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Abstract 

The clinical presentation and neurobiology of mild traumatic brain injury (mTBI) - also referred to as 

concussion - are complex and multifaceted, and interrelationships between neurobiological measures 

derived from neuroimaging are poorly understood. This study applied machine learning (ML) to 

multimodal whole-brain functional connectomes from magnetoencephalography (MEG) and functional 

magnetic resonance imaging (fMRI), and structural connectomes from diffusion tensor imaging (DTI) 

in a test of discriminative accuracy in cases of mTBI. Resting state MEG (amplitude envelope 

correlations), fMRI (BOLD correlations), and DTI (fractional anisotropy, FA; streamline count, SC) 

connectome data was acquired in 26 controls without mTBI (all male; 27.6 ± 4.7 years) and 24 

participants with mTBI (all male; 29.7 ± 6.7 years) in the acute-subacute phase of injury. ML with data 

fusion was used to optimally identify modalities and brain features for discriminating individuals with 

mTBI from those without. Univariate group differences were only found for MEG functional 

connectivity, while no differences were found for fMRI or DTI. Functional connectivity (fMRI and MEG) 

showed robust unimodal classification accuracy for mTBI, followed by structural connectivity (DTI), 

where FA showed marginally better classification performance than SC, but SC outperformed FA in 

data interpretation and fusion. Perfect, unsupervised separation of participants with and without mTBI 

was achieved through participant fusion maps featuring all three data modalities. Finally, the MEG-

only full feature fusion map showed group differences, and this effect was eliminated upon integrating 

DTI and fMRI datasets. The markers identified here align well with prior multimodal findings in 

concussion and highlight modality-specific considerations for their use in understanding network 

abnormalities of mTBI. 
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Introduction 

 Mild traumatic brain injury (mTBI), also known as concussion, is a neurological injury that 

causes a range of metabolic, microstructural, and behavioral effects, which often lead to a reduced 

quality of life [1], [2]. mTBI is common – the annual incidence rates in Ontario, Canada alone for 

diagnosed concussion is 1.2% of the population [3] - yet our understanding of the neurobiological 

mechanisms underlying the symptoms and protracted recovery is limited. The clinical presentation of 

mTBI varies greatly between individuals; consequently, there is no single pathognomonic test to 

diagnose mTBI [4], [5], [6]. Given the high prevalence of mTBI and the associated burden it places on 

the healthcare system and society, it is important to identify neuropathological characteristics and 

develop objective indices for accurate diagnosis and prognosis.  

 Neuroimaging has revealed indicators of mTBI pathophysiology, including altered neuronal 

activity and microstructure, but results are inconsistent [7], [8]. Multimodal neuroimaging studies are 

useful because they provide complementary information about structural and functional brain circuits 

[9], [10], [11]. However, interpretation and integration of multimodal neuroimaging data remains 

challenging due to the heterogeneity of the neurobiological signals measured across imaging 

modalities [12] and the complexity of the data [13].  

One approach that has attempted to fuse imaging data is through connectomics. 

Connectomics is the study of structural and functional brain networks, including the segregation and 

integration of brain regions that allow for daily functioning [14], [15]. In brain networks, nodes 

represent brain regions and edges signify the connections between regions [16], [17]. Structural 

connectivity is defined by the physical connections between given brain regions, and can be 

quantified by various metrics, including those derived from diffusion weighted imaging (DWI), which 

produces parameters that characterize tissue microstructure (e.g., axonal packing, myelination), 

including streamline count (SC) and fractional anisotropy (FA), while functional connectivity refers to 

the statistical correlation of brain activity between regions, such as that derived from functional MRI 

(fMRI) time series data. Importantly, connectomics allows for multiple imaging modalities to be 

expressed similarly (i.e., whole-brain structural and functional connectivity can be calculated between 

the same anatomical regions across multiple types of neuroimaging data), allowing comparison of 

results within and across modalities.   

Connectomics have identified extensive structural [18], [19], [20] and functional network 

dysfunction in mTBI [19], [21]. DWI is one way to commonly used to quantify structural connectivity. 

Functional connectivity is generally measured by fMRI, and less frequently by electrophysiological 
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tools such as magnetoencephalography (MEG). The basis of fMRI connectivity is the blood oxygen 

level dependent (BOLD) response, the covariation of which between brain regions defines functional 

connectivity [22]. MEG measures the magnetic fields produced by neuronal activity [23] and can be 

used to quantify functional connectivity in multiple ways, and the most common approach is amplitude 

envelope correlations (AEC), a statistical measure of association between fluctuating oscillatory 

activity in each brain region. Notably, MEG AEC correlates highly with BOLD resting state fMRI [24].  

Each of these modalities individually and in various combinations have revealed altered brain 

connectivity profiles in mTBI [25], [26], [27], [28], [29], [30]. The rich variety of information available in 

multimodal connectomics presents a way to understand multifaceted dysregulation to brain 

connectivity that occurs after injury. Assessing which neuroimaging modality or combination of 

modalities - DTI, fMRI, and/or MEG - is optimally sensitive to and best captures network dysfunction 

in mTBI is valuable, as well as exploring more advanced computational approaches to integrate 

complex neuroimaging datasets.  

 Recent advances in artificial intelligence (AI)-driven high-throughput informatics, as well as 

high-performance computing, it is now possible to apply machine learning (ML) methodology to 

multimodal neuroimaging [31]. ML has been extensively used for feature selection and classification 

modelling in neuropathology, with a dynamic combination of the ML-driven feature selection and 

classification modelling driving both basic science and clinical research advances [32]. For example, 

a DTI study demonstrated promising classification performance for mTBI by utilizing multiple ML 

methods, including support vector machine (SVM) and random forest (RF) [33] with similar methods 

successfully applied to fMRI data [34]. Using an in-house developed ML feature selection and 

classification pipeline [35], several studies from our group have demonstrated optimal performance 

for mTBI classification using MEG, which identified key neural signatures underlying mTBI-linked 

neuropathophysiology [36], [37], [38] and allowed for differential classification of post-traumatic stress 

disorder (PTSD) [37].  

 Multimodal neuroimaging fusion analysis [39] could provide a step-change in understanding 

connectome level changes in mTBI [10], having already been applied in various neuropsychiatric 

disorders [40]. Generally, multimodal integration includes fusion and correlation aspects. Multimodal 

fusion approaches could afford insights into neuropathology beyond unimodal investigations and 

improve sensitivity and specificity in disease [41]. For example, network similarity-based data fusion 

using similarity network fusion (SNF) has enabled sub-group identification, a crucial step towards 

personalized precision medicine [42]. To date, multimodal neuroimaging fusion has not been applied 

in mTBI research.   
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 Given the breadth of information available across different neuroimaging techniques, the 

potential in ML-powered data mining, and the lack of an objective diagnostic/prognostic tools for 

mTBI, ML-assisted multimodal data integration could significantly improve our understanding of a 

heterogenous condition. The aim of this study was to examine the capacity for ML-assisted 

multimodal neuroimaging integration to discriminate mTBI status. First, within-modality connectomics 

with ML was applied to structural (DTI) and functional connectivity (fMRI, MEG). Second, a 

multimodal integration analysis of DTI, fMRI, and MEG datasets was conducted using the SNF fusion 

procedure [43]. The goals of the integration analysis were to define modality combination and feature 

identification for optimal participant group separation. 

 

Methods and Materials 

Participants 

 Fifty participants were recruited, stratified into two groups: controls (all male, n = 26; mean age 

= 27.6 ± 4.7 years, range = 20-39 years) and mTBI (all male, n = 24; mean age = 29.7 ± 6.7 years, 

range = 20-44 years). Participants in the mTBI group were recruited through the Sunnybrook Health 

Science Center in Toronto, Canada, after admittance to the Emergency Department for their first mild 

traumatic brain injury, with a diagnosis determined by a physician specializing in head trauma. All 

participants were scanned within 3 months (<90 days) of injury, with an average of ~30 days since 

injury.  

 For both groups, inclusion criteria included: English-speaking, able to understand instructions, 

and able to give informed consent. Exclusion criteria included any MRI or MEG contraindications, 

implanted medical devices, a diagnosed history of pre-trauma seizures or other neurological or 

psychiatric disorders, active substance abuse, and certain ongoing medications (i.e., anticonvulsants, 

benzodiazepines, and/or GABA antagonists) known to directly or significantly influence neural 

oscillations. All subjects had an MRI scan reviewed by a neuroradiologist and no positive clinical 

indications were found. The study was approved by Sunnybrook and the Hospital for Sick Children 

Research Ethics Boards. 

 

Image Processing  

Magnetoencephalography (MEG) 

 Resting state MEG data were acquired in a supine position using a CTF 151 channel system 

at the Hospital for Sick Children. This data has previously been published [36] – the DTI and fMRI 
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data have not been published previously. Briefly, fiducial coils were attached to the nasion and left 

and right preauricular points to allow for continuous monitoring of head motion. Data were collected at 

a sampling rate of 600 Hz, bandpass filtered offline using a high-pass filter of 1 Hz and a low-pass of 

150 Hz, with a 60 Hz notch filter and subsequently analyzed in Fieldtrip Toolbox [44], with virtual 

electrodes derived using a beamformer approach from 90 Automated Anatomical Labelling (AAL) 

Atlas areas – the same atlas was used for defining parcellations in DTI and fMRI analyses. Further 

details are described in the Supplementary Methods.  

 

Magnetic Resonance Imaging 

T1-weighted images, DTI, and resting state fMRI data were acquired using a Siemens Trio 3T 

scanner with a 12-channel head coil at the Hospital for Sick Children. Anatomical T1-weighted 

images were acquired using a SAG-MPRAGE sequence (TR = 2.3 s, TE = 2.96 ms, flip angle = 9°, 

FOV = 240 x 256 mm2), followed by DTI using a spin echo EPI acquisition sequence (60 directions at 

b = 1000 s/mm2, TR = 8.8 s, TE = 87 ms, FOV = 244 × 244  mm2, 2 x 2 x 2 mm3), and finally fMRI (TR 

= 2.3 s, TE = 30 ms, flip angle = 70). Details on processing can be found in Supplementary 

Methods. 

 

Statistical Analysis  

False Discovery Rate (FDR) analysis 

 Independent t-tests determined between-group edgewise differences in structural (DTI) and 

functional connectome (fMRI, MEG) data, while controlling for age. The p-value was estimated using 

non-parametric permutation testing (100,000 permutations) with false discovery rate (FDR) correction 

for multiple comparisons, with significance held at p < 0.025 [45], [46]. The Network Based Statistics 

(NBS) toolbox was used to compute the analyses using the FDR option 

(https://www.nitrc.org/projects/nbs). 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.24.24309379doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.24.24309379
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

Machine learning and multimodal data integration analysis 

 

Figure 1. The complete workflow for multimodal data integration analysis. The focus here is to dynamically combine 
ML feature selection and modelling with the KNN (k-nearest neighbour) network-based SNF analysis [42]. Our multimodal 
integration workflow was a dynamic combination of supervised and unsupervised ML processes. 

 

Overall workflow 

 Input data consisted of connectivity matrices from the three modalities (i.e., DTI, fMRI, and 

MEG). DTI and MEG generated multiple data types - DTI included FA (fractional anisotropy) and SC 

(streamline count) weighted structural connectomes, and MEG featured seven canonical frequency 

bands (Figure 1). For MEG, we focused on the frequencies exhibiting the best ML classification 

performances, identifying frequencies with the optimal receiver operator characteristic-area under 

curve (ROC-AUC) values (>0.8) from both modelling modes and with the least or no overfitting, by 

comparing training and holdout test data ROC-AUC values.  

The multimodal fusion analysis was conducted for participants with the objective to assess 

group separation and participant clustering. Data modality combinations for fusion were determined 

based on the group separation performance (according to unsupervised hierarchical clustering) with 
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single modal datasets. DTI networks were quantified either by FA or SC datasets, and all the fusion 

networks contained either none, or one of the DTI (FA or SC) data sets, not both.  

 

Multimodal analysis with subject similarity fusion 

For the subject similarity fusion, the fusion networks were ultimately based on the ML selected 

features for each data modality. The subject similarity fusion was examined if the subjects would be 

separated into the subject groups in an unsupervised manner (hierarchical clustering, “Ward.D2” 

method) [47], using the information from the three imaging techniques. Moreover, we investigated 

which data modality, or combination of modalities, led to the best subject group clustering. 

Additionally, the subject similarity fusion also revealed potential similar subject sub-groups within their 

respective subject groups. To identify the best fusion network(s) for subject group clustering, we 

started with the single modality KNN networks. Based on the subject clustering performance, the best 

single modal dataset was used as the “seed” dataset, to which other datasets would be added to form 

fusion networks. Detailed fusion analysis methods can be viewed in Supplementary Methods. 

 

Supervised machine learning workflow 

The core supervised ML workflow followed our previous reports [35], [37], [38], with 

modifications. Briefly, a 10-fold cross validation (CV) process was used for both feature selection and 

classification modelling. A detailed description of the ML workflow can be viewed in Supplementary 

Methods. 

BrainNet Viewer [48] was used to visualize the features selection (FS) results for the datasets 

used for the follow-up multimodal analysis. Principal component analysis (PCA) was used as an 

unsupervised clustering visualization method to communicate the capability of selected features in 

separating the two subject groups, for the single modal datasets. For PCA plots, the first three PCs 

(principal components) were visualized.  

 

Results 

MEG reveals between groups differences in connectivity not evident in DTI or fMRI 

 The mTBI group exhibited significantly lower MEG functional connectivity in the alpha, beta, 

and low gamma bands. In the alpha and beta band, AEC was significantly decreased in mTBI 

compared to controls (pcorr < 0.025; Figure 2) among distributed brain areas, including cortical and 

subcortical regions, including the bilateral thalamus, pallidum, and caudate nucleus, with connections 
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to other subcortical, limbic, as well as parietal, occipital and frontal areas. Decreased AEC in the low 

gamma band in mTBI was observed in the in the right hippocampus and right lingual gyrus, and the 

left superior frontal gyrus, medial and the right angular gyrus (pcorr < 0.025; Figure 2). No group 

differences were found in the delta, theta, low gamma 2 or high gamma frequency bands, or for SC, 

FA or fMRI connectivity after correction for multiple comparisons (pcorr < 0.025; nor at a less stringent 

significance threshold, pcorr < 0.05). 

 

Figure 2. Reduced MEG functional coupling in mTBI. Reduced AEC was found in mTBI compared to healthy controls 
in the alpha, beta, and low gamma 1 frequency ranges (pcorr < 0.025). No significant between-group effects were seen for 
DTI SC or FA and fMRI modalities following FDR-correction for multiple comparisons. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.24.24309379doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.24.24309379
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Machine learning feature selection and classification analysis with single modal datasets identifying 

best classification performances in MEG alpha, beta, and high gamma band connectomes 

 The ML FS and classification modelling results contributed to the associated multimodal 

analysis. Table 1 includes the AUC values from both “CV only” and “CV and holdout” processes, 

where the two DTI measures showed differences in ML classification modelling. Comparing the mean 

CV AUC value and the training data AUC value from the “CV only” analysis, the DTI FA showed signs 

of overfitting with the AUC on training data (0.997) substantially larger than the mean CV AUC value 

(0.87). The DTI SC results, however, exhibited comparable levels between the AUC on training data 

(0.84) and mean CV AUC (0.83).  

For the “CV and holdout” mode results, both the DTI FA and SC datasets resulted in an AUC 

of 0.78 from the holdout test data. In terms of fMRI functional connectivity data, the CV models 

resulted in a mean AUC of 0.93, which was comparable to the AUC derived from the training data 

(0.95) using the final model. When classifying the holdout test data, the final fMRI SVM model 

exhibited an AUC value of 0.89, suggesting good performance in a close to “real world” setting. For 

data fusion analysis, DTI FA and SC and fMRI functional connectivity data were used.  

 

Table 1. Area under the curve (AUC) values for cross validation (CV) only and CV and holdout 

processes.  

Dataset 

CV only 

AUC (CV 

test data, 

mean±SD) 

CV only 

AUC 

(training 

data) 

CV only 

permutation 

test p value 

CV only PLS-

DA 

permutation 

test p value 

(mTBI) 

CV and 

holdout AUC 

(CV test data, 

mean±SD) 

CV and 

holdout 

AUC 

(training 

data) 

CV and 

holdout 

AUC 

(holdout 

test data) 

DTI FA 0.87±0.2 0.997 0.01 0.001 0.9±0.18 0.993 0.78 

DTI SC 0.83±0.25 0.84 0.01 0.001 0.92±0.14 0.91 0.78 

fMRI 0.9±0.15 0.96 0.02 0.001 0.93±0.17 0.95 0.88 

MEG delta 1±0 1 0.01 0.001 0.96±0.09 0.996 0.67 

MEG theta 0.99±0.04 1 0.01 0.001 0.98±0.5 1 0.67 

MEG alpha 0.93±0.17 0.98 0.01 0.001 0.93±0.17 0.998 0.89 

MEG beta 0.98±0.08 0.99 0.01 0.004 0.94±0.1 0.99 0.89 

MEG low 

gamma1 1±0 1 0.01 0.001 0.98±.21 1 0.67 

MEG low 

gamma2 1±0 1 0.01 0.001 0.98±0.08 1 0.78 

MEG high 

gamma 0.98±0.05 0.99 0.01 0.001 0.98±0.08 0.986 0.89 
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For MEG, with comparable AUC values between the mean CV and training data 

performances, all seven frequencies showed minimal levels of overfitting from the “CV only” results. 

The performance on the holdout test data for alpha, beta and gamma was an AUC value of 0.89, 

suggesting good classification performance. Based on these results, the alpha, beta, and high 

gamma bands were used for the following data fusion analysis. Figure 3 includes receiver operating 

characteristic (ROC) curves for DTI (FA, SC), fMRI, and MEG (alpha, beta, high gamma) 

classification performances from the “CV only” mode analysis. Group-wise heatmaps and 

dendrograms for each dataset are presented in Figure S2. 

SVM and PLS-DA permutation tests were used to evaluate the features selected for DTI FA 

and SC, fMRI, and the seven MEG frequencies. Permutation p-values were significant (p<0.05) for all 

tests across SVM and PLS-DA algorithms (Table 1). The PCA score plots reveal the capacity of 

selected features in separating the two subject groups in an unsupervised manner (Figure S2). 

Specifically, in the subset with only the selected features, all six datasets showed a trend of group 

separation across the first three PCs, albeit imperfectly. These results confirmed that our ML feature 

selection process identified the most important features representing control and mTBI groups for 

each dataset. The selected features are visually represented as brain plots in Figure 3. 
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Figure 3. Fractional anisotropy and neurophysiological coupling provide the greatest relative discriminative 
accuracy for mTBI. DTI FA and MEG beta and alpha functional connectivity provide the greatest comparative accuracy 
for classifying mTBI from controls. 
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Multimodal analysis with subject similarity fusion showing perfect group separation 

To identify a “seed” dataset for fusion analysis, the single modal KNN similarity matrix was 

subject to hierarchical clustering analysis (heatmaps with dendrograms in Figure 4). Generally, the 

single modal hierarchical clustering on the KNN did not completely separate the mTBI subjects from 

the control group. Comparatively, MEG showed the best separation, with beta AEC performing best, 

then fMRI, then DTI. Given this finding, MEG beta was used as the “seed” dataset for the fusion 

analysis, where other datasets were added, to identify the best data/modality combination(s) for 

patient separation. Six datasets were used across the three data modalities.  

Starting with the MEG beta KNN similarity matrix, we constructed 11 fusion networks, all 

featuring MEG beta matrices. We identified four fusion networks that completely stratified the groups: 

DTI SC+fMRI+MEG (beta), DTI SC+fMRI+MEG (alpha, beta), DTI SC+fMRI+MEG (beta, high 

gamma), and DTI SC+fMRI+MEG (alpha, beta, high gamma). Hierarchical heatmaps with 

dendrograms revealed clear two major clusters for the control and mTBI groups (Figure 5). The 

circular figures not only showed the two subject groups, but also a degree of within-group intersubject 

clustering. Interestingly, the MEG-only subject fusion map failed to completely separate subject 

groups in an unsupervised fashion. 
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Figure 4. MEG beta band connectivity exhibits the best group clustering performance. Single data 
modality hierarchical clustering heatmaps and dendrograms show imperfect group separation. 
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Figure 5. Multi data modality hierarchical clustering shows perfect group stratification. (left column) Heatmap 
shows various neuroimaging modality fusion combinations showing that MEG beta data led to perfect group separation, 
and (right column) shows subject similarity circular network plots, whose results may inform potential mTBI subtyping.  
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Discussion 

 In the current study, we used DTI, fMRI, and MEG in individuals with mTBI to explore 

connectivity features that provide the best discriminative accuracy. The key findings are: 1) MEG 

revealed the only significant between-group effects with univariate statistics, while no group 

differences were found with fMRI or DTI; 2) functional connectivity (fMRI and MEG) provided the best 

supervised ML classification accuracy for mTBI discrimination, followed by structural connectivity 

(DTI), where FA outperformed streamline count; 3) supervised ML steps selected features with more 

connected and localized subnetworks for the DTI streamline count and MEG, than the DTI FA and 

fMRI connectomes, when classifying mTBI; 4) participant fusion maps featuring all three data 

modalities provided perfect, unsupervised separation of participants into those with and without mTBI; 

5) the MEG-only full feature fusion map showed a univariate group difference for mTBI compared to 

non-mTBI, and this effect was eliminated upon integrating DTI and fMRI datasets. 

 

Neurophysiological decoupling in mTBI 

 Individuals with mTBI showed reduced MEG functional connectivity in the alpha, beta, and low 

gamma frequency ranges, with no observed effects in either DTI or fMRI, suggesting 

neurophysiological imaging is a sensitive approach to understand network abnormalities in mTBI. 

Periodic fluctuations of temporally synchronous neural oscillatory activity mediate windows for 

information processing and long-distance communication among brain regions, which is critical for 

perception, cognition, and behaviour [49], [50]. Thus, the present findings suggest disrupted long-

range communication and integration of information across the brain after mTBI.  

 Micro-alterations in white matter tracts, namely diffuse axonal injury, are known to result from the 

biomechanical forces of mTBI (i.e., acceleration and deceleration; [51], [52], [53]). Diffuse axonal 

injury is characterized by axonal inflammation, stretching, shearing, and deafferentation, causing 

diffuse neurophysiological disruption to brain networks, and it is associated with chronic perceptual 

and cognitive sequelae [53]. Therefore, alterations to white matter tracts due to diffuse axonal injury 

may be a key underlying mechanism of pathophysiological coupling in mTBI.  

Several studies have shown that MEG is highly sensitive to neurophysiological alterations due to 

brain injury in adults and youth [30], [54], [55], [56], [57]. Moreover, altered  neural oscillations have 

been shown in those with mTBI, even in the absence of microstructural (DTI) abnormalities [55]; 

which suggests that MEG may be more optimal than structural imaging methods for detecting subtle 
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effects of mTBI. The current findings provide further evidence of the value of MEG for understanding 

brain dysfunction in mTBI that is invisible on anatomical imaging.  

This study found diminished functional coupling in the alpha, beta, and low gamma frequency 

bands. Reduced alpha functional connectivity has been observed in severe and mild traumatic brain 

injury [57], [58], [59], and our group has previously reported beta band dysconnectivity as a reliable 

marker of mTBI in this cohort [36]. Alpha and beta oscillations are thought to be generated in the 

thalamus [60], [61] and mediated by cortico-thalamic circuits [62], [63], [64] so these results suggest 

aberrant thalamocortical circuits in mTBI. Abnormalities in the gamma range have also been reported 

in adults with mTBI [56], [65], [66], [67], although there has been little research on alterations to 

gamma-mediated connectivity in mTBI. It is possible that decreased gamma coupling may reflect an 

excitatory-inhibitory (E/I) imbalance due to injury [68].  

 

Supervised ML analysis identifies the best performing modalities for mTBI 

 Using both “CV only” and “CV and holdout test” classification modelling, the supervised ML 

component of the multimodal integration provided performance assessment for each connectome 

from the three neuroimaging modalities. For the two DTI connectomes, both FA and streamline count 

were accurate from the “CV only” models (AUC: mean ~0.9±SD). The “CV and holdout test” models 

showed a slight decrease in classification performance (AUC: ~0.8). The discrepancy was expected 

as the “CV and hold out” models were trained with a portion of the data (i.e., 85% of the total 

subjects). These results are consistent with the previous DTI mTBI studies featuring supervised ML 

modelling, where proper feature selection was able to classify mTBI with promising performance [69]. 

Additionally, the DTI SC model was less overfit than the FA model, a finding which may be attributed 

to the fact that FA is sensitive to microstructural changes in brain tissue and provides more detailed 

information about structural connectivity than SC, making it easier for ML modelling to pick up noise 

or small variations in the data. Meanwhile, SC is a simpler metric representing the number of 

reconstructed fiber tracts, which may be less prone to overfitting as it is less specific than FA [70], 

[71]. For the fMRI data, both the “CV only” and “CV and holdout test” modes exhibited consistent high 

performance (AUC: ~0.9) which adds to the growing evidence of effective ML based classification 

methods using fMRI functional connectivity [72], [73], [74]. Notably, these three aforementioned 

studies either required information from additional data modalities or a priori knowledge based feature 

engineering, suggesting fMRI data alone may be insufficient to effectively represent mTBI 

phenotypes.  
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A comparison of DTI and fMRI in the current study revealed that the fMRI appears to be more 

suitable for classification modelling with smaller sample sizes, as models trained with partial data (i.e., 

the “CV and holdout test” models) exhibited consistent performance with “CV only” models, which 

were trained with the complete data. Furthermore, when comparing classification performance 

between training and holdout test sets, the fMRI model exhibited a smaller drop in AUC value 

between the two data sets relative to the DTI models, suggesting that the fMRI model had less 

overfitting than the DTI models. Moreover, this finding confirms that mTBI-related functional 

measures may carry more sensitive signatures with greater potential for diagnostic or prognostic 

value relative to the subtle structural changes [75]. However, it is important to note that when resting 

state fMRI and DTI FA connectomes are combined we were able to classify individuals with greater 

performance than fMRI only [76]. 

In MEG, all the “CV only” models for every frequency showed accurate classification 

performance (AUC: mean ~0.98±SD) with the differences among the frequency bands residing in the 

classification performances and level of overfitting for the “CV and holdout” models. Specifically, the 

alpha, beta, and high gamma bands exhibited higher performance for the “CV and hold out” models 

(AUC ~0.9) than the delta, theta, and two low gamma frequency bands (AUC ~0.7), and with lower 

levels of overfitting. As such, we consider alpha, beta, and high gamma bands to be the best overall 

performing MEG functional connectivity measures in supervised ML classification modelling, 

consistent with our previously reported effectiveness of beta band MEG functional connectivity in 

mTBI classification with the same subjects [37]. The current results further demonstrate promising 

performance for alpha and gamma activity, which is consistent with prior reports of functional 

pathophysiology in mTBI [30], [37], [57], [77], [78], [79], [80]. Similar to the fMRI-DTI comparison, 

MEG datasets outperformed the DTI datasets in terms of classification modelling to discriminate 

mTBI. 

The supervised ML modelling demonstrated that functional connectivity profiles from fMRI and 

MEG are better than DTI structural connectivity at classifying mTBI [75]. However, prior studies have 

suggested that structural information may be combined with the functional imaging data to optimize 

ML classification performance [65], [72], [73], [74], [76]. In line with the present findings, unsupervised 

data integration would benefit from both structural and functional connectome data, specifically, DTI 

(FA or SC), fMRI, and MEG (alpha, beta, and high gamma band).  

 

Machine learning feature selection explores the key features driving mTBI classification 
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Using the connectivity features selected by the supervised ML process, we performed per 

participant data fusion using the six datasets across the three neuroimaging modalities identified 

above. To test the capability of unsupervised subject group separation with the fusion datasets, 

hierarchical clustering was applied to the SNF similarity scores. The MEG beta band data exhibited 

accurate performance when used in supervised ML based mTBI classification, consistent with our 

previous study [37]. Although not perfect, unsupervised hierarchical clustering also revealed that the 

MEG beta band provided optimal unsupervised group separation performance in discriminating 

individuals with mTBI from those without (Figure 5). Therefore, we used the MEG beta band dataset 

as the starting point for per participant fusion. With the MEG beta dataset as the “seed dataset,” a 

total of 11 dataset/modality combinations were examined, including both MEG only and 

DTI+fMRI+MEG participant fusion maps.  

First, even with substantial group difference shown in the full feature fusion map (i.e., 90 x 90 

maps) univariate analysis, the MEG only subject fusion maps (i.e., 50 x 50 maps) failed to generate 

complete unsupervised group separation. Indeed, only the subject fusion maps featuring all three 

data modalities led to perfect unsupervised subject group separation, namely DTI SC+fMRI+MEG 

(beta), DTI SC+fMRI+MEG (alpha, beta), DTI SC+fMRI+MEG (beta, high gamma), and DTI 

SC+fMRI+MEG (alpha, beta, high gamma) (Figure 5). Consistent with previous studies [72], [73], 

[74], [76], [81], [82], these results suggest that integrating both structural and functional connectivity 

from additional modalities (DTI and fMRI) to the seed MEG dataset substantially improves 

unsupervised group separation, thereby demonstrating the value of a multimodal approach to 

understanding injury. 

Second, integrating DTI SC, fMRI, and MEG beta was sufficient to achieve complete 

unsupervised group separation, (i.e., without integrating additional frequency bands), which attests to 

the effectiveness of beta band functional connectivity stratifying mTBI patients from control subjects 

[36]. For DTI, only SC led to perfect subject group separation when integrated with other datasets, 

suggesting SC outperforms FA when separating mTBI from controls, showing that multimodal 

neuroimaging can inform personalized care. Indeed, multimodal neuroimaging has been explored to 

improve neuropsychiatric clinical practice [83].  

 

Limitations and Future Directions 

The limitations of this study include the use of an all male cohort, and of course, given the 

known sex differences in mTBI for which females tend to report more mTBIs and more severe 
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symptoms than males [84], it is necessary to include females in future work on mTBI classification 

using ML with data fusion, as the brain features identified for males may not be optimal for separating 

females with and without mTBI. Second, the age range in this study represents a young cohort 

(without mTBI: 20-39 years; with mTBI: 20-44 years) in which white matter tracts with fronto-temporal 

connections are still maturing [85]; thus, the brain features identified for separating individuals with 

and without mTBI in this study may not work in an older cohort with matured/aging white matter 

connections. Third, classification of individuals in the acute-subacute stage of mTBI was 

accomplished here in a cross-sectional sample. However, given that a significant minority of 

individuals report symptoms months after their injury [86], it would be valuable to conduct longitudinal 

studies to enable ML classification of those who experience persistent symptoms from those who 

recover. Fourth, in relation to the third limitation, the current mTBI group included both symptomatic 

and asymptomatic/recovered individuals and did not distinguish the former from the latter. Future 

work should include a larger mTBI cohort to allow for the additional classification between 

asymptomatic/recovered and symptomatic individuals with mTBI, both at the acute-subacute stages 

and in the long-term. Lastly, a relatively small sample size could be expanded the in future to 

increase ML model generalizability. 

 

Conclusions 

 We successfully applied ML with data fusion to determine optimal imaging modalities and brain 

features for separating individuals with mTBI from those without. Notably, univariate group differences 

were only found for functional connectivity, as quantified by MEG, with no mTBI-related distinctions 

identified by either fMRI or DTI datasets, lending further evidence to the advantageous sensitivity of 

MEG to brain dysfunction in mTBI that is otherwise invisible to fMRI and structural MRI. The 

combined assessment of functional connectivity by MEG and fMRI exhibited robust unimodal 

classification accuracy for mTBI, followed by structural connectivity (DTI), for which FA provided 

sightly superior classification performance relative to SC; however, SC outperformed FA for data 

interpretation and fusion. Ultimately, integration of all three data modalities allowed for perfect, 

unsupervised separation of participants with and without mTBI, and although the MEG-only full 

feature fusion map showed group differences, addition of the DTI and fMRI datasets removed this 

effect. The brain markers identified by ML with data fusion in this study corroborate previous 

multimodal investigations in mTBI and highlight the importance of considering modality-specific 

factors in understanding network abnormalities associated with mTBI. 
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