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ABSTRACT 
Background 
Genetic disease is common in the Level IV Neonatal Intensive Care Unit (NICU), but neonatology 
providers are not always able to identify the need for genetic evaluation. We trained a machine learning 
(ML) algorithm to predict the need for genetic testing within the first 18 months of life using health record 
phenotypes. 

Methods 
For a decade of NICU patients, we extracted Human Phenotype Ontology (HPO) terms from clinical text 
with Natural Language Processing tools. Considering multiple feature sets, classifier architectures, and 
hyperparameters, we selected a classifier and made predictions on a validation cohort of 2,241 Level IV 
NICU admits born 2020-2021.  

Results 
Our classifier had ROC AUC of 0.87 and PR AUC of 0.73 when making predictions during the first week 
in the Level IV NICU. We simulated testing policies under which subjects begin testing at the time of first 
ML prediction, estimating diagnostic odyssey length both with and without the additional benefit of 
pursuing rGS at this time. Just by using ML to accelerate initial genetic testing (without changing the tests 
ordered), the median time to first genetic test dropped from 10 days to 1 day, and the number of 
diagnostic odysseys resolved within 14 days of NICU admission increased by a factor of 1.8. By 
additionally requiring rGS at the time of positive ML prediction, the number of diagnostic odysseys 
resolved within 14 days was 3.8 times higher than the baseline. 

Conclusions 
ML predictions of genetic testing need, together with the application of the right rapid testing modality, can 
help providers accelerate genetics evaluation and bring about earlier and better outcomes for patients.   
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BACKGROUND 
Genetic diseases are a leading cause of infant morbidity and mortality.  As such, they are also a 

common cause of Neonatal Intensive Care Unit (NICU) admission, particularly level III and IV NICUs1–4. 

By far, the most common are easily recognizable, classical, aneuploidies such as trisomies 13, 18, and 

215–7. However, there are more than 10,000 genetic disorders which, while individually rare, are 
collectively common8,9. Each of these may manifest as a complex phenotypic presentation and may not 

be easily recognizable by neonatologists or even geneticists who have not been trained to recognize the 

neonatal manifestations of many disorders, particularly in premature infants10. Indeed, even though 

genetic disorders are relatively common in NICUs, many patients do not receive a diagnosis until after 

discharge11,12. In such a high acuity care setting and in an era where precision therapies are increasingly 

available13, there is urgent need to shorten the diagnostic odyssey for neonates admitted to the NICU. 

Exome Sequencing (ES) and Genome Sequencing (GS) are broad genetic tests capable of 

capturing the genomic variation responsible for most genetic diseases for which an etiology is known14. 
Rapid GS (rGS) has been implemented in several patient care settings with turnaround time of <7-10 

days15. Providers and patient families alike have reported high utility, even in cases where no diagnosis 

was made16. While rGS has a higher unit cost than narrower tests, the broader, more comprehensive 

nature of such testing makes it a more cost-effective choice in many settings, particularly early in a NICU 

course17,18. 

Much of the current burden of making genetic testing decisions in the NICU – particularly 

consulting the Genetics service – lies with neonatology providers, who may not be ideally equipped, or 
confident in their ability, to make these decisions19,20. It is at this stage that providers and patients could 

benefit from machine-aided recommendations for who is likely to need genetic testing in the future. 

Additionally, because, in many states, the upfront cost of the genetic testing is absorbed by the NICU but 

the benefits of cost saving accrue to the payor, many centers engage in utilization review which either 

limits access to all genetic testing or restrict testing to narrower tests21. Because of the paucity of experts 

in genetics and neonatology available at many centers to lead efforts to optimize patient selection for 

early, broad genetic testing, we developed a Machine Learning (ML) model to predict the need for early-

in-life genetic testing based on phenotypic data harvested from the Electronic Health Record (EHR). 
Compared to previous efforts in this area, we study a larger cohort of neonates, investigate more 

complex model architectures and feature sets, and set our sights on a fundamentally different predictive 

target. Rather than training a model training to predict diagnoses or to replicate existing provider 

decisions to pursue a specific test such as microarray22, ES, or GS23, we set out to train the model to 

recognize the phenotypic presentations of patients who go on to receive a wide range of genetic tests in 

the hope that accurate predictions can, in future studies, be used to inform high utility, cost effective, 

genetic testing practices in Level IV NICUs.  
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METHODS 
Cohort  

Our study population consisted of N=33,315 patients admitted to a Nationwide Children’s Hospital 

(NCH) Neonatal Network NICU who were born between 1 January 2010 and 31 December 2021. The 

NCH Neonatal Network consists of 6 Level III NICUs at delivery centers and 1 Level IV NICU in central 

Ohio. Neonates in NICUs in the Neonatal Networked are cared for Neonatologists from 3 practices (1 
academic, 2 private) and a common pool of Neonatal Nurse Practitioners and Physicians’ Assistants 

using a shared EHR with clinical and administrative data collected in a single Research Data Warehouse 

(RDW). Within the neonatal network, patients are assigned a unique identifier which allows self-self 

linkage of data from delivery centers with data from the Level IV NICU. Patients admitted to the Level IV 

NICU from outside of the Neonatal Network are not linked to data from the referring center aside from 

basic demographic and administrative data including birthweight and gestational age at birth. Patients 

who return to NCH for post-ICU care (including genetics referral/consultation or genetic testing ordered 
within the NCH EHR) have their data captured in the RDW with self-self linkage to the data from the NICU 

hospitalization. 

Data Acquisition & Study Definitions 
For each subject, birthweight, gestational age at birth (GA), all available lab tests, genetics 

consults and referrals, and International Classification of Disease (ICD) 9 and 10 codes for the length of 

their entire health record were obtained from the NCH RDW. Clinical note text, when available, from the 

NICU was processed by ClinPhen24 to produce a set of Human Phenotype Ontology (HPO)25 terms to 

represent the phenotypic profile of each patient. While metadata such as age when a specific phenotype 

or ICD code was first noted in the medical record was available, each subject was assigned a single 
phenotypic profile summarizing their entire NICU course. Subjects readmitted to the NICU only had their 

initial hospitalization characterized in this way.  

Lab tests were marked as genetic or non-genetic, with the “genetic” class including ES/GS, single 

gene or panel next-generation sequencing (NGS) tests, microarrays, karyotypes, Fluorescent In Situ 

Hybridization, methylation, repeat, and uniparental disomy testing.  

We identified patients in our study cohort with at least one of the following in the NCH medical 

record, appearing before 18 months of age, for further review: (1) an order for a genetic test, (2) a consult 
with a medical geneticist, or (3) an ICD code signifying a disease with known genetic etiology, including 

classical autosomal aneuploidies. The charts of patients who had (2) or (3) but no genetic testing in our 

medical record system, were reviewed to assess whether they received genetic testing elsewhere. 

Subjects with a genetic test were given an outcome label of genetic. All other subjects were labelled non-

genetic.  The 18-month threshold for initial suspicion of genetic diagnosis was chosen under the rationale 

that their eventual genetic evaluation might have been motivated by common developmental and 
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behavioral phenotypes, like autism, rather than phenotypes related to the underlying reasons for their 

NICU hospitalization.  

Within the genetic group, we made the additional determination of whether each subject had a 

confirmed diagnosis as opposed to simply a history of non-diagnostic testing. Specifically, diagnoses of 
trisomy 13, 18, or 21 were found by searching History and Physical Examination (H&P) notes to identify 

patients with positive prenatal screens or diagnostic tests, which are frequently coded in the mother’s 

health record and not the newborn’s. Regular expressions were used to match phrases indicating (1) 

diagnosis or positive prenatal screen and (2) trisomy 13, 18, or 21, or any of the corresponding syndrome 

names for these diseases. Any patient with a sentence in an H&P note matching (1) and (2), subject to 

subsequent chart review, was also labeled as having a common autosomal aneuploidy. 

 

 

Figure 1: Modified CONSORT/Study Flow Diagrams for Training and Validation Cohorts. The full 
data set was split into subjects born between 2010 and 2019 (for model selection and training) and 
subjects born between 2020 and 2021 (for model validation). Each step in the diagram shows how many 
subjects met (and how many failed to meet) the inclusion criteria. 
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Cohort Description 
Training Validation 

18587 2241 

Sex, n (%) 
Male 10358 (55.7) 1252 (55.9) 

Female 8229 (44.3) 989 (44.1) 

Race, n (%) 

White 12058 (64.9) 1545 (68.9) 

Black or African American 3419 (18.4) 367 (16.4) 

Unknown 1230 (6.6) 107 (4.8) 

Multiple race 1273 (6.8) 163 (7.3) 

Asian 533 (2.9) 54 (2.4) 

Other 39 (0.2)   

American Indian or Alaska Native 19 (0.1) 5 (0.2) 

Native Hawaiian or Other Pacific Islander 16 (0.1)   

Ethnicity, n (%) 
Not Hispanic or Latino 17148 (92.3) 2101 (93.8) 

Unknown 937 (5.0) 74 (3.3) 

Hispanic or Latino 502 (2.7) 66 (2.9) 

GA (wks), mean (SD)   35.1 (4.5) 35.3 (4.7) 

BW (kgs), mean (SD)   2.5 (1.0) 2.5 (1.1) 

Outcome, n (%) 
Genetic Test or Dx (Non-trisomy) 2511 (13.5) 495 (22.1) 

Negative 16076 (86.5) 1726 (77.0) 

Trisomy   20 (0.9) 

Known Dx, n (%)   685 (3.7) 156 (7.0) 

Known GS, n (%)   245 (1.3) 105 (4.7) 

 
Table 1: Training and Validation Cohort Summary. For categorical variables, the counts and 
percentage of each within the training and validation cohorts, respectively, are shown. For continuous 
variables, the mean and standard deviation within the training and validation cohorts are shown. 
(wks: weeks; kgs: kilograms; SD: standard deviation; GA: gestational age; BW: birth weight; Dx: 
diagnosis; GS: genomic sequencing). 

Model Development 
Training-validation split 

Training and validation data were separated from each other by splitting the cohort, based on 
birthdate, at the date January 1, 2020 (Figure 1). The training set consisted of 18,587 NCH NICU patients 

born before 2020 for whom clinical text, birth weight (BW), and gestational age (GA) data were available, 

after excluding patients with known common autosomal aneuploidy. For validation, 2,241 patients born on 

or after January 1, 2020, and for whom all data were available, were set aside. The genetic and non-

genetic labels corresponded to the positive and negative classes for ML classification, though patients 

with a known common autosomal aneuploidy were excluded from model training. Patients diagnosed with 
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common autosomal aneuploidies were included in the positive class of the validation cohort; however, as 

a sensitivity analysis, we also calculated classification performance metrics excluding predictions made 

for these patients. 

Model features & Feature Engineering 
BW was converted to Fenton 2013 sex and GA-adjusted Z-score using the PediTools bulk 

calculator26. GA was divided into bins bounded by 28, 32, 35, 37 completed weeks of gestation. 

Additional features to represent phenotypes were calculated from each patient’s set of EHR text-derived 

HPO terms (Figure 2). The HPO consists of more than 16,000 terms, making representation of each term 

infeasible for machine learning given our sample size. We instead chose a representative set of terms to 

act as a feature set, selecting terms for the density of information contained in their descendant terms in 
the HPO graph. We explored, but ultimately did not use, representations based on depth below the root 

node of the HPO directed acyclic graph, as well as encoding of feature values as present or absent. Here 

we describe the approach which was ultimately selected (See supplement for details on feature sets and 

models considered but not selected). 

We borrowed the formulation of Information Content (IC) from Phrank, derived from HPO’s 

phenotype-gene associations, to act as a value function for sets of HPO terms27. The Information 

Potential Ratio (IPR) of a term 𝑥, meant to encode the density of information in the set of terms logically 

entailing 𝑥 relative to the specificity of 𝑥 itself, was calculated as 

𝐼𝑃𝑅(𝑥) =
𝐼𝐶)descendants(𝑥)1

𝐼𝐶(𝑥)  

We chose as our representative set the collection of terms with 𝐼𝑃𝑅(𝑥) ≥ 10, accounting for 

hierarchical redundancy by removing any terms in 𝐹 with descendants also belonging to 𝐹. This left a set 

𝑅 of 77 representative terms. 

Letting 𝑋!"#$ be the set of HPO terms in a subject’s EHR text and letting 𝑥 in 𝑅 be one of the 

representative feature terms, the subject’s feature value for the term 𝑥 was calculated the total IC of all 

terms in 𝑋!"#$ which logically entail or are logically entailed by 𝑥; that is, 

𝐼𝐶%#&'&()*+&,-./(subject) = 𝐼𝐶(𝑋!"#$ ∩ descendants(𝑥) ∩ ancestors(𝑥)) 

 With 77 features encoded as above along with the male sex binary indicator, the one-hot 

encoded GA bins, and the Fenton 2013 BW Z-score, the model was provided with 83 input features. 
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Figure 2. Creation of ML features from raw input data. Each raw data element undergoes 
preprocessing to make it usable as ML input. Biological sex is a categorical field which is encoded for the 
model as a one-hot encoded indicator of being male or not. Gestational Age at birth (GA), measured in 
weeks, is categorized as belonging to at most one of the intervals [0,28), [28,32), [32,35), [35, 37), and 
indicator variables are input to the model accordingly. Birth weight (BW) is transformed to a sex and GA-
adjusted Fenton 2013 Z-score. Clinical notes are processed by ClinPhen, which extracts HPO terms. The 
set of all extracted HPO terms is then rolled up by logical entailment to any selected terms in the set of 77 
representative feature terms, with value equal to IC of the set of terms associated to each representative 
feature term. 

Model selection 
A grid search was carried out in scikit-learn using 10-fold cross validation on the training set. The 

grid search considered feature sets, feature encodings, four classifier architectures – Naïve Bayes, 

Logistic Regression, Random Forest, and XGBoost – and classifier specific hyperparameters. Models 

were evaluated on the fold mean of their Precision Recall (PR) area under curve (AUC) cross-validation 

score. To balance model performance on the training set with overall complexity of the model and feature 
set complexity, we a priori determined to select the most parsimonious model with training PR AUC 

scores within 0.01 of the best-performing model. The final selected classifier was retrained on the full 

training data set, using all phenotype data available through the end of the NICU stay. The classifier was 

then isotonically calibrated and the Brier loss was calculated before and after calibration. 

Measuring classification performance 
We evaluated the model’s ability to predict genetic testing need by simulating the accrual of 

phenotypic information over the first 7 days of NICU stay for all subjects in the test set and accumulating 

the predictions made by the model on each day during this period. For each day in the level IV NICU, we 
truncated the feature matrix to include only information available for subjects remaining in the Level IV 

NICU at that time. Each subject’s final prediction probability was equal to the maximum of the classifier’s 

prediction probabilities over the 7-day simulation. The Receiver Operator Characteristic (ROC) AUC and 

the PR AUC scores were calculated for the classifier’s predictions. To account for the effect of the 

classical aneuploidies on positive predictions, we also report AUC scores for the validation cohort after 

excluding these patients. Additionally, to mitigate the effect of skew on minimum achievable PR AUC, we 

report a normalized PR AUC score28. 
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Each classifier considered returns a calibrated confidence score in the interval [0,1] which is the 

predicted probability that the given patient will receive genetic testing or obtain a genetic diagnosis within 

the first 18 months of life. A particular recommendation model can be derived from the classifier by fixing 

a probability threshold 𝜏; that is, the model recommends a test when the classifier probability is ≥ 𝜏. The 

ROC AUC and PR AUC scores mentioned above account for this, measuring classifier performance 

across the full range of decision thresholds. For the evaluation of bias and estimates of benefit, where 

binary predictions are required, we fixed a probability threshold which yielded maximum F1 score on the 
validation set (other thresholds are considered in the supplement). 

Estimation of benefit and cost 
We measured the potential impact of model recommendations on diagnostic odyssey length by 

simulating different clinician responses to the recommendations.  The diagnostic odyssey length was 

defined as the number of days from Level IV NICU admission to last known genetic test result or 

molecular genetic diagnosis, censored at 18 months. Subjects who had testing but never received a 

diagnosis or had ES/GS were considered not to have completed their diagnostic odyssey. Subjects who 

initiated testing before 18 months but whose odysseys continued beyond 18 months were censored at 18 

months.  
The diagnostic odyssey can be thought of as including two segments: the initiation time: the time 

from Level IV NICU admission to the first test ordered; and the testing duration: the time from first test 

order to final test result, which may span months or years. The first segment can be shortened by 

encouraging early testing, and the second can be shortened by encouraging rapid testing such as rGS.  
We simulated 5 policies for applying ML recommendations and rGS to explore the relationship 

between these aspects of shortening diagnostic odysseys. For simulations including rGS, we 

approximated rGS turnaround time from sample collection to final result as an exponential random 
variable with a rate parameter of 5 days, based on turnaround times observed from previous studies of 

rGS implementation29. 
(1) Actual odyssey served as a baseline, modeled using the actual diagnostic odyssey length 

measured from patient data.  

(2) ML-initiated testing only changes the initiation time, reducing the time to first test for subjects 

who received a positive ML prediction while not altering the testing duration (test initiation 

time remains the same for subjects who received a negative predictions). 

(3) ML-initiated rGS changes the initiation time and replaces all testing with rGS for all subjects 
with a positive ML recommendation.  

(4) Only rGS, no ML was modeled by leaving the test initiation time unchanged but replacing all 

testing with rGS. 

(5) Only rGS + ML supposed that every subject received rGS as their first and only test, but 

patients with positive ML predictions started testing on the day of their positive prediction. 
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For policies (2) and (3), the odysseys of subjects with negative ML predictions were left unchanged from 

the actual diagnostic odyssey, so only subjects who received positive predictions could receive benefit. 

We defined “completion of diagnostic odyssey” as a subject receiving either a diagnosis or genomic 

sequencing test.  
 We assessed the isolated effect of ML recommendations on shortening time to test initiation by 

measuring median and IQR test initiation times with and without ML recommendations. To test the 

combined effect and pairwise differences between the policies (1)-(5) outlined above, we used Kaplan-

Meier estimators right-censored at 18 months, log-rank tests for significance, as well as pairwise 

McNemar tests for the significance of differences in the number of subjects completing diagnostic 

odyssey within 14 days of Level IV NICU admission under each policy.  

Evaluation of model bias 
Bias relative to patient characteristics: sex, race, ethnicity, gestational age 

Bias in this problem may stem from the underlying representation of demographic groups in our 

data, genetics utilization practices to date and resulting consequences on labelling, or the predictive 

behavior of the model itself30. We considered the impact of these factors across subpopulations defined 

by the characteristics: sex, race, ethnicity, and GA12. 

To evaluate biases in the underlying data, we stratified the validation cohort by each population 

characteristic, making pairwise comparisons of the 95% confidence intervals for each subpopulation. We 
deemed a subpopulation difference to be significant if the intervals were entirely disjoint; otherwise any 

differences were not considered significant.  

Biases related to the model’s predictive behavior were assessed by a similar comparison 

between each subpopulation’s confidence intervals for the proportion of positive ML predictions, 

precision, and recall30.  

We also assessed the differences in test initiation times for the genetic subgroups of each 

subpopulation by comparing confidence intervals for the actual time at which testing was initiated (Policy 

1) and for the ML-modified testing initiation time (Policies 2, 3, 5). 

Bias relative to patient outcomes: diagnosis and genomic sequencing utilization 
As previous work in this area has focused on predicting whether a child has a genetic 

diagnosis22,31 or received GS23, we also sought to characterize the model’s performance with respect to 

these targets. We followed the same line of analysis for differences observed between subgroups of 

subjects who experienced different outcomes. Specifically, we split the genetic group in the validation 
cohort with respect to whether a subject received genomic sequencing and whether they ever received a 

genetic diagnosis. To examine interaction effects, we simultaneously split by both these outcomes. 

Because these are all subpopulations of the genetic group, only recall and test initiation times could be 

sensibly compared between outcome subgroups.  
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Feature importance  
SHapley Additive exPlanations (SHAP) values were calculated to measure the importance of 

features in making positive and negative predictions32. The top features were determined to be those with 

highest mean absolute SHAP values taken over all subjects in the validation cohort. Furthermore, at a 

fixed classification threshold, SHAP values were calculated for the subsets of the validation cohort 

corresponding to false positive and false negative predictions and top features were recalculated for 

these subsets to probe the relationships between feature importance and specific failure modes.  
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RESULTS 
Selected classifier 

The model from the parameter grid search with the best 10-fold averaged PR AUC score (0.703) 

was an XGBoost Classifier with a set of 441 IC-encoded HPO features, corresponding to an IPR 

threshold of 10. However, an XGBoost with 83 total features (77 IC-encoded HPO features at an IPR 

threshold of 100) achieved a fold-averaged PR AUC score of 0.70 and ROC AUC or 0.89. This was the 
smallest feature set which yielded a training PR AUC score within 0.01 of the best-scoring classifier, so 

the corresponding model was chosen. This model was retrained on the complete NICU stays of all 

subjects in the training set and then isotonically calibrated, bringing its Brier loss score from 0.11 to 0.10. 

Classification performance 
As the predictions included information ranging from 1 to 7 days in the Level IV NICU, 

performance of the model slightly improved, with test set ROC AUC scores rising from 0.86 to 0.87, and 

PR AUC score rising from 0.72 to 0.73 (Figure 3). Excluding the 20 patients with classical aneuploidies 

did not materially affect these results (see supplement). The classifier’s skew-normalized PR AUC was 
0.69.  

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.24.24309403doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.24.24309403
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Figure 3. Prediction performance at each timestep. For the first 7 days in the Level IV NICU, 
predictions were made at each day for each subject based on the maximum probability score calculated 
by the classifier through the current day. The blue and red curves represent ROC and PR AUC scores, 
respectively, at the given prediction timepoint, where each subject’s prediction probability on a given day 
was equal to the maximum of prediction probabilities on that day and all previous level IV NICU days. The 
dashed lines indicate the score using predictions made with phenotypic information from the full NICU 
stay.  

 
Figure 4. Classification curves for 7-day accumulating predictions. (a) ROC curve; (b) PR Curve; (c) 
Recall versus positive prediction rate; (d) Precision vs overall positive prediction rate. Markers indicate 
decision boundaries maximizing validation cohort F1, F2, F0.5, and Youden J scores.  

For the remainder of the analyses where binary predictions are required, we report those made 

by the F1 model which recommends testing when the predicted probability is at least 0.21. Other potential 

thresholds for binary classification and their implications for true and false positive rates are shown in 

Figure 4.  
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Simulated diagnostic odysseys and estimated benefit 
Reduction of Time to Initial Testing with ML Recommendations 
 We compared the actual time at which initial genetic testing was ordered to the hypothetical time 

at which the ML model would have recommended testing (Figure 5). Applying ML recommendations 

dropped the median test initiation time from 10 days to 1, and the 75th %-ile initiation time from 54 to 2 

days (p<0.01 for both differences).  

 
Figure 5. Parallel plot comparing test initiation times with and without ML. The points on the left 
show the day of Level IV NICU hospitalization on which each subject’s first test was ordered. The points 
on the right show the hypothetical time at which each subject would initiate testing under the 
recommendations of the ML model. The line connecting a subject’s actual time to their hypothetical time 
is blue if the ML model made a positive prediction; otherwise the line is grey.  

Simulated time to diagnostic odyssey conclusion 
Compared to actual diagnostic odysseys (Policy 1 – Actual Odyssey, Methods), which were 

concluded within 14 days in only 15.2% of actual cases, initiating testing based on ML recommendations 

(but not changing any of the test selection; Policy 2 – ML-Initiated Testing, Methods) increased this to 

28.3% (p<10-30). Enacting Policy 3 (ML-initiated rGS, Methods) led to completion of diagnostic odysseys 

withing 14 days in 72.4% of cases (p<10-22 vs. Policy 2). Under Policy 4 (Only rGS, no ML), only 49.5% of 
diagnostic odysseys are completed within 14 days (p<10-24 vs Policy 3). Finally, an “optimal” policy where 

the only genetic test ordered is rGS and testing initiation is informed by ML predictions (Policy 5, 

Methods) increases completion of diagnostic odysseys by 14 days to 79.0% (p<2.5´10-4 vs Policy 4). A 
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comparison of the Kaplan-Meier curves for the strictly comparable Policies 1, 2, 3 and 5 by log rank test 

demonstrates that Policy 2 is superior to Policy 1 (p<5´10-8) and Policies 3 and 5 are superior to Policy 2 

(p<10-6) but they are not statistically different from each other (Figure 6). 

 
Figure 6. Time to diagnostic odyssey completion under simulated recommendation policies. Under 
the three policies – no model, ML-initiated testing, and ML-initiated rGS – we measure the time taken for 
all positively labelled subject in the test set to complete their diagnostic odyssey. The horizontal axis 
measures the number of days after Level IV NICU admission, log scaled. The vertical axis measures the 
fraction of all positively labelled subjects in the test set – those with known genetic testing or diagnoses – 
who have received a genetic diagnosis or GS test by the specified timepoint. The different policies 
include: Actual odyssey (black); ML-initiation (blue) doesn’t change the tests ordered, just the time at 
which testing starts; ML-initiated rGS (orange) assumes rGS is ordered at the time a positive prediction is 
made; only rGS with no ML (purple) replaces all initial test orders with rGS but does not change the time 
at which the test was ordered; only rGS with ML (pink) replaces all initial orders with rGS, and accelerates 
the initial order time in the case of positive predictions. 

Impact of recommendations on test utilization 
Considering Policy 3 as the best performing policy, we consider testing utilization changes. Under 

Policy 3, 621 patients, or 27.7% of the validation cohort are recommended for rGS. However, these 

recommended rGS would replace tests for 373 patients who did undergo genetic evaluation 
(precision=0.60), including 74 karyotypes, 184 microarrays, and 187 single gene or gene panel next 

generation sequencing tests. Additionally, 93 of these individuals would have gone on to receive ES/GS 

without the model’s recommendation. Notably, the model recalled 19/20 patients with a known classical 

aneuploidy. Of these, 18 were already diagnosed by day 1 of patient’s Level IV NICU stay, and thus 

received no benefit from the rGS recommendation. 
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The 621 recommendations for testing under Policy 3 include 248 potentially erroneous test 

recommendations (False Positives) for patients who did not otherwise have any involvement with 

genetics as prospectively defined for this study (Policy 1). However, a manual chart review of these 

subjects in April and May 2024 revealed 6 had begun diagnostic odysseys after 18 months of age, 10 had 
a confirmed molecular diagnosis or testing apparent from chart narratives, and 62 were judged by an 

expert in inpatient genetic consultation (BPC) to likely meet current standards for genetic testing in the 

study NICU. The most commonly identified recurrent cause of false positives was prematurity (N=20). 

Classification bias across patient characteristics 
 No differences were found between the male and female subpopulations for any of the quantities 

measured: “genetic” prevalence, positive prediction rate, precision, and recall. 

A lower positive prediction rate was noted in the unknown race subpopulation than in the Asian, 

Black or African American, or White subpopulations, as observed by non-overlapping confidence 

intervals. Otherwise, there were no significant pairwise differences between racial groups for genetic 
prevalence, precision, or recall.  

 The unknown ethnicity subpopulation had a lower rate of positive prediction than the Non-

Hispanic or Latino subpopulation, but no other significant differences were observed between ethnic 

subpopulations for any of the other measurements.  

The fraction of “genetic” subjects and the positive prediction rate were lower in patients born < 32 

weeks GA than in subjects born ≥ 35 weeks. Additionally, the rate of positive predictions was lower for 

subjects born < 28 weeks than for all subjects born ≥ 32 weeks. No significant differences in precision 
were observed between GA groups, but model recall was better for subjects born ≥ 35 weeks than for 

subjects born < 28 weeks.  

 Though we have mentioned the significant pairwise differences above, all pairwise comparisons 

can be made from Figure 7. We additionally examined subpopulation differences in actual time to test 

initiation (Policy 1) and ML-initiated testing (Policy 2, 3, 5). The only significant difference between 

subpopulations was that the unknown ethnicity subpopulation had shorter time to testing under all policies 

than the non-Hispanic or Latino subpopulation. Full details of all subpopulations’ test initiation times can 

be found in the Supplement. 
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Figure 7. Bias by patient characteristics. Shown above are 16 subplots; rows correspond to population 
characteristic: sex, race, ethnicity, gestational age. Columns correspond to quantity measured: genetic 
fraction of subpopulation, rate of positive ML prediction, precision, and recall. Each subplot (e.g. the top 
rightmost set of bars) shows the given metric (e.g. recall) for each subpopulation corresponding to the 
given patient characteristic (e.g. sex). Error bars indicate a 95% confidence interval for the given metric, 
and the black dashed lines show the value of each metric for the full validation cohort. 

Bias with respect to genetic outcomes 
The model recalled 123/156 (78.8%) of subjects who would have eventually received a genetic 

diagnosis, versus 250/359 (69.6%) of subjects with genetic involvement but no known diagnosis. ML 

recalled 93/104 (89.4%) of subjects who had ES/GS versus 280/411 (68.1%) of subjects who did not. 

We also considered recall and test initiation time while simultaneously splitting by both of these 

outcomes, for a total of 4 subgroups of the “genetic” group. The model recommended 191/293 (65.2%) of 

subjects with no known diagnosis or GS, the lowest recall among the four outcome groups. For patients 
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with a diagnosis but no GS, 89/118 (75.4%) were recommended by the model. The remainder of patients, 

who had GS testing, were the most easily recalled by the model; 34/38 (89.5%) of those with known 

diagnosis and 59/66 (89.4%) of those with no known diagnosis. The differences between “No diagnosis 

and no GS” and the groups who had GS – with or without receiving a diagnosis – were found to be 
statistically significant by non-overlapping 95% confidence intervals, but the remaining differences were 

not (see Supplement). 

When considering the actual test initiation time (Policy 1, Methods), we observed that 

undiagnosed patients who received ES/GS had significantly longer time to test initiation than diagnosed 

and undiagnosed patients who had not received GS. However, under ML-initiated testing (Policy 2, 3, 5, 

Methods), none of the subgroups differed significantly in time to initial test order (Figure 8) 

 
Figure 8. Test initiation time confidence intervals for genetic outcome subgroups. For each 
outcome group determined by whether a subject received a diagnosis and whether they received exome 
or genome sequencing, 95% confidence intervals are shown in blue for their actual time from first test 
order (Policy 1, Methods) and in red for the time of first test order with ML-initiated testing (Policy 2, 3, 5). 

Feature importance 
The features most important to informing model predictions overall, as measured by mean 

absolute SHAP values, were Abnormal heart morphology, abnormal facial skeleton morphology, GA < 28 

weeks, abnormal pinna morphology, and abnormal nasal morphology (Figure 9). The features most 

important in false positive predictions included abnormal heart morphology, abnormal facial skeleton 

morphology, GA < 28 weeks, neurodevelopmental abnormalities, and BW z-score. False negative 

predictions were most informed by abnormal heart, nasal, pinna, and facial skeleton morphology, as well 

as GA < 28 weeks (see Supplement for SHAPs in FP and FN).  
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Figure 9. SHAP Beeswarm plot. A visualization from the SHAP package of feature importances. The 
features of the classifier with highest mean absolute Shapley values are shown on the vertical axis, and 
the horizontal axis shows the SHAP value, indicating the degree to which the feature influences positive 
predictions. Individual points correspond to individual subjects in the test data, and the color of the point 
indicates whether the input value for the given feature was high or low. Feature names other than “GA in 
[0,28) weeks” and “Fenton_2013_weight_z_score” correspond to Human Phenotype Ontology concept 
labels, with “Abnormal Heart Morphology” abbreviated to “Heart Morphology”, and similarly for other 
“Abnormality of …” or “Abnormal …” features. (CNS: central nervous system). 
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DISCUSSION 
Classifier Strengths and Weaknesses 

A key strength of the classifier described in this work includes a novel target for supervised 

machine learning (future utilization of genetic testing generally as opposed to use of rGS or microarray) 

which, in combination with our center’s robust data warehouse, allowed us to train and test our classifier 

on a sample an order of magnitude larger than those previously described. Importantly, because we 
trained on a utilization outcome, genetic testing before 18 months of age occurred at similar rates across 

race, ethnicity and sex. Prevalence of the target was lower amongst preterm infants with consequent 

lower recall. It is unclear if this difference by gestational age reflects true differences in “need” for genetic 

testing or bias against premature infants, though similar model precision regardless of gestational age 

suggests this is a real epidemiological effect rather than bias. 

While no significant differences were found in the prevalence of positive outcome or in any of the 

model-specific scores measured (prediction rate, recall, and precision), this does not conclusively say that 
our model is free of bias, as some racial and ethnic groups are sparsely represented in NCH NICUs. In 

particular, the “American Indian or Alaskan Native” and “Asian” racial groups contained fewer than 100 

people, as did the “Hispanic or Latino” and “Unknown” ethnic groups. Sample sizes this small make it 

difficult to extrapolate the model’s predictive performance to populations consisting of a larger number of 

individuals from these groups. 

Patients who had GS, positive or negative, were highly likely to be predicted positive by the 

model. This is desirable, as some of these patients were among those with the longest diagnostic 

odysseys, and reaching that level of testing may attest to a level of medical complexity that makes testing 
these patients all the more important. This also suggests a tangible phenotypic signal present in the 

population of patients who are likely to need sequencing eventually in life, even in phenotypes present 

long before GS was considered. 

An additional strength of the model generated is the face validity of most important features 

driving recommendations. On the one hand, this is not surprising given the features were engineered 

largely from language used by clinicians in daily practice as well as core measure of growth and 

maturation used by all neonatologists and medical geneticists in their medical decision making.  The most 

informative features, per SHAP values, correspond to HPO terms for abnormalities of organ systems 
which could reasonably be understood to represent congenital anomalies, though a small number of 

spurious features are present and worthy of discussion.  

Notably, “Neoplasm by histology” appears as a high-importance feature, yet cancers and tests for 

diagnosing cancers are largely ignored within this study (and exceedingly rare in neonates). Upon 

inspection of the original clinical text from which HPO terms were extracted by ClinPhen, it seems that an 

overwhelming majority of contributions to this feature arose from cases in which the specialty “oncology” 

was mentioned in the note text and ClinPhen matched this as a synonym of the term HP:0002664 
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“Neoplasm”. These occurrences of the word “oncology” were often present as part of a provider’s 

signature or other oblique references to provider rather than direct mentions of cancer phenotypes in the 

patient. However, because Hematology-Oncology is infrequently consulted in the NICU and because 

such consultation is often related to concerns for genetic bone marrow failure syndromes, the signal 
remains informative. 

Another seemingly spurious feature with SHAP values indicative of importance for negative 

predictions is the presence of phenotypes related to HP:0000479 “Abnormal retinal morphology”. On 

inspection of the original set of ClinPhen-tagged HPO terms, a large fraction of the tagged terms 

consisted of HP:0500049 “retinopathy of prematurity”, indicating that this feature serves as a proxy for 

prematurity. Incidentally, gestational age under 28 weeks, the feature encoding extreme prematurity 

directly from the structured health record, also appears as a feature with high importance for negative 

predictions. From this we surmise that the model has correctly learned a relationship between isolated 
prematurity and a lower predisposition for non-genetic underlying cause for NICU admission. 

A key weakness of our classifier to consider is that we recapitulate historical genetic testing 

practices and judge our success against a validation cohort born 2020-2021. We cannot exclude 

pandemic effects leading to important but otherwise occult differences between the training/test and 

validation cohorts, though, the model performance in the train/test and validation cohorts was similar. In a 

similar vein, the ideal target outcome is clinical utility or usefulness of genetic testing to one or more 

stakeholders. The recent explosion in utility measures for genome sequencing and/or genetic medicine 

services in ICUs had not happened when the vast majority of training data for this study was generated. It 
is logical that the next generation of predictive analytics in this space will use utility as a target variable, 

but until 1000s of such measures can accrue, it seems a reasonable assumption that most genetic testing 

in patients admitted to or decently discharged from a Level IV NICU is ordered because someone thinks it 

would be helpful.  

Estimation of benefit from simulated recommendations 
The time at which classifiers made predictions had minimal impact on their performance (ROC 

and PR AUC scores increased by 0.01) but modelling this allowed for a more robust simulation of 

possible effects of implementation. Importantly, many of the positive predictions could be made as early 
as day 1 in the Level IV NICU, demonstrating that accrual of phenotypic information relevant to making 

predictions of genetic testing need occurs early in the NICU course. 

In our simulations, using ML as a basis for genetic testing policies decisively impacted the overall 

length of diagnostic odyssey as well as the number of subjects able to complete their odysseys within 14 

days of Level IV NICU admission, independent of any change in test selection. However, we also see that 

the positive effects of ML recommendations are enhanced when such recommendations are 

accompanied by a policy of rGS as a first line test. 
The reduction in diagnostic odyssey was most pronounced in patients who eventually received 

GS. The distribution of estimated benefit in the subpopulation of patients who received GS was highly 
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bimodal, with many patients who did receive early rapid testing and did not directly benefit from the 

model’s recommendation, as well many others who received GS much later and experienced very large 

individual benefit. This is likely attributable to historical usage of ES/GS as a last-line test, ordered after 

many other options have already been pursued, causing this population of patients to have the longest 
diagnostic odysseys. As early-in-life GS (and especially rGS) becomes more common, this effect should 

diminish.  

As we saw, the ML model made positive predictions for 280 patients who had genetic testing but 

not GS. Durations of diagnostic odysseys for this group are censored in the present study, but are known 

in the literature to persist for years33. By our estimation, rGS can make the same diagnoses as other 

testing so could replace all their other testing (with the caveat that a small number of edge cases like 

methylation disorders may not be detected by rGS). Though rGS is more expensive on an individual test 

basis than the other tests, early rGS can cut down on the time and money spent on ordering and 
obtaining results for multiple, less comprehensive genetic tests. Additionally, some of these patients 

would likely derive greater utility from genome sequencing than their actually ordered test, either because 

GS could make a diagnosis or because non-diagnostic GS may offer more utility than a non-diagnostic 

NGS panel in some cases.  

Patients with a known genetic diagnosis saw smaller reductions in diagnostic odyssey. 

Definitionally, patients in this group have reached a conclusive end to their diagnostic odyssey. By 

comparison, many patients without a diagnosis have not yet seen the end of their diagnostic odyssey, 

meaning that group will necessarily have longer and more extreme diagnostic odysseys. The full extent of 
each patient’s diagnostic odyssey is difficult to capture. Last recorded test was intended as a 

conservative measure of the most recent time at which a patient suspected of genetic illness was still 

being evaluated. However, a lack of follow-up testing – especially for patients who never got as far as 

genomic sequencing – may not signify the end of the diagnostic odyssey. Additionally, some patients are 

lost to follow-up due to death, family relocation, or other circumstances which are not discernable by our 

data acquisition strategy. Conceivably, patients with no positive genetic test as of June 2023 may still be 

undergoing genetic evaluation. In these cases, our estimates of diagnostic odyssey length and benefit 
should be under-estimates.   

Patients diagnosed with classical aneuploidies were almost all (19/20) detected by the model. 

These patients, predictably, received little or no benefit from an rGS recommendation as their diagnoses 

had already been determined before the recommendation timepoint in all but one case. However, it is 

desirable that the model identify these patients rather than ignore them, in the improbable event that such 

a patient does not receive a diagnosis as early as they should. In general, we see from Figure 5 that 

many patients with shorter diagnostic odysseys are recovered by the model and patients with some of the 

longest odysseys are the most frequently missed by the model. In essence, the model offers some 
benefits to the cases that human experts struggle with, while replicating expert recognition in the easiest 

cases.  
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Because of the retrospective nature of this study, we could not assess the true impact of any 

human-machine interactions once recommendations are made. It is possible that recommendations on 

genetic testing by the machine learning algorithm may be equally accurate across the first several days in 

the level IV NICU, while the willingness of the clinician to pursue broad genetic testing is higher on the 
second or third day as other diagnostic studies (e.g. blood cultures) begin to result. Similarly, without 

prospective evaluation it is not possible to know what the effect on clinician behavior of negative 

recommendations is (i.e. if clinicians trust the model predictions will they refrain from genetic testing when 

their clinical intuition conflicts with the model’s recommendations?).  

Additionally, we have ascribed zero benefit to cases where the model recommended testing 

patients identified as having “no genetic involvement” and regarded these as extraneous 

recommendations. However, these patients may have had testing outside of our healthcare system, or 

simply failed to have been recognized for testing. We also, via chart review, document many cases that 
likely would be considered to derive benefit under constantly evolving standards for use of rGS. 

Additionally, given the evidence that clinicians find negative rGS results to be useful, it is plausible that at 

least some of these “false positive” recommendations would actually be valuable to neonatologists34. 

Future directions and expansions 
While we used data from Level III NICUs in training our model, we developed it with the goal of 

making predictions in Level IV NICUs. It is tempting to want to extrapolate our findings and/or approach to 

Level III NICUs which care for many more patients than Level IV NICUs. There are several challenges to 

developing a model under this approach in the setting of the level III NICU, some of which are different 
than the challenges in developing a model in the Level IV setting. We expect a higher prevalence of 

genetic illness in the level IV NICU and hence more balanced data and better overall classifier 

performance. In the Level III setting, one would have to make careful consideration as to how to handle 

patients who would ultimately move to level IV. Different exclusion and labelling criteria may enable us to 

adapt this approach to the Level III NICU setting, but the current model should not be used for this 

purpose. 

The phenotypes for the training data were obtained from clinical text by ClinPhen. As any NLP 

tool is likely to have its own idiosyncrasies, this may create exotic or artifactual behaviors in the model’s 
predictions and may hinder model portability. Moreover, it can be computationally costly and 

administratively difficult to obtain clinical text from the health record and apply NLP tools to extract 

phenotype concepts from this text. This may hinder model portability. An alternative would be to mine the 

widely used ICD codes from the structured health record and map them to phecodes or pediatric 

phecodes35,36 to create an alternative encoding of the patient’s phenotype. This could make for a more 

portable model. 

Features were included in this model to account for degree of prematurity, as isolated prematurity 
is a common non-genetic reason for admission to the NICU. Infection is another common non-genetic 

reason for NICU admission; the existence and results of blood cultures and other common tests for 
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infectious disease could be leveraged to improve the model’s ability to distinguish cases in which the 

patient’s phenotype can be explained by infection. 

Additional features accounting for the specialties of providers who have encountered a patient 

could help the model recognize patterns of complex phenotypes requiring the attention of a genetics 
provider. In a way, the current model (suboptimally) encodes some of this information by conflating 

Hematology-Oncology consultation with the HPO term for Neoplasms. Appropriately engineering this 

feature may secondarily correct this behavior. 

The potential benefit of this model was estimated retrospectively and under the assumption of 

100% adherence to simulated policies. In reality, clinical decision support systems seldom have such high 

adherence. A more meaningful evaluation of this model’s benefit would need to be carried out in the 

prospective setting of a randomized control trial. In this setting, utility of the test recommendations could 

be assessed by C-Guide37 or other survey instrument to determine the perceived utility of the testing 
recommended by the model. 

In summary, in a retrospective analysis using a holdout validation sample with follow-up through 

18 months, NeoGx accurately predicts need for genetic testing in patients admitted to a Level IV NICU. In 

simulation of multiple decision-making policies, CDS based on NeoGx shortens diagnostic odysseys, 

moreso when combined with broadened adoption of rGS. Failure mode analysis identifies areas for 

improvement, but the most significant progress to be made is in the areas of prospective validation, 

adoption of clinical utility as an outcome measure and/or generalization beyond a single center. 
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ABBREVIATIONS 
NICU: Neonatal Intensive Care Unit 

NCH: Nationwide Children’s Hospital 

EHR: Electronic Health Record 

RDW: Research Data Warehouse 
Dx: Diagnosis (“received a Dx”) or Diagnostic (“Dx odyssey”) 

rGS: rapid Genomic Sequencing 

GS: Genome Sequencing 

ES: Exome Sequencing 

NGS: Next Generation Sequencing 

H&P: History and Physical Examination 

GA: Gestational Age 

BW: Birth Weight 
HPO: Human Phenotype Ontology 

IC: Information Content 

IPR: Information Potential Ratio 

ML: Machine Learning 

CI: Confidence Interval 

SHAP: SHapley Additive explanation 

ROC: Receiver Operator Characteristic 
PR: Precision-Recall 

AUC: Area Under the Curve  
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