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ABSTRACT 34 
Ultra-processed foods high in fat and sugar may be addictive, in part, due to their purported ability 35 
to induce an exaggerated postingestive brain dopamine response akin to drugs of abuse. Using 36 
standard [11C]raclopride positron emission tomography (PET) displacement methods used to 37 
measure brain dopamine responses to addictive drugs, we measured postingestive striatal 38 
dopamine responses to an ultra-processed milkshake high in fat and sugar in 50 young, healthy 39 
adults over a wide body mass index range (BMI 20-45 kg/m2). Surprisingly, milkshake 40 
consumption did not result in significant postingestive dopamine response in the striatum (p=0.62) 41 
nor any striatal subregion (p>0.33) and the highly variable interindividual responses were not 42 
significantly related to adiposity (BMI: r=0.076, p=0.51; %body fat: r=0.16, p=0.28). Thus, 43 
postingestive striatal dopamine responses to an ultra-processed milkshake were likely 44 
substantially smaller than many addictive drugs and below the limits of detection using standard 45 
PET methods.   46 
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 2 

INTRODUCTION 47 
 48 
Ultra-processed foods often contain high levels of both sugar and fat (Martínez Steele, Baraldi et 49 
al. 2016) – a highly palatable combination that rarely occurs in natural foods (Fazzino, Rohde et 50 
al. 2019). There is a common narrative that such ultra-processed foods may be addictive due to 51 
their consumption eliciting an outsized dopamine response in brain reward regions (Gearhardt, 52 
Bueno et al. 2023), similar to drugs of abuse (Wise and Robble 2020). Furthermore, ultra-53 
processed foods have been hypothesized to alter the normal gut-brain nutrient sensing pathways 54 
in ways that may enhance their reinforcing effects (Small and DiFeliceantonio 2019). 55 
 56 
In animal models, brain dopamine responds rapidly to the orosensory properties of food and is 57 
related to palatability (Schultz, Dayan et al. 1997, Hajnal, Smith et al. 2004). Postingestive nutrient 58 
sensing of fat and sugar elicits prolonged dopamine responses primarily in the dorsal striatum via 59 
separate gut-brain pathways (Ferreira, Tellez et al. 2012, Tellez, Medina et al. 2013, Han, Tellez 60 
et al. 2016, Tellez, Han et al. 2016, Fernandes, da Silva et al. 2020) and their combination results 61 
in a synergistic effect (McDougle, de Araujo et al. 2024). Functional MRI work suggests that 62 
similar effects may occur in humans (Stice, Burger et al. 2013, DiFeliceantonio, Coppin et al. 63 
2018), and may be related to adiposity  such that blunted responses are observed in people with 64 
obesity (Wang, Tomasi et al. 2014).  65 
 66 
Whether humans exhibit an exaggerated postingestive brain dopamine response to ultra-67 
processed foods high in both fat and sugar is unknown, much less whether such a response is 68 
related to adiposity. Therefore, we measured brain dopamine responses to consuming ultra-69 
processed milkshakes high in both fat and sugar using a standard positron emission tomography 70 
(PET) [11C]raclopride displacement method used to investigate drugs of abuse (Volkow, Wang et 71 
al. 1994, Drevets, Price et al. 1999, Cárdenas, Houle et al. 2004, Morris and Yoder 2007). In our 72 
preregistered aims, we hypothesized that striatal dopamine D2-like receptor binding potential 73 
(D2BP) would significantly decrease after milkshake consumption relative to the fasted state, 74 
indicating increased dopamine release displacing the radiotracer from dopamine D2 receptors. 75 
We further hypothesized that postingestive dopamine responses to milkshake consumption would 76 
be negatively correlated with adiposity. Instead, we found that postingestive striatal dopamine 77 
responses were highly variable, not statistically significant, and not significantly related to 78 
adiposity.  79 
 80 
RESULTS 81 
 82 
A description for this preregistered clinical trial has been described elsewhere (Darcey, Guo et al. 83 
2023). In brief, sixty-one weight stable adults completed 3-5 days of outpatient dietary stabilization 84 
through a eucaloric standardized diet (50% calories from carbohydrate, 35% from fat, 15% from 85 
protein; see Methods) provided by the NIH Metabolic Kitchen which was continued into the 5-day 86 
inpatient stay at the NIH Clinical Center which immediately followed (Table 1, Supplementary 87 
Figure 1). Participants consumed the eucaloric stabilization diet for 4.5±1.0 days outpatient prior 88 
to admission and completed [11C]raclopride scanning after 2.4±0.9 days of inpatient 89 
(corresponding to 6.8±1.1 days of total diet stabilization by the time of [11C]raclopride scanning).   90 
 91 
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 92 
 93 
Data for both fasting and post-milkshake dopamine D2 binding potential (D2BP) are available for 94 
n=50 participants (Supplementary Figure 2).  95 
 96 

 97 
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No significant postingestive striatal dopamine response to an ultra-processed milkshake.  98 
 99 
Participants completed the first of two [11C]raclopride PET in a confirmed overnight fasted state. 100 
Upon completion of the fasted scan, participants rested quietly in an adjacent room for  101 
approximately 75 minutes, at the end of which they were allotted 5 minutes to consume a vanilla 102 
milkshake (226 mL) (see Methods). Participants began their second and final [11C]raclopride scan 103 
30 minutes after initiating the milkshake. A paired-samples analysis across the entire sample 104 
revealed that the mean D2BP at fasting was not significantly different from mean D2BP after the 105 
milkshake (whole striatal D2BP fasting 2.9 [0.06 SEM] vs. whole striatal D2BP post-milkshake 2.9 106 
[0.06 SEM]; p=0.616) (Figure 1A). D2BP was not significantly different between fasting and post-107 
milkshake in any striatal sub-region of interest (p’s>0.33) (Supplementary Figure 3). Further, no 108 
clusters emerged from corresponding voxelwise analyses (see Supplementary Figure 4 for 109 
unthresholded voxelwise D2BP maps). Whole striatal dopamine response to milkshake did not 110 
significantly differ by sex (p=0.207).   111 

Given that the only human study to assess temporal dynamics of dopamine responses to 112 
milkshake ingestion suggested that the peak response may occur roughly 20 minutes after 113 
initiating intake (Thanarajah, Backes et al. 2018), we sought to investigate whether we may have 114 
missed an early striatal dopamine response to the ultra-processed milkshake when using the 115 
complete time activity curves collected over the full 70 minute PET session. To address this 116 
possibility, we calculated striatal D2BP from time-activity curves excluding frames from late in the 117 
PET session. Compared to D2BP calculated using the full time-activity curves after the milkshake, 118 
D2BP calculated using only the first 30 minutes of scanning decreased slightly by 0.06 ± 0.02 (p 119 
= 0.006) but was similar to the D2BP decrease using the first 30 minutes of scanning in the fasted 120 
state (0.05 ± 0.03; p = 0.13). These negligible differences in striatal D2BP suggest that our 121 
methods likely did not mask a postingestive dopamine signal earlier in the scan time course.  122 
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 123 

 124 
Figure 1. (A) An ultra-processed milkshake did not significantly impact [11C]raclopride binding potential (D2BPralco) across the whole 125 
sample (n=50) in  whole striatum. (B) Distribution of percent change between fasting D2BPralco and D2BPralco after consumption of 126 
milkshake, with individuals displaying dopamine release (green, left, “Responders”, n=29) and those who did not (purple, right, “Non-127 
responders”, n=21). (C) Those classified as milkshake “Responders” rated the milkshake as more pleasant (0=“neutral”, 128 
100=“extremely pleasant”) (D) and reported greater wanting (0=“I don’t want any more”, 100=“I want much more of the milkshake”) (E) 129 
but similar levels of hunger after an overnight fast compared to “Non-responders”.  130 
 131 
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Adiposity was not significantly correlated with postingestive striatal dopamine responses.  134 
 135 
We hypothesized that dopamine responses to the milkshake (percent decrease in D2BP between 136 
post-milkshake and fasting) would be dampened at higher adiposity. BMI tended to be weakly 137 
related to dopamine response such that leaner individuals had a slightly greater decrease in D2BP 138 
percent change from fasting (whole striatum D2BP, r=0.276, p=0.052; Supplementary Figure 139 
4). However, this relationship was not robust to influential data points (robust regression r=0.076, 140 
p=0.507; Supplementary Figure 5) and no clusters emerged from corresponding voxelwise 141 
analyses correlating BMI and milkshake response (DD2BP [milkshake – fasting]) (see 142 
Supplementary Figure 4B for unthresholded voxelwise maps). Furthermore, neither kilograms 143 
of fat mass (r=0.219, p=0.126, n=50), body fat percentage (r=0.155, p=0.282, n=50), age 144 
(r=0.139, p=0.337, n=50), fasting glucose (r=0.159, p=0.280, n=48), fasting insulin (r=0.137, 145 
p=0.360 n=47), nor insulin sensitivity (HOMA-IR; r=0.112, p=0.459, n=46) were correlated with 146 
whole striatal dopamine response to the post-ingestive milkshake state.  147 
 148 
While the milkshake was provided as the same absolute amount to all participants (418kcal), this 149 
amount varied as a proportion of each participant’s resting energy expenditure (REE). 150 
Nevertheless, milkshake energy intake adjusted for REE was not significantly related to the 151 
striatal dopamine response (% of REE; r= -0.175, p=0.228, n=49).  152 
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Postingestive striatal dopamine responses may be related to perceived hunger and 154 
hedonic responses to the milkshake.  155 
 156 
To explore correlates of the highly variable interindividual dopaminergic response to the ultra-157 
processed milkshake (Figure 1B) we investigated features that distinguished those who 158 
demonstrated a dopamine response in the expected direction (“Responders”) compared to those 159 
who demonstrated an increase in D2BP after milkshake, opposite to that expected (“Non-160 
responders”) (Table 2).  161 
 162 
“Responders” perceived the milkshake to be more pleasant (73.3 [4.1] vs 48.2[8.0], p=0.010), 163 
they wanted more of the milkshake (56.4[6.4] vs 25.8[6.8] p=0.003) and tended to be hungrier in 164 
the overnight fasted state (55.7[5.1] vs 41.3[7.4], p=0.106) as compared to the “Non-Responders” 165 
(Figure 1C-E;Table 2). Furthermore, “Non-responders” tended to report an increase in perceived 166 
hunger after the milkshake compared to “Responders” (Table 2).  Both groups indicated similar 167 
preferences for fat (p=0.271) and sweet (p=0.576) tastes (Table 1) and similarly considered the 168 
milkshake to have “met expectations” (p=0.365; Table 2).  169 
 170 
Across the group as a whole, there were no significant correlations between whole striatal 171 
dopamine response and degree to which the milkshake met expectations (r=-0.064, p=0.681, 172 
n=43), perceived milkshake pleasantness (r=-0.194, p=0.201, n=45), or wanting more milkshake 173 
(r=-0.237, p=0.126, n=43). Further, these relationships were also not evident in striatal ROI 174 
subregions (p’s >0.111, not shown).   175 
 176 
While perceived hunger after an overnight fast was not significantly related to adiposity (BMI: r=-177 
0.185, p=0.223, n=45; Percent body fat: r=-0.030, p=0.844, n=45), hunger level was weakly 178 
related to whole striatal dopamine response to milkshake (r=0.288, p=0.055, n=45) driven largely 179 
by responses in the right caudate (r=0.311, p=0.037), right pallidum (r=-0.309, p=0.039) and left 180 
putamen (-0.390, p=0.008) (Figure 3A). These regional associations were largely supported by 181 
voxelwise analyses (Figure 3B), revealing clusters in the left putamen and right caudate where 182 
the magnitude of milkshake response is correlated with perceived hunger after an overnight fast 183 
(Supplementary Table 1 for cluster details). The change in hunger between the fasted and post-184 
milkshake states correlated with whole striatal dopamine response to the milkshake (r=0.393, 185 
p=0.019, n=35) such that the more hunger was suppressed by the milkshake, the greater the 186 
degree of observed dopamine release. This effect is largely driven by dorsal rather than ventral 187 
striatal ROIs. 188 
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 189 
The milkshake increased blood glucose and insulin at both 30 minutes and 90 minutes post-190 
milkshake, but neither the overall increase in glucose nor insulin, nor rates of increases were 191 
correlated with the milkshake dopamine responses at the whole striatal or sub-striatal ROI levels 192 
(not shown).  Furthermore, we did not observe significant differences in either postprandial 193 
glucose or insulin changes between “Responders” and “Non-responders” (Supplementary 194 
Figure 5). 195 
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 196 
Figure 3. Postingestive dopamine responses to milkshake correlated with prior fasting hunger and subsequent ad libitum 197 
cookie energy intake. (A) Region of interest (ROI) analyses indicate that self-reported hunger after an overnight fast correlated with 198 
dopamine response to milkshake consumption, particularly in the left putamen. (B) The ROI relationship between hunger and dopamine 199 
response, was supported by voxelwise correlation analysis which identified two clusters surviving correction for multiple comparisons 200 
(left putamen: 106 voxels; x = 22.8, y= -6.0, z= 13.5; p<0.01; and right caudate: 39 voxels; x = –15.8, y = -20.0, z = 6.5; p<0.05). (C) 201 
Additionally, ROI analyses indicate that the postingestive dopamine response to milkshake particularly in the left putamen was 202 
correlated with ad libitum intake of energy from cookies at a subsequent meal test in the overnight fasted state. (D) Voxelwise analyses 203 
identified clusters in bilateral putamen surviving correction for multiple comparisons where dopamine response was correlated with 204 
subsequent ad libitum cookie consumption (left putamen: 41 voxels, x = 29.8, y= 11.5, z= 6.6; p<0.02; right putamen: 34 voxels, x = -205 
26.2, y= 11.5, z= 6.5; p=0.05). All clusters defined by NN=1 (faces touching), ke=20, bi-sided puncorr<0.1, and cluster corrected at p<0.05.206 
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 Table 1. Participant characteristics and group differences between milkshake “responders” and “non-responders” at the whole striatum 207 
level Participant characteristics and group differences between participants demonstrating a postingestive decrease in D2BP 208 
as a result of milkshake (“Responders”) and those demonstrating an increase in D2BP (“Non-responders). Means and standard 209 
deviations indicated.  210  

Enrolled 
participants 

(n) 

Enrolled 
participants 

Milkshake 
Completers 

(n) 

Milkshake 
Completers 

Milkshake 
“Responders” 

(n) 

Milkshake 
“Responders” 

Milkshake 
“Non-

responders” 
(n) 

Milkshake 
“Non 

responders” 

p 
(Responders 

vs. Non-
responders) 

Total N 61  50  29  21   

Females 40 65% 38 66.7% 19 65.5% 14 66.7% 0.933 
Race         0.741 

Black 32 52.5% 27 54.0% 15 51.7% 12 57.1%  

White 18 29.5% 15 30.0% 10 34.5% 5 23.8%  

Asian 7 11.5% 5 10.0% 3 10.3% 2 9.5%  

Other/Multiple 4 6.6% 3 6.0% 1 3.4% 2 9.5%  

Age (years) 61 32.2 ± 7.2 50 31.9 ± 7.2 29 30.8 ± 7.5 21 33.4 ± 6.8 0.218 
Body weight (kg)          

Mean 61 85.9 ± 25.3 50 86.1 ± 25.0 29 84.6 ± 23.1 21 88.2 ± 27.7 0.622 

Range 61 45.9 – 148.6 50 45.9 – 
148.6 29 57.2 – 148.6 21 45.9 – 133.9  

Body fat (%)          

Mean 61 35.0 ± 12.6 50 35.1 ± 12.3 29 35.9 ± 11.5 21 33.9 ± 13.6 0.571 
Range 61 11.3 – 59.0 50 11.3 – 52.4 29 12.1 – 52.4 21 11.3 – 51.2  

BMI (kg/m2)          

Mean 61 30.1 ± 8.2 50 30.2 ± 7.9 29 29.5 ± 7.2 21 31.0 ± 8.9 0.540 

Range 61 20.3 – 52.8 50 20.3 – 44.8 29 20.3 – 44.4 21 20.5 – 44.8  

Resting energy 
expenditure 
(kcal/day) 

60 1624 ± 319 49 1626 ± 321 29 1607 ± 299 20 1655 ± 357 0.608 

Glucose, fasting 
(mg/dL) 55 91.8 ± 7.7 48 92.8 ± 7.3 27 93.0 ± 7.5 21 92.5 ± 7.2 0.826 

Insulin, fasting 
(µU/mL) 54 12.6 ± 7.4 47 12.6 ± 7.0 28 13.0± 7.8 19 12.1 ± 5.6 0.689 
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HOMA-IR 52 2.9 ± 1.9 46 2.9 ± 1.8 27 3.1± 2.1 19 2.8 ± 1.3 0.563 

Habitual diet (Food Frequency Questionnaire)        

Usual energy 
intake (kcal/day) 52 1497 ± 662 45 1481 ± 642 28 1464 ± 664 17 1510 ± 622 0.821 

Protein (% kcal) 52 15.7 ± 4.2 45 15.7 ± 4.2 28 15.5 ± 3.3 17 16.0 ± 5.5 0.697 
Fat, total 
(%kcal) 52 33.0 ± 8.2 45 33.3 ± 8.1 28 33.6 ± 6.6 17 32.7 ± 10.5 0.709 

Saturated fat 
(%kcal) 52 10.5 ± 3.0 45 10.5 ± 3.1 28 10.9 ±2.8 17 9.8 ± 3.6 0.256 

Fatty acid ratio 
(unsat:sat) 52 1.9 ± 0.4 45 2.0 ± 0.4 28 1.9 ± 0.3 17 2.1 ± 0.4 0.032 

Carbohydrate, 
total (% kcal) 52 51.6 ± 11.7 45 51.2 ± 11.7 28 50.5 ± 9.5 17 52.4 ± 14.8 0.641 

Added sugars 
(grams) 52 47.0 ± 40.3 45 46.1 ± 39.7 28 43.4 ± 37.0 17 50.5 ± 44.7 0.562 

Taste Preferences          

Fat taste 
preference (% 
milkfat; w/v) 

49 11.1 ± 6.0 41 11.6 ± 6.5 24 10.6 ± 5.4 17 12.9 ± 7.7 0.271 

Sweet taste 
preference (g 
sucrose/1000mL 
water) 

51 11.9 ± 9.1 42 12.6 ± 9.1 25 12.0 ± 8.5 17 13.6 ± 10.0 0.576 

Three Factor Eating Questionnaire        

Cognitive 
Restraint 61 8.3 ± 4.7 59 8.5  ± 4.6 29 8.8 ± 4.0 21 8.1 ±5 .3 0.617 

Disinhibition 61 4.8 ± 2.7 50 5.0  ±  2.8 29 5.3 ± 2.7 21 4.4 ± 2.8 0.256 

Hunger 61 3.2 ± 2.6 50 3.4  ±  2.7 29 3.3 ± 2.9 21 3.5 ± 2.5 0.799 

Yale Food Addiction Scale        

Continuous 
Symptom Count 60 1.1 ± 1.0 48 1.1± 0.9 29 1.2±1.1 19 1.0±0.7 0.293 

211 
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Table 2. Group differences between participants demonstrating a decrease in whole striatal D2BP as a result of milkshake 212 
(“Responders”) and those demonstrating an increase in D2BP (“Non-responders). Means and standard errors reported.  213 
 214 
  Milkshake 

Completers 
(n) 

Milkshake 
Completers 

[Mean (SEM)] 

Milkshake 
“Responders” 

(n) 

Milkshake 
“Responders” 
[Mean (SEM)] 

Milkshake 
“Non-

responders” 
(n) 

Milkshake 
“Non 

responders” 
[Mean 
(SEM)] 

p 
(Responders 

vs. Non-
responders) 

D2BP % Change, Whole Striatum (Milkshake – Fasting)     

Mean percent change 50 1.1(1.3) 29 -4.3(0.73) 21 8.5(2.0) <0.0001 

Range 50 -18.1 – 37.7 29 -18.1 – -0.9 21 0.03 – 37.7  

Milkshake ratings        

Pleasantness 45 63.3 (4.4) 27 73.3 (4.1) 18 48.2 (8.0) 0.010 

Wanting more 43 44.3 (5.2) 26 56.4 (6.4) 17 25.8 (6.8) 0.003 

Met expectations 43 57.0 (4.1) 26 60.1 (5.4) 17 52.4 (6.4) 0.365 

Hunger ratings        

After overnight fast 45 49.3 (4.4) 25 55.7 (5.1) 20 41.3 (7.4) 0.106 

Effect of milkshake  
(% change from fasting) 35 16.9 (13.9) 20 -8.4 (8.6) 15 50.8 (28.7) 0.065 

Ad libitum energy intake (REE-adjusted)      

Total (kcal) 45 956.7 (70.3) 28 1007.0 (76.8) 17 873.8 (137.4) 0.364 

Cookie-only (kcal) 45 109.9 (19.0) 28 134.1 (23.6) 17 69.9 (30.2) 0.102 

Non-cookie (kcal) 45 846.3 (58.9) 28 872.9 (64.3) 17 803.8 (116.5) 0.575 

Glycemic response to milkshake      

Glucose        

90-minute weighted 
average (mg/dL) 44 99.8 (1.3) 25 99.0 (1.5) 19 100.8 (2.3) 0.506 

Change, 0 min – 30 
min (mg/dL) 46 3.4 (1.4) 26 4.0 (1.6) 20 2.7 (2.3) 0.640 
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Change, 30 min – 90 
min (mg/dL) 45 11.5 (2.6) 26 7.0 (2.8) 19 17.6(4.4) 0.041 

Peak, 0 min – 90 min 
(mg/dL) 44 110.7 (2.1) 25 107.4(2.2) 19 115.4(3.8) 0.094 

Insulin        

90-minute weighted 
average (µU/mL) 36 36.1 (4.4) 23 38.2 (6.6) 13 32.6 (3.8) 0.468 

Change, 0 min – 30 
min (µU/mL) 43 26.5 (5.4) 25 31.1 (8.9) 18 20.1 (4.0) 0.267 

Change, 30 min – 90 
min (µU/mL) 36 -5.0 (5.8) 23 -10.2 (7.8) 13 4.1 (7.9) 0.239 

Peak, 0 min – 90 min 
(µU/mL) 36 52.0 (6.5) 23 53.6 (9.9) 13 49.1 (5.2) 0.689 

 215 
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 216 

 217 
 218 
Postingestive dopamine responses correlated with ad libitum intake of ultra-processed 219 
cookies high in fat and sugar.  220 
 221 
On their last inpatient day, participants were offered an ad libitum buffet (Supplementary Figure 222 
6) in metabolic state similar to that of milkshake ingestion on a previous day and were instructed 223 
to eat as much or as little as they desired.  Energy consumed (kcal) was calculated after remaining 224 
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food was weighed back by Metabolic Kitchen staff. Exploratory analyses of energy intake are 225 
adjusted by resting energy expenditure (REE) measured during the inpatient stay.  226 
 227 

 228 
 229 
REE-adjusted total energy intake was not correlated with dopamine response to milkshake across 230 
the striatum as a whole (r=-0.205, p=0.176) but tended to be weakly correlated with postingestive 231 
dopamine response again in the left putamen (r=-0.279, p=0.064).  232 
 233 
We separated energy intake from the sole high-fat, high-sweet ultra-processed food item offered 234 
at the meal test, chocolate chip cookies (REE-adjusted cookie energy intake, “cookie EI”), from 235 
energy consumed from other foods (REE-adjusted non-cookie energy intake, “non-cookie EI”). 236 
While non-cookie EI was not related to dopamine response to milkshake in any striatal ROI (p’s 237 
> 0.131), cookie EI specifically tended to weakly correlate with whole striatal (r=-0.283, p=0.06) 238 
and left caudate (r= -0.276, p=0.067) response and was significantly correlated with dopamine 239 
response in the left pallidum (r = -0.332, p=0.026) and again in the left putamen (r = -0.323, 240 
p=0.031) (Figure 3C).  241 
 242 
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Voxelwise analyses support the ROI analyses, revealing bilateral clusters in the putamen where 243 
the magnitude of milkshake response is correlated with REE-adjusted ad libitum cookie energy 244 
intake (Figure 3D; cluster information in Table 3.) 245 
 246 
DISCUSSION 247 
 248 
Contrary to our hypotheses, we did not find evidence for a significant average increase in post-249 
ingestive striatal dopamine in response to consuming ultra-processed milkshakes high in fat and 250 
sugar. Furthermore, interindividual variation in the postingestive dopamine response was not 251 
significantly related to adiposity. Instead, our exploratory analyses suggest that post-ingestive 252 
dopamine response variability between people may be related to perceived hunger, hedonic 253 
responses, and may predict future ultra-processed food eating behaviors. 254 
 255 
Our study was designed to elicit a post-ingestive dopamine response as well as minimize several 256 
sources of variability by delivering a single exposure to a novel milkshake formulation that 257 
participants experienced as a non-random, unconditioned stimulus at the time of PET scanning 258 
after a confirmed, standardized overnight fast following a period of controlled feeding in weight 259 
stable adults. This design minimized psychological and behavioral influences (e.g., pre-exposure 260 
(Burger and Stice 2012), cue-expectation (Wang, Wiers et al. 2019)) as well as variability in 261 
physiological state (Stice, Yokum et al. 2010, Chen and Zeffiro 2020).  262 
 263 
The [11C]raclopride PET displacement method used in our study (Endres, Kolachana et al. 1997, 264 
Laruelle, Iyer et al. 1997) has high reproducibility (Doudet and Holden 2003), with test-retest 265 
absolute D2BP differences in the striatum of ~6% (Nordström, Farde et al. 1992, Volkow, Fowler 266 
et al. 1993, Hirvonen, Aalto et al. 2003). This method has been regularly used to measure 267 
significant mean striatal dopamine responses following ingestion of substances with the greatest 268 
potential for abuse and addiction such as psychostimulants that produce ~10-20% decreases in 269 
mean striatal D2BP (Volkow, Wang et al. 1994, Cárdenas, Houle et al. 2004, Tomasi, Manza et 270 
al. 2023). However, relatively large increases in extracellular dopamine, as documented by 271 
simultaneous microdialysis measurements (Breier, Su et al. 1997, Tsukada, Nishiyama et al. 272 
1999, Harada, Nishiyama et al. 2002, Schiffer, Volkow et al. 2006) are required to detect acute 273 
displacement of [11C]raclopride in the striatum using PET. Thus, the ultra-processed milkshake 274 
may have resulted in striatal dopamine responses that were simply too small to reliably detect 275 
using the standard [11C]raclopride PET method and may be closer in magnitude to that of nicotine 276 
– a drug widely acknowledged to promote addiction (Benowitz 2010), that only produces ~5% 277 
reduction in striatal D2BP (Marenco, Carson et al. 2004) and some studies have failed to show a 278 
significant effect of nicotine (Chukwueke and Le Foll 2019).  279 
 280 
In other words, despite expecting the high fat and sugar formulation of the ultra-processed 281 
milkshake to produce a synergistic effect on striatal dopaminergic activity (DiFeliceantonio, 282 
Coppin et al. 2018, McDougle, de Araujo et al. 2024), our data suggest that any extracellular 283 
dopamine responses following milkshake consumption were smaller than those following 284 
ingestion of drugs of abuse. Thus, the narrative that ultra-processed foods high in fat and sugar 285 
can be as addictive as drugs of abuse based on their potential to elicit an outsized dopamine 286 
response in brain reward regions was not supported by our data.    287 
 288 
Contrary to our results, previous smaller studies using [11C]raclopride displacement PET have 289 
shown significant decreases in postingestive striatal D2BP. A classic study of 7 people without 290 
obesity showed that consuming a favorite mixed meal decreased D2BP in the dorsal striatum 291 
(Small, Jones-Gotman et al. 2003). In a study of 11 people using an 8oz milkshake nearly identical 292 
in macronutrient composition to the present study, decreased D2BP was observed in regions of 293 
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the striatum, and this was driven predominantly by 5 participants without obesity (Carnell, Steele 294 
et al. 2023). Differences in postingestive striatal dopamine response between glucose versus 295 
sucralose beverages in 19 adults were found to be negatively related to body mass index, but no 296 
significant overall differences in D2BP between the beverages were reported (Wang, Tomasi et 297 
al. 2014). In 10 individuals with obesity, no significant difference in D2BP was found between 298 
satiated and fasted conditions and the authors suggested that obesity could blunt the post-299 
ingestive dopamine response (Eisenstein, Black et al. 2020). We believe our null results in 50 300 
adults suggest that previous findings of postingestive striatal dopamine responses in studies with 301 
substantially smaller numbers of subjects may have been due to type 1 statistical error. 302 
 303 
Recently, a rapid orosensory dopamine response followed by a later postingestive response were 304 
observed in a study using a novel [11C]raclopride PET procedure in 10 adults who sipped 305 
milkshakes at random intervals via a gustometer over a 10 minute period during a 60 minute scan 306 
(Thanarajah, Backes et al. 2018). Perhaps our lack of ability to measure a dopamine response to 307 
the milkshake using a standard [11C]raclopride PET procedure was because the post-milkshake 308 
PET scan started 30 minutes after the milkshake was consumed. However, we believe this is 309 
unlikely because brief intragastric nutrient infusions in rodents produce long lasting (~hours) 310 
striatal dopamine responses (Tellez, Medina et al. 2013, Tellez, Han et al. 2016, McDougle, de 311 
Araujo et al. 2024) and the milkshake used in our study would be expected to result in a relatively 312 
constant gastric emptying rate given that the milkshake contained appreciable amounts of cream 313 
and whole milk (Okabe, Terashima et al. 2015) with ongoing gut nutrient sensing over the duration 314 
of the subsequent 75-minute PET scan. Nevertheless, if the peak post-prandial dopamine 315 
response was early and dissipated by the end of the scan, then calculating binding potential using 316 
time-activity curves over the entire duration of the scan may have attenuated the effect of the 317 
milkshake on the calculated D2BP. However, truncating the PET time-activity curves to a 318 
minimum of 30 minutes had no appreciable effect on our results.  319 
 320 
Our data suggest that the variable postingestive dopamine responses to the ultra-processed 321 
milkshake were unrelated to adiposity. This was surprising because animal studies suggested 322 
that diet induced obesity blunts dopamine response to nutrients in the gut (Johnson and Kenny 323 
2010) and human functional MRI work suggested that obesity blunts striatal activity to food 324 
consumption (Stice, Spoor et al. 2008). A recent metabolic imaging study using SPECT observed 325 
that in both people with and without obesity, while nasogastric delivery of sugar caused dopamine 326 
release, the post-ingestive dopamine response to fat-alone was only significant in those without 327 
obesity (van Galen, Schrantee et al. 2023), though the groups were not statistically compared.  328 
 329 
A limitation of our study was that we enrolled only participants free from a history of disordered 330 
eating or addiction and we found minimal endorsement of behaviors consistent with the construct 331 
of food addiction. Food addiction is reported to have a 14% prevalence in non-clinical adult 332 
samples (Praxedes, Silva-Júnior et al. 2022) and is comorbid with binge eating disorder (Carbone, 333 
Aloi et al. 2023) which has been associated with altered dopamine signaling specifically 334 
anticipatory dorsal striatal dopamine release to food cues, independent of adiposity (Wang et al., 335 
2011). It is interesting to speculate that the post-ingestive striatal dopamine response to an ultra-336 
processed food high in fat and sugar may be more pronounced in those endorsing behavioral 337 
features of “food addiction” or receiving a clinical diagnosis of binge eating disorder.  338 
 339 
Even in the absence of a clinical eating disorder or food addiction, it is possible that some 340 
individuals may experience large postingestive dopamine responses to ultra-processed foods 341 
high in both fat and sugar under some conditions. Our exploratory analyses indicated that 342 
individual variability in postingestive striatal dopamine responses may be related to the degree of 343 
hunger in the fasted state. Some of our study participants displayed dopamine responses to the 344 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.24.24309440doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.24.24309440


 21 

post-ingestive signals from milkshake in the putamen, consistent with post ingestive component 345 
in other studies (Thanarajah, Backes et al. 2018) who displayed the expected response to 346 
milkshake consistently in left putamen, encompassing a region where interoceptive signals are 347 
registered (Pauli, O'Reilly et al. 2016).  Inducing hunger via restricted food access enhances 348 
development of addiction to drugs in animal studies (Carroll 1985), possibly by enhancing 349 
postingestive dopamine responses.  350 
 351 
We believe the most likely interpretation of our data is that consuming an ultra-processed 352 
milkshake high in fat and sugar produces small, but highly variable, changes in postingestive 353 
striatal dopamine that were unrelated to adiposity but possibly related to perceived hunger and 354 
hedonic responses. Furthermore, individual postingestive striatal dopamine responses may 355 
predict food choices given that they correlated with ad libitum consumption of ultra-processed 356 
cookies high in both fat and sugar, which were the only such items available in a buffet lunch. Our 357 
results do not discount the experience of individuals who report difficulty in controlling their intake 358 
of ultra processed foods high in fat and sugar, but rather calls into question the narrative that 359 
postingestive striatal dopamine responses similar in magnitude to illicit drugs perpetuate 360 
consumption of ultra-processed foods and promote their excess intake (Hall, Ayuketah et al. 361 
2019). 362 
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METHODS 380 
Sixty-one adults provided informed consent to participate in a dual PET radiotracer study 381 
investigating the relationship between D2R availability and BMI under controlled dietary 382 
conditions (ClinicalTrials.gov NCT03648892). Participants were recruited from the community 383 
over a wide BMI range and approximately evenly sampled in each of three BMI categories (18.5 384 
kg/m2 ≤ BMI < 25 kg/m2, 25 kg/m2 ≤ BMI < 35 kg/m2, BMI ≥ 35 kg/m2) to ensure sufficient BMI 385 
range to test the quadratic hypothesis. Eligible volunteers were English-speaking, weight stable 386 
(less than ± 5% change in the past month), between 18-45 years of age, BMI >18.5 kg/m2. They 387 
had no history of bariatric surgery, metabolic disorders, previous traumatic head injury or 388 
neurological disorders, severe food allergies (e.g., dairy, gluten) impaired activities of daily living, 389 
high blood pressure (>140/90 mm Hg), or current use of medication influencing metabolism or 390 
psychiatric medications. They did not have psychiatric conditions or disordered eating (EDE-Q, 391 
DSM Cross Cutting Symptom Measure Self Rated Level 1), nicotine dependence, drug use or in 392 
past 12 months (confirmed via urine toxicology at screening visit), binge drinking over previous 6 393 
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months, excessive caffeine consumption, or safety contraindications to MRI. Females were 394 
excluded if they were pregnant or lactating.  395 
 396 
In the full sample (n=61), women reporting regular menses (not using hormonal contraceptives) 397 
(n=31), started inpatient admissions on day 17.4±9.9 of their cycle. Participants self-identified 398 
race and ethnicity at the time of admission to the NIH Clinical Center. Handedness was not 399 
exclusionary. Participants completed the 10-item Edinburgh Handedness questionnaire to 400 
determine laterality quotient (Oldfield 1971) and 96.7% of participants (n=59) were determined to 401 
be right-handed (laterality quotient >0).  402 
 403 
Method Details  404 
This study was conducted between September 26, 2018 and February 17, 2023. On average, 405 
[11C]raclopride scans were completed after 6.8±1.1 total days of dietary stabilization.  406 
 407 
The enrollment and data distillation details can be found Supplementary Figure 1. No 408 
participants withdrew from the inpatient portion after enrollment. The same day [11C]raclopride 409 
scan order (fasted scan followed by milkshake scan) was standard across all participants. Of 61 410 
enrolled participants, fasting [11C]raclopride scan data are available for n=56 (n=1 participant 411 
declined, n=2 scans not performed due to tracer production issue, n=2 scans completed but did 412 
not pass quality control on time activity curves). Of n=56 participants with fasting [11C]raclopride 413 
data, post-milkshake [11C]raclopride scan data are available for n=50 (n=3 scans not performed 414 
due to a tracer production issue, n=3 scans completed but images did not pass quality control. 415 
Full PET data for fasting and milkshake [11C]raclopride scans are available on n=50 participants 416 
(Table 1).  All participants completed structural MRI. All study procedures were approved by the 417 
Institutional Review Board of the National Institute of Diabetes & Digestive & Kidney Diseases 418 
and the NIH Radiation Safety Committee; participants were compensated for their participation. 419 
 420 
Metabolic Diet 421 
Participants were placed on a standard eucaloric diet (50% carbohydrate, 15% protein, 35% fat) 422 
with daily energy needs calculated using the Mifflin-St Jeor equation and standard activity factor 423 
of 1.5. All meals were prepared in the NIH Clinical Center Nutrition Department Metabolic Kitchen 424 
with all foods and beverages weighed on a gram scale (Mettler Toledo Model MS12001L/03).   425 
 426 
For the run-in phase, participants were provided with 3-5 days of meals for retrieval from the NIH 427 
Clinical Center and consumed them at home prior to admission.  Participants were instructed to 428 
consume all foods and beverages provided. Any food or beverage not consumed was returned 429 
and weighed back. Participants were also instructed to continue their usual caffeine intake in 430 
calorie-free forms (e.g., black coffee, diet soda) and abstain from alcohol during this period. For 431 
any foods or beverages participants consumed that were not part of the standardized run-in diet, 432 
participants were asked to provide a description and amount of what was consumed so that total 433 
daily nutrient intake was captured. The eucaloric standardized outpatient diet was provided for an 434 
average of 4.5±1.0 days (range 0 – 5 days). Due to COVID-19 pandemic precautions, one 435 
participant was admitted without having completed a diet stabilization, and 3 participants 436 
completed some or all of their 3–5-day diet stabilization in the inpatient setting. The remainder of 437 
the full sample (n=57) consumed their stabilization diet as outpatients. 438 
 439 
During the inpatient phase, participants continued the same diet and were instructed to consume 440 
all foods and beverages provided. All subjects were confined to the NIH Clinical Center metabolic 441 
unit throughout their inpatient stay without access to outside food. Meals were consumed under 442 
observation. Any uneaten food was weighed back, and energy and macronutrients were replaced 443 
at the next available meal as needed. Diets were designed using ProNutra software (version 3., 444 
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Viocare, Inc.). No adverse events, harms or unintended effects resulted from provision of 445 
standardized eucaloric diet. 446 
 447 
Milkshake 448 
A 226 mL vanilla milkshake was prepared by mixing 40 g Vanilla Scandishake dry mix (Aptalis 449 
Pharma, US), 150 g whole milk, and 36 g heavy cream. The resulting milkshake contained a total 450 
of 418 kcals and  7.4 g protein (7.0% of kcal).  Total fat was 28.1 g (60% of kcal) of which 14.9 g 451 
was saturated (32.1% of kcal). Total carbohydrate was 34.6 g (33% of kcal) of which 18 g 452 
comprised total sugar (17.2% of kcal), 9.4 g of which were added sugar (9% of kcal). 453 
 454 
The milkshake was served chilled in an opaque (Styrofoam) cup and consumed through a straw 455 
after an extended overnight fast (~17-18 hours) approximately 30 minutes prior to the start of the 456 
second raclopride scan. Participants were allotted 5 minutes to consume the milkshake. 457 
 458 
The energy and macronutrients provided to the participant in other meals on the shake day were 459 
adjusted to account for contents of the high fat shake, so that overall daily energy and 460 
macronutrient intake remained stable in comparison with intake over inpatient stay.  461 
 462 
Ad libitum Lunch Array 463 
The night prior to their last day of inpatient admission, participants fasted between the end of their 464 
dinner (~6:30 pm) and the ad libitum lunch array the following day (~12:00 pm) to mimic time of 465 
day and metabolic conditions surrounding their completed milkshake [11C]raclopride scan. 466 
Participants were presented with a standardized buffet lunch meal (>6000 kcals, 35% 467 
carbohydrate, 17% protein, 48% fat) that provided a variety of different foods. Participants were 468 
allowed to consume as much food as desired, with each food weighed before and after 469 
consumption to determine total nutrient intake.  470 
 471 
The array (Supplementary Figure 6) consisted of: eight slices of Ultimate Grains Whole Wheat 472 
Bread, 250g roast beef deli meat, 250g turkey deli meat, 220g Glenview Farms Swiss Cheese, 473 
220g Glenview Farms American Cheese, 200g sliced tomatoes, 200g green leaf lettuce, 200g 474 
grapes, 18 Chips Ahoy! Chocolate Chip Cookies, 135g Hellmann’s Real Mayonnaise, 135g 475 
Monarch Yellow Mustard, 375g El Pasado Mild Salsa, 200g baby carrots, 180g Tostito Tortilla 476 
Chips, and 850g sterile water. The eight slices of bread and 18 cookies were weighed before 477 
array administration, and the weight was recorded in grams. 478 
 479 
A total of 5 participants data were unavailable or removed from analyses pertaining to ad libitum 480 
intake, leaving 45 participants for analysis (n=2 not collected due to truncated testing schedule 481 
due to pandemic, n=1 data was subject to weigh back error, n=1 scheduling error having 482 
erroneously completed the ad libitum test after consuming fat/sweet taste preloads, and n=1 failed 483 
to disclose a food aversion (wheat bread) prior to the test).  484 
 485 
Energy intake was calculated in total and separately for cookie-only energy intake and non-cookie 486 
energy intake. Total energy intake and sub fractions were adjusted by resting energy expenditure 487 
using the means, residuals, intercept and slope of energy intake (total, cookie, non-cookie) versus 488 
resting energy expenditure for the subsample of participants with available array data (n=45).  489 
 490 
Taste Testing 491 
Sucrose and fat preference were assessed using a two-series paired comparison-tracking method 492 
developed at the Monell Center for Adults (Cowart and Beauchamp 1990, Pepino and Mennella 493 
2007, Mennella, Lukasewycz et al. 2011). Subjects were presented with pairs of solutions differing 494 
in sucrose concentration (3, 6, 12, 24, and 36 g per 100 mL) and pairs of puddings differing in fat 495 
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concentrations (0, 3.8, 8.4, 19, and 33 percent fat by weight, achieved via dilutions of skim 0% fat 496 
and heavy cream 33% fat in commercially available vanilla pudding powder). They were asked to 497 
taste the samples without swallowing and point to which of the pair they liked better. 498 
Subsequently, each pair presented was determined by the subject’s preceding preference choice. 499 
The entire task was then repeated with the stimulus pairs presented in reverse order. After 500 
completion of the taste task, the geometric mean of the preferred concentrations was 501 
determined(Mennella, Finkbeiner et al. 2014, Mennella and Bobowski 2016). For the five sucrose 502 
solutions, the first pair presented was from the middle range (6 and 24% wt/vol), whereas for the 503 
pudding samples, the first pair was the two extremes (3.8 and 19% for fat). All stimuli were 504 
presented at room temperature. One drop of yellow food coloring (McCormick & Co., Inc. Hunt 505 
Valley, MD, USA) was added to the sample to mask color differences. 506 
 507 
Questionnaires 508 
The following reflects questionnaire outcomes pertinent to the exploratory analyses presented in 509 
the current study. Other exploratory questionnaire outcomes not included will be reported 510 
elsewhere. All questionnaire data were collected and managed using Research Electronic Data 511 
Capture (REDCap)(Harris, Taylor et al. 2009, Harris, Taylor et al. 2019) electronic data capture 512 
tools hosted at NIDDK.  513 

Post-milkshake Ratings. Immediately after consuming the milkshake and prior to their 514 
second and final [11C]raclopride scan, participants responded to a series of questions pertaining 515 
to their orosensory and hedonic perception of the milkshake using a visual analog scale  (Carlsson 516 
1983) with the following anchors: How pleasant was the milkshake? (0= “Neutral”, 100= 517 
“Extremely pleasant”); How much do you want more of the milkshake? (0= “I don’t want any more 518 
at all”, 100= “I want much more of the milkshake”); How did the milkshake compare to your 519 
expectations? (0= “Worse than I expected”, 50= “As I expected”, 100= “Better than I expected”).   520 

Hunger and Satiety Visual Analog Scales.  Participants reported their perception of 521 
momentary hunger in the overnight fasted state prior to their first  [11C]raclopride and immediately 522 
following consumption of the milkshake: "How hungry do you feel ? (0= “I am not hungry at all", 523 
100= “I have never been more hungry”).   524 

Three Factor Eating Questionnaire (TFEQ). Participants completed the TFEQ, a self-525 
assessment questionnaire developed to measure eating behavior traits of dietary restraint, 526 
disinhibition and hunger.(Stunkard and Messick 1985) at a standardized time during their inpatient 527 
stay.   528 

Yale Food Addiction Scale (YFAS). Participants completed the YFAS, a self-report 529 
questionnaire designed to assess the presence and severity of addictive-like eating of high-fat, high-530 
sugar foods in the preceding 12 months via items adopted from DSM-IV-R diagnostic criteria for 531 
substance use disorders (Gearhardt, Corbin et al. 2009). Participants reported on the frequency of 532 
problematic behaviors (e.g. “I find that when I start eating certain foods, I end up eating much more 533 
than planned.” 0= “Never” through 4= “4 or more times [a week] or daily”) at a standardized time 534 
during their inpatient stay. We report the resulting Symptom Count Scores range from 0 – 7, 535 
computed by summing the scores for each of 7 criterion (0= “Criterion not met”, 1= “Criterion met”).   536 

Food Frequency Questionnaire III (DHQIII; National Cancer Institute). Diet history 537 
questionnaire was completed at the initial visit. Participants were instructed to consider intake 538 
over the “past year” and report portion sizes consumed. Analyses included variable labeled 539 
“Added sugars by total sugar NDSR (grams)”. Outliers were examined across completed 540 
questionnaires from all enrolled participants (n=56). We applied a conservative outlier rule to 541 
exclude implausible reported intakes (Q3 – (IQR*2.2) = max; Q1 – (IQR*2.2) = min)(Hoaglin and 542 
Iglewicz 1987, Burcham, Liu et al. 2023) and three participants were excluded for implausibly high 543 
intake. One participant was removed from the analysis for reporting an intake less than 544 
500kcal/day. A total of 52 eligible dietary histories were eligible for analysis, 45 of which were 545 
from participants with available milkshake PET scanning (pre and post milkshake).  546 
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 547 
Anthropometrics 548 
Height was measured in centimeters using a wall stadiometer (Seca 242, Hanover, MD, USA) 549 
and weight was measured in kilograms using a digital scale (Scale-Tronix 5702, Carol Steam, IL, 550 
USA). All measurements were obtained after an overnight fast while participants were wearing 551 
comfortable clothing.  552 
 553 
Body Composition 554 
During the inpatient stay, participants each completed one Dual Energy X-Ray Absorptiometry 555 
(DEXA) scan while wearing hospital gown/scrubs to determine body composition (General 556 
Electric Lunar iDXA; General Electric; Milwaukee, WI, USA).   557 
 558 
Resting Energy Expenditure 559 
While inpatient, after a 12 hour overnight fast, participants underwent indirect calorimetry using 560 
the ventilated hood technique while supine. Data were collected for 30 minutes and the first 5 561 
minutes were excluded from analysis.  Resting energy expenditure was calculated using the 562 
principles of indirect calorimetry using the VO2 and VCO2 measurements (Weir 1949).    563 
 564 
Analytical Measurements 565 
Blood was collected at three timepoints: in the overnight fasted state, 30 minutes post-milkshake, 566 
90 minutes post-milkshake. Blood samples were drawn into chilled EDTA-coated tubes containing 567 
preservative (glucose: GLT additive; insulin: SST additive) and kept on ice until centrifuged (1600 568 
g for 15 min at 4°C) within 30 min of collection for isolation of plasma.  Samples were processed 569 
immediately after collection and portions stored for future measurement of biomarkers. Glucose 570 
was analyzed using Hexokinase method assayed on Abbott Architect. Insulin was analyzed using 571 
electrochemiluminescence Immunoassay on Roche Cobas e601 analyzer.  572 
 573 
Area under the glucose and insulin curves (AUC)  were calculated using trapezoidal method. We 574 
report on exploratory Metrics of 90-minute weighted average (AUC / 90 minutes), absolute change 575 
in values between time points, and peak change from baseline over available data (at either 30 576 
minutes or 90 minutes post milkshake) and present a repeated measures ANOVA with 3 within 577 
subjects factors (time) and group membership (whole striatal “Responder” vs “Non-responder”) 578 
as between-subject factor (Supplementary Figure 5). The HOMA-IR value was calculated as 579 
follows: [HOMA-IR = fasting glucose (mg/dL) × insulin (mcU/L)/405].  580 
 581 
Magnetic Resonance Imaging 582 
During their inpatient stay, MRI was completed to collect high resolution T-1 weighted structural 583 
brain images on which to register individual subject PET data. Due to the duration of data 584 
collection, extended by the COVID-19 pandemic, T1 weighted structural MRIs were collected on 585 
3T Siemens Verio (n=21; TE = 2.98 ms, TR = 2.3 ms, TI = 900 ms, flip angle 9°, slice thickness 586 
= 1.2 mm, voxel size 1*1*1.2mm), and on 3T GE MR-750 Discovery scanner (n=6, TE = 3.04 ms, 587 
TR = 7.648 ms, TI = 1060 ms, flip angle 8°, slice thickness = 1.0 mm, voxel size 1*1*1mm;  n=32, 588 
TE= 3.46 ms, TR = 8.156 ms, TI = 900 ms, flip angle 7°, slice thickness = 1.0 mm, voxel size 589 
1*1*1 mm) for each subject. Quality of individual subject data were checked by study team [VLD 590 
& JG].  591 
 592 
The anatomical images were parcellated with FreeSurfer software to generate ROI binary mask 593 
volumes in each subject in the putamen, caudate, accumbens, pallidum, and the cerebellum 594 
(reference region) (http://surfer.nmr.mgh.harvard.edu). All individual ROI masks were visually 595 
checked.  596 
 597 
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Positron Emission Tomography 598 
All PET scanning was performed using a High Resolution Research Tomograph (HRRT), 599 
(Siemens Healthcare, Malvern, PA), a dedicated brain PET scanner with resolution of 2.5 - 3.0 600 
mm and a 25 cm axial field of view. Transmission scanning was performed with a 137Cs rotating 601 
point source scan to correct for attenuation. A bolus of approximately 20 mCi of [11C]raclopride 602 
was infused intravenously using a Harvard® pump at both the fasting and post-milkshake scans.  603 
 604 
The molar activity of [11C]raclopride was approximately 4865 mCi/µmol and the radiochemical 605 
purity of the radiotracer was >90%. PET emission data for [11C]raclopride were collected starting 606 
at radiotracer injection over one block lasting 75 minutes. Twenty-four frames were acquired in 607 
list mode at times 0, 0.5, 1, 1.5, 2.0, 2.5, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 608 
65, 70 min.  During each scan block, the room was illuminated and quiet, and each subject was 609 
instructed to keep their head as still as possible, relax, and try to avoid falling asleep. The image 610 
reconstruction process corrected for head motion which was tracked throughout each scan using 611 
an optical head tracking sensor (Polaris Vicra, Northern Digital Inc., Shelburne, VT, USA).  612 
 613 
Each scan consisted of 207 slices (slice separation = 1.2 mm). The fields of view were 31.2 cm 614 
and 25.2 cm for transverse and axial slices, respectively. The PET images were aligned within 615 
each scan block with 6-parameter rigid registration using 7th order polynomial interpolation and 616 
each block was aligned to the volume taken at 20 min of the first block. The final alignments were 617 
visually checked, with translations varying by <5 mm and the rotations by <5 degrees.  618 
 619 
For region of interest analyses, individual participants’ anatomical MRI images were co-registered 620 
to the aligned PET images by minimizing a mutual information cost function for each individual 621 
participant. Time-activity curves for each tracer concentration in the Freesurfer-generated ROIs 622 
were extracted and kinetic parameters were fit to a two-compartment model (with the cerebellum 623 
used as the reference tissue given negligible D2/3R specific binding (Vandehey, Moirano et al. 624 
2010) to determine regional D2BP (Lammertsma and Hume 1996).   625 
 626 
For voxelwise analyses, each individual’s anatomical MRI was nonlinearly transformed into the 627 
Talairach space using AFNI 3dQwarp, and the transformation matrix was applied to the PET 628 
images which were then smoothed with a 5-mm full-width, half-max Gaussian kernel. Final 629 
coregistration was visually checked. Data were exported from Talairach space to MATLAB where 630 
time-activity curves for tracer concentration in each voxel were fit to a kinetic model using the 631 
cerebellum as a reference tissue to determine D2BP at each voxel and exported back to Talairaich 632 
space for group level spatial analyses.  633 
 634 
Statistics 635 
Power calculations based on 80% of power and 5% of type I error indicated a sample size of 39 636 
participants to detect a nonlinear relationship between fasting striatal D2BP and BMI which was 637 
the first primary aim of this study (Darcey, Guo et al. 2023). To follow up on an exploratory 638 
preliminary finding using n=13 of BMI-dependent dopamine release in the ventral pallidum 639 
(r=0.586; p=0.045), we increased the sample size to 50 distributed evenly across 3 BMI strata to 640 
detect r>0.6 at p<0.05 and > 80% power. Our recruitment exceeded the minimum sample size 641 
requirement. We report here results for the full sample. The much smaller previous studies 642 
showing a dopamine effect suggested that this was more than ample to detect an effect of the 643 
milkshake.  644 
 645 
Statistical analyses were performed using IBM SPSS Statistics (Version 28.0.1.1, Chicago, IL, 646 
USA). Tests were 2-sided and alpha was set to 0.05. In the ROI analyses, associations between 647 
either BMI or percent body fat and percent change in D2BP between fasting and milkshake scans 648 
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were evaluated with regression analyses. Person correlation coefficients were also reported. 649 
Robustness of associations was tested using SPSS extension for Robust Regression.  650 
 651 
In the voxel-wise analyses, regional clusters where D2BP’s are highly correlated with BMI were 652 
identified with regression analysis in AFNI’s 3dttest++ (https://afni.nimh.nih.gov/). Since high 653 
D2BP occurs mainly in striatum, small volume corrections were implemented within each 654 
hemisphere where D2BP >1.5. A bi-sided uncorrected voxel-wise threshold of p<0.1 was used 655 
with a cluster extent minimum of 20 voxels (faces touching). Resultant clusters were deemed to 656 
survive correction for multiple comparisons using 3dClustSim at alpha of <0.05 and a threshold 657 
of 34 voxels.  658 
 659 
Keywords  660 
Obesity, controlled-feeding, ultra-processed, dopamine, [11C]raclopride, PET, striatum 661 
 662 
Study Approval 663 
All study procedures were approved by the Institutional Review Board of the National Institute of 664 
Diabetes & Digestive & Kidney Diseases and the NIH Radiation Safety Committee. Written 665 
informed consent was received prior to participation and compensation was provided. 666 
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