG to test the 

LLM's ability to adapt, generalize, and optimize performance in clinical multi-domain classification tasks. 

2.6.1 Experiment setup 

Parameter efficient fine-tuning with LoRA on Llama 3 

Parameter-efficient fine-tuning involves modifying the LLM, or the parameters used to train the LLM,  to improve 

model response to the same prompt [20]. Fine-tuning changes a model's weight, thus, the model's behavior to 

perform better at a specific task. Full fine-tuning will fine-tune all layers of the pre-trained model, which can be 

computationally expensive and may lead to catastrophic forgetting, i.e., the model forgets the knowledge it gained 

during pre-training. Thus, it may significantly increase the cost of computational resources and computational 

skill sets. Parameter-efficient fine-tuning only fine-tunes a small number of (extra) parameters while freezing most 
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parameters of the pre-trained LLMs. It thus overcomes the computational resource constraint and catastrophic 

forgetting observed in the full-scope fine-tuning of LLM. 

Low-Rank Adaptation (LoRA) is a PEFT technique designed to improve training efficiency for LLMs. It freezes 

the weight of per-trained LLMs and inserts low-rank decomposition matrices into the transformer layers. Previous 

research has demonstrated that LoRA can allow the fine-tuning process to focus on crucial parameters specific to 

the target task or domain, thus optimizing the model's performance without extensive resource requirements or 

overfitting concerns. By focusing on PEFT, LoRA minimizes the dependency on extensive labelled data for model 

optimization, which maximizes the utility of available data, making the fine-tuning process more effective and 

feasible in scenarios with limited annotated datasets [29].  

We used the PEFT method to fine-tune the Llama model. The experiment was conducted on four NVIDIA RTX - 

A5000, each equipped with 24GB of memory. The use of multiple GPUs not only accelerated the training process 

but also ensured that the model could be fine-tuned within a reasonable timeframe. Our software environment was 

Ubuntu 18.04, the programming language was Python 3.10.0, and the deep learning framework was Pytorch 2.0.0. 

Instruction data points were employed during the PEFT process, and the hyperparameter settings are listed in 

Table 4. In these hyperparameter settings, batch size refers to the number of training examples processed in a 

single iteration of the model’s training process. However, due to the memory limitations of the available hardware, 

we employed a micro-batch size strategy, which splits the full batch into smaller chunks and processes them 

sequentially. This allowed us to handle the memory load efficiently while still achieving the target batch size of 

128 with the Llama model [30, 31]. To further optimize memory usage, we applied 8-bit quantization using the 

BitsandBytes library, compressing the model weights into a lower precision format that fits within our GPU 

memory [32]. This same quantization strategy was utilized for other experiments as well, including (1) prompt-

based learning without PEFT or RAG and (2) RAG, which are discussed in subsequent sections. The combination 

of micro-batch size and quantization was essential for effectively training the model within the hardware 

constraints, ensuring the smooth and efficient execution of our experiments. 

Table 4: Hyperparameters used in PEFT 

Settings Parameters 

Batch size 128 

Micro batch size 4 

LoRA rank 8 

LoRA alpaca 16 

LoRA dropout 0.05 

Learning rate 3e-4 

Training steps 300 

Optimizer AdamW 

Trainable parameters (%) <0.01% 

 

Llama 3 model’s maximum token limit is 8192, which was large enough to encompass the available tokens for 

each nursing note. During the fine-tuning process, the model iteratively processed each note within the defined 

token limit. The labelled dataset used in our study was originally annotated following the procedures detailed in 

Zhu et al. (2024) by the large research group [33].  The annotated data set for agitation in dementia was developed 

for the study of Zhu et al. (2023) [34], the malnutrition data set was developed for the study of Alkhalaf et al 

(2023) [35]. Applying the same manual annotation method to the same data set, we further developed annotation 

datasets for depression in dementia and frailty index.  We randomly divided this labelled data (ensuring no 

overlapping free-text notes within the labelled dataset) detailed in Table 5 into 80% training, 10% validation, and 

10% testing sets for each clinical task. This process was repeated three times to mitigate potential bias from 

different data splits, and cross-validation was conducted to achieve reliable results [36]. The dedicated test datasets 

were explicitly used to assess the other machine learning methods including prompt-based learning (without PEFT 

or RAG), and RAG, allowing for a comprehensive comparison and analysis of each clinical task to test the 

research hypotheses outlined in Table 2.  
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Table 5: Number of labelled data and file size for each clinical task   

Clinical Tasks Training + Validation 

Data 

File Size Output model 

Agitation in dementia  3000 nursing notes  5.89 MB Agitation in dementia with specialized 

PEFT of Lama 2 

Depression in dementia  700 nursing notes 280 KB Depression in dementia with specialized 

PEFT of Lama 2 

Frailty index  949 nursing notes 154 KB Frailty index with specialized PEFT of 

Lama 2 

Malnutrition risk factors  2850 nursing notes 972 KB Malnutrition risk factors with specialized 

PEFT of Lama 2 

 

We used the prompts delineated in Table 3 to evaluate the test data. First, we conducted zero-shot learning with 

or without PEFT or RAG on Llama 3 across the test datasets for each clinical task. This was followed by few-shot 

learning with or without PEFT or RAG on Llama 3 across the same test datasets for each clinical task. To ensure 

that few-shot learning does not benefit from any residual effects of the previous zero-shot learning during testing, 

we began each time with the downloaded Llama 3 model from the Hugging Face repository for each training 

method and clinical task. Furthermore, to address variability in results caused by model randomness, multiple 

evaluation sessions were conducted over three-weeks, with results being collected at three distinct time points. 
We applied the same approach of repeated evaluation sessions for consistency in two other experiments—prompt 

training without PEFT or RAG, and RAG—allowing for a more reliable and comparable evaluation across all 

methods. 

Prompt-based learning with zero-shot and few-shot learning on Llama 3 

 

The experiment was conducted in an environment similar to the one described in the "Parameter efficient fine-

tuning with LoRA on Llama 3" section, with the main difference being the number of GPUs used. Since prompt-

based learning with the original Llama 3 requires fewer computational resources due to the absence of fine-tuning 

[37], we were able to utilize a single GPU with 24GB. The same process was employed for the experiment with 

RAG, as no fine-tuning was involved in the RAG process. We employed Llama 3, utilizing zero-shot and few-

shot learning prompts as outlined in Table 3. To prevented model contamination, we approached each clinical task 

(see Table 1) in two distinct steps. Initially, we employed the Llama 3 model that we directly downloaded from 

the Hugging Face repository, for zero-shot learning. Afterwards, we downloaded a new copy of the same model 

from the same repository for few-shot learning. The Llama 3 model has a maximum token limit of 8192, and none 

of the test notes (see the sections titled ‘parameter efficient fine-tuning with LoRA on Llama 3' for details about 

the test datasets) exceeded this token count during evaluation. Consequently, the model processed each note 

iteratively within this defined token limit during testing. 

 

Retrieval augmented generation with Llama 3 

Retrieval-augmented generation enhances LLMs by enabling access to real-time, relevant information from 

external knowledge sources, improving response accuracy and relevance [32]. The process includes indexing, 

where data is converted into embeddings for efficient retrieval; retrieval, where the system identifies the most 

pertinent documents based on a user query; augmentation, where the retrieved information enriches the query's 

context; and generation, where the LLM produces a response informed by both the original query and the 

augmented data. This dynamic approach addresses traditional LLM limitations, ensuring up-to-date and 

contextually accurate responses [32]. 

The experiment for Llama 3, with RAG, began with data preparation, utilizing a JSON file containing nursing 

notes that encompass all the labels for each clinical task (refer to Table 1). Each clinical task, and the number of 

nursing notes provided in the JSON file, are detailed in Table 6. 
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Table 6: Data used in the RAG  

Clinical Tasks Number of nursing notes File Size 

Agitation in dementia  83 14KB 

Depression in dementia  13 5 KB 

Frailty index  36 8 KB 

Malnutrition risk factors  37 10 KB 

 

This data was input into an embedding model. The embedding model (https://huggingface.co/sentence-

transformers/all-mpnet-base-v2) generated embeddings from the data, which were then stored in a vector store. A 

query was formulated by combining the prompt with zero-shot or few-shot examples. The query was applied to 

the dedicated test datasets (see the sections titled ‘parameter efficient fine-tuning with LoRA on Llama 3' for 

details about the test datasets). The retriever used the query to fetch relevant data from the vector store. The 

retrieval process, managed by LlamaIndex, determined relevance based on the similarity between the query and 

the stored embeddings, which were then used by the LLM to generate the output [38, 39]. 

2.7 Model performance evaluation  

To assess model performance on the four clinical tasks, we utilized micro-average precision, recall, F1 score, and 

accuracy, which were more appropriate for imbalanced class distributions [40, 41]. For the automatic evaluation 

of multi-label text classification, we first calculated the BERTscore to obtain precision, recall, and F1 score 

following the method by Li et al. [42]. We then used the Scikit-learn library, which offers built-in metrics for 

multi-label classification, to calculate the micro-average F1 score, precision, and recall [43, 44]. The model 

outputs, generated in JSON format, were compared against the annotated ground truth data, also stored in JSON 

format. An extracted entity or phrase was considered correct if it overlapped the text and conveyed the exact or 

highly similar meaning of the annotated ground truth entity or phrase. The comparison was facilitated by 

BERTscore and Scikit-learn library tools. For instance, if the ground truth annotation is 'shouting' as a symptom 

of agitation in dementia, and the model output is also 'shouting,' it is evaluated as an exact match. Alternatively, 

if the ground truth annotation is 'reject meals' and the model output is 'refuse meals,' it is considered a match based 

on semantic similarity, as the two phrases share the same meaning. To measure semantic similarity between model 

predictions and the ground truth, a similarity threshold of 0.5 was used, following prior work in this domain [45, 

46].  

2.8 Statistical analysis 

As the measurement indicators including accuracy, precision, recall and F1 score were not normally distributed, 

we utilized the non-parametric Kruskal-Wallis test for comparing results across three or more independent groups 

and the Mann-Whitney U test for comparing two independent groups to test the hypotheses, as suggested by the 

previous research [28, 47]. A significant difference is decided if the p-value is smaller than 0.05. The results 

generated from the statistical analysis are showcased in Supplementary Table 2.  
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3 Results 

3.1 Results of testing Hypothesis 1: Zero-short and few-shot learning with similar prompting templates may 

(or may not) exhibit the same level of performance when applied to multi-label classification for various 

clinical tasks. 

To evaluate Hypothesis 1, we compared: (1) the performance of zero-shot learning (without PEFT or RAG); (2) 

the performance of zero-shot learning with PEFT; (3) the performance of zero-shot learning with RAG; (3) the 

performance of few-shot learning (without PEFT or RAG); (5) the performance of few-shot learning with PEFT; 

and (6) the performance of few-shot learning with RAG across the four clinical tasks. 

3.1.1 Comparing the performance of zero-shot learning (without PEFT or RAG) for four clinical tasks. 

There is no statistically significant difference in accuracy, precision, recall, and F1 score between these 

classification tasks undertaking this training method (Figure 2-a, p >0.05). However, there is a trend that the 

classification tasks related to agitation in dementia and malnutrition risk factors perform better than those related 

to frailty index and depression in dementia. 

3.1.2 Comparing the performance of zero-shot learning with PEFT for four clinical tasks. 

Once again, no statistically significant difference is found in accuracy, precision, recall, and F1 score between 

these classification tasks undertaking this training method (Figure 2-b, p >0.05). However, there is a trend that the 

classification tasks related to agitation in dementia and malnutrition risk factors perform better than those related 

to frailty index and depression in dementia.  

f) e)

 

b) 

d) c) 

a) 
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Figure 2: Comparative evaluation of model performance for four multi-label classification tasks with the following 

training methods: (a) zero-short learning, (b) zero-short learning with PEFT, (c) zero-short learning with RAG, 

(d) few-short learning, (d) few-short learning with PEFT, and (f) few-short learning with RAG. 

Note: ‘AID’ denotes agitation in dementia, ‘FI’ denotes frailty index, ‘DID’ denotes depression in dementia, 

‘MRF’ denotes malnutrition risk factors. The same notation applies to the figures that follow. 

Note: ‘+PEFT’ denotes with PEFT. The same notation applies to the figures that follow. 

Note: ‘+RAG’ denotes with RAG. The same notation applies to the figures that follow. 

3.1.3 Comparing the performance of zero-shot learning with RAG for four clinical tasks. 

No statistically significant difference is found in accuracy, precision, recall, and F1 score between these tasks 

undertaking this training method (Figure 2-c, p >0.05). However, the same trend as above is found, i.e., the 

classification tasks related to agitation in dementia and malnutrition risk factors perform better than those related 

to frailty index and depression in dementia. 

3.1.4 Comparing the performance of few-shot learning (without PEFT or RAG) for the four clinical tasks. 

No statistically significant difference is found in accuracy, precision, recall, and F1 score between these tasks 

undertaking this training method (Figure 2-d, p >0.05). However, the same trend as above is found, i.e., the 

classification tasks related to agitation in dementia and malnutrition risk factors perform better than those related 

to frailty index and depression in dementia. 

3.1.5 Comparing the performance of few-shot learning with PEFT for the four clinical tasks. 

Again, no statistically significant difference is found in accuracy, precision, recall, and F1 score among the four 

clinical tasks (Figure 2-e, p >0.05); however, the same trend as above is observed, i.e., the classification tasks 

related to agitation in dementia and malnutrition risk factors perform better than those related to frailty index and 

depression in dementia. 

3.1.6 Comparing the performance of few-shot learning with RAG for four clinical tasks. 

No statistically significant difference is found in accuracy, precision, recall, and F1 score between these tasks 

undertaking this training method (Figure 2-f, p >0.05). However, the same trend as above is found, i.e., the 

classification tasks related to agitation in dementia and malnutrition risk factors perform better than those related 

to frailty index and depression in dementia. 

3.2 Results of testing Hypothesis 2: Few-shot learning may (or may not) perform better than zero-shot 

learning for the multi-label classification of the same clinical tasks. 

 

To evaluate Hypothesis 2, we compared the performance of zero-shot and few-shot learning (without PEFT and 

RAG) for all four clinical tasks. Few-shot learning significantly improves model accuracy, precision, recall and 

F1 score in all four multi-label clinical classification tasks than zero-shot learning (Figure 3-a, p < 0.05). The level 

of improvement includes an 18% increase in model accuracy, an 18% increase in precision, a 25% increase in 

recall, and a 28% increase in F1 score.  
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Figure 3: Comparative evaluation of model performance for four multi-label classification tasks with the following 

training methods: (a) zero-shot learning versus few-shot learning, (b) zero-shot learning versus zero-shot learning 

with PEFT, (c) few-shot learning versus few-shot learning with PEFT, and (d) zero-shot learning versus few-shot 

learning with PEFT. 

Note: ‘-PEFT’ denotes without PEFT. The same notation applies to the figures that follow. 

3.3 Results of testing Hypothesis 3: Parameter-efficient finetuning may (or may not) improve both zero-

shot and few-shot learning performance. 

To evaluate Hypothesis 3, we compared (1) the performance of the zero-shot learning model without PEFT and 

with PEFT; and (2) the performance of the few-shot learning model without PEFT and with PEFT for all four 

tasks. 

3.3.1 Comparing the performance of zero-shot learning model without PEFT and with PEFT for all four 

tasks.  

Zero-shot learning with PEFT significantly improves model accuracy, precision, recall and F1 score in all four 

multi-label clinical classification tasks (Figure 3-b, p < 0.05). The level of improvement is as follows: a 37% 

increase in model accuracy, a 37% increase in precision, a 35% increase in recall, and a 33% increase in F1 score.   

3.3.2 Comparing the performance of the few-shot learning model without PEFT and with PEFT for all 

four multi-label clinical classification tasks.  

Few-shot learning with PEFT significantly improves model accuracy, precision, recall and F1 score in all four 

multi-label clinical classification tasks (Figure 3-c, p < 0.05). The level of improvement is as follows: a 15% 

increase in model accuracy, a 15% increase in precision, a 23% increase in recall, and a 24% increase in F1 

score. 

3.4 Results of testing Hypothesis 4: Zero-shot learning may (or may not) reach the same level of 

performance as few-shot learning for the same clinical task with PEFT. 

To evaluate Hypothesis 4, we compared the performance of zero-shot and few-shot learning with PEFT for all 

four tasks. Although no statistically significant difference is found in accuracy, precision, recall, and F1 score 

between the zero-shot and few-shot learning with PEFT in all four multi-label clinical classification tasks (Figure 

3-d, p >0.05), there is a trend that few-shot learning performs above zero-shot learning. 

b) a) 

d) c) 
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3.5 Results of testing Hypothesis 5: Fine-tuning for one clinical task may (or may not) impact model 

performance across other clinical tasks. 

 

To evaluate Hypothesis 5, we compared the performance of a clinical task-specific PEFT model with zero-shot 

learning, and its impact across other clinical tasks. For example, we conducted PEFT on the clinical task of 

agitation in dementia. We then compared the model’s impact on multi-label classification for depression in 

dementia, frailty index and malnutrition risk factors. We then compared the performance of a clinical task-specific 

PEFT model with few-shot learning and its impact across other clinical tasks, following the same pattern we did 

for zero-shot learning. 

3.5.1 Comparing the performance of a clinical task-specific PEFT model with zero-shot learning and its 

impact on other clinical tasks. 

No significant difference is found in accuracy, precision, recall, and F1 score for the other group of clinical tasks 

between two training models, pure zero-shot learning and zero-shot learning with PEFT for a specific clinical 

task. (see Figure 4-a, Figure 4-b, p >0.05).  

Figure 4. Performance of the measurement indicators for the other three multi-label classification tasks (a) when 

one clinical task was only trained with zero-shot learning, (b) when training on one clinical task with zero-shot 

learning and PEFT, (c) when one clinical task was only trained with few-shot learning, and (d) when training on 

one clinical task with few-shot learning and PEFT. 

Note: ‘MC’ denotes with multi-label classification.  

3.5.2 Comparing a clinical task-specific PEFT model performance with few-shot learning and its impact 

on other clinical tasks. 

No significant difference is found in accuracy, precision, recall, and F1 score for the other group of clinical tasks 

between two training models, pure few-shot learning and few-shot learning with PEFT for a specific clinical task. 

(see Figure 4-c, Figure 4-d, p >0.05).  

d) 

b) a) 

c) 
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3.6 Results of testing Hypothesis 6: Retrieval augmented generation may (or may not) improve both zero-

shot and few-shot learning performance. 

To evaluate Hypothesis 6, we compared the performance of the model of (1) zero-shot learning without RAG and 

with RAG; and (2) few-shot learning without RAG and with RAG for all four tasks. 

3.6.1 Comparing the performance of zero-shot learning model without RAG and with RAG for all four 

tasks.  

Although no statistically significant difference is found in accuracy, precision, recall, and F1 score between the 

zero-shot learning without RAG and with RAG in all four multi-label clinical classification tasks (Figure 5-a, p 

>0.05), the results suggest a trend where zero-shot learning with RAG tends to perform better than without RAG. 

Figure 5. Comparative evaluation of model performance for four multi-label classification tasks with the following 

training methods: (a) zero-shot learning without RAG versus with RAG, (b) few-shot learning without RAG 

versus with RAG, (c) zero-shot learning with RAG versus few-shot learning with RAG, and (d) few-shot learning 

with RAG versus zero-shot learning with PEFT.  

Note: ‘-RAG’ denotes without RAG.  

 

3.6.2 Comparing the performance of few-shot learning model without RAG and with RAG for all four 

tasks.  

Few-shot learning with RAG significantly improves model accuracy, precision, recall and F1 score in all four 

multi-label clinical classification tasks (Figure 5-b, p < 0.05). The level of improvement is as follows: a 19% 

increase in model accuracy, a 15% increase in precision, a 16% increase in recall, and a 21% increase in F1 

score. 

3.7 Results of testing Hypothesis 7: Zero-shot learning may (or may not) reach the same level of 

performance as few-shot learning for the same clinical task with RAG. 

To evaluate Hypothesis 7, we compared the performance of zero-shot and few-shot learning with RAG for all four 

clinical tasks. Few-shot learning with RAG significantly improves model accuracy, precision, recall and F1 score 

in all four multi-label clinical classification tasks than zero-shot learning (Figure 5-c, p < 0.05). The level of 

c) 

b) a) 

d) 
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improvement is as follows: a 17% increase in model F1 score, an 18% increase in model accuracy, an 18% increase 

in precision, and a 23% increase in recall.  

3.8 Results of testing Hypothesis 8: Few-shot learning with RAG may (or may not) perform better than 

zero-shot learning with PEFT for all four tasks.  

 

To evaluate Hypothesis 8, we compared the performance of few-shot learning with RAG and zero-shot learning 

with PEFT for all four clinical tasks.  No significant difference is found in accuracy, precision, recall, and F1 score 

between the few-shot learning with RAG and zero-shot learning with PEFT (Figure 5-d, p >0.05) in all four multi-

label clinical classification tasks.  

4 Discussion 

This study explores the impact of zero-shot and few-shot prompt learning strategies, both with and without PEFT 

and RAG, on multi-label classification across four clinical tasks. These include agitation in dementia, depression 

in dementia, frailty index and malnutrition risk factors. To achieve this, eight research hypotheses have been 

formulated, and experimental designs have been implemented to rigorously test these hypotheses. 

Our first hypothesis proposed that zero-shot and few-shot learning with similar prompting templates exhibit 

comparable performance in multi-label classification across various clinical tasks. Our findings support the 

alternative hypothesis, confirming that there is no significant difference in performance between these two 

learning approaches with similar prompting templates. While we did not identify statistically significant 

differences across all tasks, a consistent pattern emerged: the agitation in dementia and malnutrition risk factor 

classification tasks showed slightly better performance in accuracy, precision, recall, and F1 score compared to 

the frailty index and depression in dementia tasks. This performance disparity may be attributed to Llama 3 being 

trained on more data related to the former two tasks, leading to enhanced knowledge and better classification 

outcomes for those specific tasks. 

Our second hypothesis proposed that few-shot learning performs better than zero-shot learning for the multi-label 

classification of the same clinical task. Our findings support the alternative hypothesis, confirming that few-shot 

learning significantly enhances performance compared to zero-shot learning (without PEFT or RAG). This 

improvement indicates that few-shot domain adaptation effectively minimizes false positives and false negatives 

while increasing true positives in classification tasks. These results highlight that exposing an LLM to initial 

information from the target domain can significantly improve its performance [48-50] in classification tasks. Our 

third hypothesis suggested that PEFT can improve both zero-shot and few-shot learning performance. The results 

support the alternative hypothesis, demonstrating that PEFT significantly improves performance in both learning 

modes compared to the models without PEFT. Based on our findings, we observed that applying PEFT within a 

specific domain effectively reduces false positives and false negatives while increasing true positives in domain-

specific information extraction tasks.  This confirms that the PEFT approach facilitates targeted modifications to 

the model’s parameters [27, 51, 52], leading to improved overall performance in multi-label classification tasks 

within that domain. 

Our fourth hypothesis proposed that zero-shot learning can reach the same level of performance as few-shot 

learning for the same clinical task after PEFT. Our findings support the alternative hypothesis, confirming that 

there is no significant difference in performance between zero-shot and few-shot learning with PEFT. Based on 

our findings, this implies that further exposure through few-shot learning may not be necessary for models already 

fine-tuned within the domain. Our fifth hypothesis proposed that fine-tuning for one clinical task impacts model 

performance across other clinical tasks. However, the findings support the null hypothesis, indicating that fine-

tuning for a specific task does not significantly affect the model's performance on other classification tasks. The 

rationale behind this lies in the methodology of PEFT, which focuses on training only a selective subset of the 

pre-trained model's parameters [27, 51]. This insight suggests that the model can be effectively tailored to a 

specific clinical task without compromising its effectiveness in handling diverse tasks. This adaptability 

underscores the potential of the PEFT approach within the LLM for various clinical tasks. Additionally, another 

factor for this result may be that the four clinical tasks are overall similar to each other in term of the nature.  
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Our sixth hypothesis asserts that RAG can improve both zero-shot and few-shot learning performance. However, 

the findings support the null hypothesis, showing no significant difference in performance between zero-shot 

learning with and without RAG. In contrast, a significant improvement was observed in few-shot learning when 

RAG was utilized. The lack of enhancement in zero-shot learning with RAG may be due to the absence of task-

specific examples, which limits the model’s ability to effectively leverage retrieved information and generalize to 

unseen tasks [48, 49, 53]. Nevertheless, the results suggest that zero-shot learning with RAG consistently performs 

slightly better than without RAG, which could indicate that RAG offers a subtle advantage by providing additional 

context, though not enough to result in substantial gains. Conversely, the significant performance boost in few-

shot learning suggests that RAG effectively leverages the limited examples provided to enrich model 

understanding, leading to improved classification accuracy. This disparity highlights RAG's potential 

effectiveness in contexts where the model can benefit from supplementary information, particularly in few-shot 

settings [54, 55]. 

Our seventh hypothesis asserts that zero-shot learning can reach the same level of performance as few-shot 

learning for the same clinical task with RAG. Our findings support the null hypothesis, demonstrating that there 

is a significant difference in performance between zero-shot and few-shot learning with RAG.  Zero-shot learning 

may not reach the same performance level as few-shot learning with RAG due to the absence of task-specific 

examples that help the model better understand the nuances of the clinical tasks. It relies solely on the model's 

pre-existing knowledge [48, 49], which may not cover the specific clinical details required for accuracy. In 

contrast, few-shot learning provides the model with critical initial information and context from the target domain, 

enabling it to make more informed predictions [54-56]. As a result, while RAG can enhance contextual relevance, 

the lack of direct examples in zero-shot learning limits its effectiveness compared to few-shot approaches. 

Our eighth hypothesis proposed that few-shot learning with RAG and zero-shot learning with PEFT achieve the 

same performance levels in multi-label classification. The results support the alternative hypothesis, showing that 

both methods can deliver similar outcomes despite their distinct mechanisms. Zero-shot learning with PEFT 

selectively fine-tunes the most relevant parameters [27], enabling the model to adapt effectively to new domains 

with minimal labelled data [27, 51]. On the other hand, few-shot learning with RAG benefits from integrating 

relevant external information through retrieval, combined with task-specific examples [55, 56]. This enhances the 

model’s ability to handle complex clinical data, leading to fewer classification errors, such as false positives and 

false negatives—an insight derived from our study's findings. Our findings demonstrate that both PEFT and RAG 

excel in adapting to domain-specific tasks, highlighting their complementary strengths [57, 58] in improving 

model performance for multi-label classification in real-world clinical settings. 

The findings of this study have significant implications for integrating AI models, particularly LLMs, into clinical 

practice. When combined both zero-shot and few-shot learning approaches with RAG and PEFT on multi-label 

classification tasks, the findings, present efficient solutions for improving multi-label classification in various 

healthcare settings. Given the ongoing challenge of obtaining labelled data from domain experts, RAG, combined 

with few-shot learning, emerges as an efficient option. By leveraging external knowledge sources through 

retrieval, RAG minimizes dependence on large, annotated datasets, reducing the need for extensive fine-tuning 

specific to each domain.  This makes RAG a quicker and less resource-intensive solution, as it doesn't require the 

same level of GPU resources or training time as PEFT, which do not require high technical expertise [37]. In 

contrast, PEFT demands more computational power and expertise, requiring substantial GPU resources and 

additional time for fine-tuning specific model parameters [37]. However, the enhanced performance that PEFT 

offers makes it useful in scenarios where the computational infrastructure is available.  

This adaptability makes RAG equally valuable as PEFT for information retrieval in health and geriatric care, 

where clinical decision-making often relies on diverse and overlapping health conditions [59]. Therefore, this 

machine learning method can enable AI systems to integrate domain-specific knowledge in retrieving diagnostic 

and assessment data from the relevant but limited number of EHRs. This capability can improve diagnostic 

accuracy and support real-time health assessment, facilitating person-centred treatment and care plan 

development. Ultimately, the flexible deployment of this technique can help streamline care delivery in complex 

clinical contexts, reducing the cost and time associated with data labelling, requiring fewer resources and less 

training time, while maintaining robust model performance. 
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This study encompasses three notable limitations. Firstly, our study encompasses four multi-label clinical 

classification tasks. However, we recognize that these tasks may not represent a diverse spectrum of clinical 

scenarios. In the future, we will broaden our scope by incorporating additional clinical classification tasks into 

our study. Secondly, although we have examined four multi-label clinical classification tasks, additional tasks, 

such as question answering, summarization, and relation extraction are yet to be explored to enable a more 

comprehensive knowledge about the LLM's performance in EHR data. The third limitation relates to the selection 

of model performance evaluation metrics, which utilizes accuracy, precision, recall, and F1 score as the primary 

evaluation metrics. In future studies, we will broaden our evaluation metrics to encompass  calibration, robustness, 

fairness, bias, toxicity, and efficiency [60]. Diversifying evaluation criteria will provide a more comprehensive 

and nuanced assessment of the model's performance across various dimensions. This will enhance our findings' 

reliability and applicability in real-world EHR applications. 

5 Conclusion 

This study compares the performance of zero-shot and few-shot learning on multi-label clinical classification 

tasks and the impact of PEFT and RAG on their performance. Our findings reveal that the same prompting 

template—whether zero-shot or few-shot, with or without PEFT or RAG—yields comparable performance across 

different multi-label classification tasks. Few-shot learning consistently outperforms zero-shot learning in 

classification tasks, even without PEFT or RAG. However, when PEFT is integrated with both zero-shot and few-

shot learning, zero-shot learning achieves performance levels similar to few-shot learning in classification tasks. 

On the other hand, with RAG, few-shot learning consistently surpasses zero-shot learning, indicating RAG's 

superior ability to provide relevant external knowledge in few-shot learning. Our analysis also shows that fine-

tuning LLMs for a particular clinical task does not significantly impact on the model's performance when applied 

to other clinical tasks. Notably, few-shot learning with RAG achieves performance comparable to zero-shot 

learning with PEFT, further highlighting the adaptability and efficiency of these advanced methods in clinical 

applications. 
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