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Abstract 

Traumatic brain injury (TBI) is a risk factor for neurodegeneration and cognitive decline, 

yet the underlying pathophysiologic mechanisms are incompletely understood. This gap 

in knowledge is in part related to a lack of reliable and efficient methods for measuring 

cortical lesions in neuroimaging studies. The objective of this study was to develop a 

semi-automated lesion detection tool and apply it to an investigation of longitudinal 

changes in brain structure among individuals with chronic TBI.  We identified 24 

individuals with chronic moderate-to-severe TBI enrolled in the Late Effects of TBI 

(LETBI) study who had cortical lesions detected by T1-weighted MRI and underwent 

two MRI scans at least two years apart. Initial MRI scans were performed more than 

one year post-injury, and follow-up scans were performed 3.1 (IQR=1.7) years later. We 

leveraged FreeSurfer parcellations of T1-weighted MRI volumes and a recently 

developed super-resolution technique, SynthSR, to automate the identification of 

cortical lesions in this longitudinal dataset. Trained raters received the data in a 

randomized order and manually edited the automated lesion segmentations, yielding a 

final semi-automated lesion mask for each scan at each time point. Inter-rater variability 

was assessed in an independent cohort of 10 additional LETBI subjects with cortical 

lesions. The semi-automated lesion segmentations showed a high level of accuracy 

compared to “ground truth” lesion segmentations performed via manual segmentation 

by a separate blinded rater. In a longitudinal analysis of the semi-automated 

segmentations, lesion volume increased between the two time points with a median 

volume change of 4.91 (IQR=12.95) mL (p<0.0001). Lesion volume significantly 

expanded in 40 of 61 measured lesions (65.6%), as defined by a longitudinal volume 
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increase that exceeded inter-rater variability. Longitudinal analyses showed similar 

changes in lesion volume using the ground-truth lesion segmentations. Inter-scan 

duration was not associated with the magnitude of lesion growth. Reliable and efficient 

semi-automated lesion segmentation is feasible in studies of chronic TBI, creating 

opportunities to elucidate mechanisms of post-traumatic neurodegeneration. 
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Introduction 

Traumatic brain injury (TBI) is a well-established risk factor for neurodegenerative diseases 

(Dams-O'Connor et al., 2020).  The pathophysiologic mechanisms that link TBI to post-traumatic 

neurodegeneration (PTND) are not fully understood, though emerging evidence implicates a 

“polypathology” (Kenney et al., 2018) that includes axonal injury (Johnson et al., 2013), tau 

deposition (McKee et al., 2013), vascular injury (Dams-O'Connor et al., 2023; Sandsmark, 

Bashir, Wellington, & Diaz-Arrastia, 2019), and neuroinflammation (Johnson et al., 2013). An 

underexplored factor in the pathogenesis of PTND is the potential impact of focal cortical 

lesions, such as cerebral contusions, which are amongst the most common lesions in 

individuals with TBI (Vande Vyvere et al., 2024). It is unknown whether focal lesion size evolves 

during the chronic stage of TBI (i.e., more than one year post-injury) and whether this may 

contribute to clinical decline.  

 

In addition to a paucity of longitudinal studies in individuals with chronic TBI, a key barrier to 

elucidating the impact of cortical lesions on PTND pathogenesis is methodological.  Historically, 

lesions that disrupt the surface of the cerebral cortex have prevented MRI segmentation tools 

from parcellating the brain into its anatomic components (Merkley et al., 2008; Santhanam, 

Wilson, Oakes, & Weaver, 2019; Strangman et al., 2010).  As a result, segmentation tools 

distributed with imaging analysis programs such as FreeSurfer (Fischl, 2012), FSL (Smith et al., 

2004), and SPM (Friston et al., 1994) have been unable to robustly measure longitudinal lesion 

growth.  Hence, patients with cortical lesions have typically been excluded from studies of 

cortical and subcortical volumetrics in individuals with TBI (Ding et al., 2008; Warner et al., 

2010).  Moreover, preliminary efforts at lesion segmentation have required substantial time by 

operators trained in human neuroanatomy (Diamond et al., 2020). 
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To address this methodological barrier and knowledge gap, we performed a longitudinal MRI 

study of individuals with chronic TBI and leveraged recent innovations in machine learning 

image analysis (Iglesias et al., 2023; Iglesias et al., 2021) to create a semi-automated lesion 

segmentation tool.  We tested the ability of this semi-automated lesion segmentation tool to 

detect longitudinal changes in lesion volume in individuals with chronic TBI enrolled in the Late 

Effects of TBI (LETBI) study (Edlow et al., 2018). Our goal was to develop a tool that provides 

reliable and efficient measurement of cortical lesions to accelerate the study of PTND 

pathogenesis in individuals with chronic TBI.  

 

Methods 

Participant selection 

Between 2014 and 2023, 305 participants were enrolled in the ongoing LETBI study at Mount 

Sinai School of Medicine (MSSM) and the University of Washington (UW) (Edlow et al., 2018). 

The LETBI study recruits individuals with a history of moderate or severe TBI. We use the 

United States Department of Defense classification of moderate TBI, which includes individuals 

considered by other classification systems as having “complicated mild” TBI (i.e., mild by 

Glasgow Coma Scale score criteria but with an intracranial lesion detected by brain imaging) 

(Defense, 2019). For the present longitudinal study, participants needed to have two MRI scans 

during consecutive study visits (≥2 years apart), each including T1-weighted (T1w) multi-echo 

magnetization prepared gradient-recalled echo (MEMPRAGE) scans (van der Kouwe, Benner, 

Salat, & Fischl, 2008) with a resolution of 1 mm isotropic.  
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Based on these criteria, 249 participants were excluded (n=220 not yet eligible for second study

visit, n=29 without a T1w MEMPRAGE MRI dataset at both time points; see Figure 1 for

details). Of the n=220 excluded participants, scans from n=10 were randomly selected to form

the inter-rater dataset. Of the remaining 56 participants, cortical lesions were identified in n=24

by a trained rater who visually inspected the T1w images. Lesions were defined by visible

disruptions in the cortical grey matter or cortical grey/white junction. Lesions could extend into

the adjacent subcortical white matter.  

Data acquisition, quality assessment, and processing 

 

 
 

Figure 1: Evaluation of cohort for eligible participants.  
* For participants not yet eligible for a second study visit, 10 scans were assessed for cortical lesions to 
form an inter-rater dataset. 
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T1w images were obtained using Siemens Skyra, Philips Achieva, and Philips Ingenia Elition X 

scanners at 3 Tesla field strength. The images were acquired at 1 mm isotropic resolution. 

Siemens Skyra scans used a repetition time (TR) of 2,530 ms and echo times (TE) ranging from 

1.79 ms to 7.37 ms. Philips Achieva scans used TRs ranging from 2,530 ms and TEs ranging 

from 1.67 to 7.07 ms. Philips Ingenia Elition X scans used a TR of 2,530 ms and a TE of 2.14 

ms. Further information about the number of scans obtained from each scanner is provided in 

Table 1. Eleven participants underwent imaging on one scanner for their initial scan and a 

different scanner for their follow-up scan due to upgrades occurring during the study follow-up 

periods. Additional sequence parameters for the T1w sequences on each scanner have been 

previously reported (Edlow et al., 2018). 

 

Table 1. MRI acquisition parameters for study participants 

Manufacturer Model Field strength 
(T) 

TR/TE 
(msec/msec) 

Number of 
scans 

Siemens Skyra 3T 2530/1.79 – 7.37 18 
Philips Achieva 3T 2530 / 1.67 – 7.07 11 
Philips Ingenia Elition X 3T 2530 / 2.14 19 
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Table 2. Quantitative quality assessment of MRI data at each enrollment site. 

Enrollment site Longitudinal cohort SNR CNR 
MSSM n=9 23.30 +/- 5.73 0.93 +/- 0.19 

UW n=15 39.29 +/- 12.21 0.75 +/- 0.14 
 

Qualitative and quantitative data quality assessments were performed on the processed images 

of all 24 subjects at both time points. Data uniformity and comparability across subjects and 

scanning platforms were examined, given the variations in sequence parameters. Visual quality 

assessments were based on the accuracy of FreeSurfer-generated surfaces (excluding those 

encompassing lesioned tissue) and the segmentation of subcortical structures, utilizing an 

accuracy rating scale adapted from Diamond et al. (2020). Signal-to-noise ratio (SNR) and 

contrast-to-noise ratio (CNR) were measured using the FreeSurfer tools ‘wm-anat-snr’ and 

‘mri_cnr,’ calculating SNR in white-matter and the average of the WM-GM and GM-CSF 

contrasts, respectively. While no subjects were excluded due to quality assessment measures, 

differences were observed between the SNR distributions of enrollment sites, as reported in 

Table 2. 

 

The T1w images were then processed, and the surfaces were constructed, using FreeSurfer 

v7.4 (Fischl, 2012). FreeSurfer processing involves motion correction, averaging of T1w images, 

removal of non-brain tissue, automated Talairach transformation, and segmentation of brain 

structures. It also includes intensity normalization, gray/white matter boundary tessellation, and 

topology correction. Further steps involve surface deformation, surface inflation, spherical atlas 

registration, cortical parcellation, and the creation of curvature and sulcal depth maps. To 

robustly segment neuroanatomic structures in brains with heterogeneous pathology, we used 

the Sequence Adaptive Multimodal SEGmentation (SAMSEG) tool (Cerri et al., 2021; Puonti, 

Iglesias, & Van Leemput, 2016), instead of the default automated segmentation (aseg) tool, 
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before FreeSurfer recon-all. FreeSurfer reconstructions for all participants were completed 

successfully. 

 

“Ground truth” lesion segmentation 

Ground truth segmentations for all participants were established through manual tracing 

performed by a neurologist blinded to subject identification and time point. The process involved 

loading each T1w image into the FreeSurfer image viewer, Freeview. A blank label volume was 

created using the same geometry as the T1w image. The neurologist then manually segmented 

each lesioned area using the voxel edit tool, ensuring accurate and detailed delineation of the 

lesions. All segmentations were initially performed on a single label volume, which was later 

separated into unique values to indicate the presence of multiple lesions for individual subjects, 

thus creating a detailed ground truth segmentation volume at each time point for all participants.  

 

Semi-automated lesion segmentation 

To minimize time requirements and reduce false negatives (i.e., missed labeling) in manual 

tracing, we developed a novel method for semi-automated lesion segmentation. As illustrated in 

Figure 2A, we leveraged SynthSR (Iglesias et al., 2023; Iglesias et al., 2021), a publicly 

available tool integrated within FreeSurfer that turns an MRI scan of any orientation, resolution, 

and contrast into a 1 mm isotropic T1w image while inpainting lesions. 

 

We applied SynthSR to T1w images for all participants and then repeated the FreeSurfer recon-

all process on the synthesized images. We defined lesional voxels by comparing the SAMSEG 

(Cerri et al., 2023) labels from the synthesized image with those from the original T1w image 
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(Figure 2C) using the following rules: a voxel is defined as a lesion if the segmentation label 

changed: 1) from white matter (in the original T1w recon) to gray matter (in the SynthSR recon); 

or 2) from CSF to background/white matter/gray matter; or 3) from white matter hypo-intensity to 

white matter. These rules were determined heuristically based on the segmentation label 

changes inside the lesional areas from a subset of our sample (n=5, randomly selected from the 

entire cohort and blinded to time point).  

 

Subsequently, we applied morphological image processing (Soille, 2004) to remove false 

positives, reduce noise, and ensure that the detected lesional areas are topologically correct, 

including hole filling, spherical erosion/dilation, and area opening. Successful application of this 

pipeline facilitated the identification of clusters of lesioned voxels in the SynthSR-impainted 

volume, yielding an initial automated lesion segmentation mask (Figure 2E). A trained rater 

then performed manual edits (the only manual step in the semi-automated lesion segmentation 

method) to enhance the accuracy of lesion segmentation boundaries, yielding a final semi-

automated lesion mask. In post-processing, this mask was separated into unique values to 

identify multiple lesions for a single subject. The rater performing manual edits for the semi-

automated lesion segmentation method was blinded to the “ground truth” manual segmentations 

by the prior rater. 
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Figure 2: Overview of semi-automated lesion segmentation method. SynthSR images are generated for 
each acquired T1w image (A). Both images are then processed through Freesurfer recon-all, resulting in 
ASEG label volumes (B). The SynthSR ASEG is subtracted from the acquired T1w ASEG to highlight 
segmentation differences (C). These differences are classified voxel by voxel based on rules comparing 
the SynthSR and acquired T1w segmentation volumes. Identified lesions are then refined using 
morphological operations (D). Finally, the cleaned segmentation is reviewed for errors, including 
incorrectly labeled anatomy or missed lesions, and corrected to produce the final modified, semi-
automated segmentation (E). 
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Evaluation of inter-rater variability for the manual editing step of the semi-automated method 

To determine inter-rater variability for the manual editing step of the semi-automated lesion 

segmentation method, we randomly selected 10 T1w images with lesions from the LETBI 

dataset that were not included in the 24-subject longitudinal dataset (i.e. subjects for whom 

there were not longitudinal data available). These 10 independent T1w images were edited by 

three raters, each of whom traced every lesion present on each scan. Raters were provided with 

SynthSR-generated segmentation masks (i.e., the initial automated lesion mask, as represented 

by the yellow lesion mask in Figure 2E) and instructed to revise the segmentations, creating a 

final semi-automated lesion mask (as represented by the blue lesion mask in Figure 2E). In 

post-processing, this mask was further separated into unique values to identify multiple lesions 

for individual subjects. The raters’ final lesion masks were then compared to measure inter-rater 

variability.   

 

To test inter-rater variability, we performed Bland-Altman analyses for each pair of raters 

(Rater�1 vs. Rater�2, Rater�1 vs. Rater�3, and Rater�2 vs. Rater�3), calculating the mean 

difference (bias) and 95% limits of agreement (LOA). This analysis was completed on the 

volume of each lesion, with multiple lesions from patients contributing to the analysis and each 

lesion being treated as an independent observation. Additionally, we computed the Intraclass 

Correlation Coefficient (ICC) to assess the reliability of lesion-tracing. These analyses together 

assessed both agreement and reliability in lesion volumes, identifying any systematic biases or 

random variability. The LOA established a benchmark for subsequent statistical testing of 

longitudinal lesion expansion, allowing us to determine whether observed changes in lesion 

volume over time reflect lesion expansion or variability in the method. 
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Comparison of semi-automated and ground truth segmentations 

To evaluate the agreement of the methods, we compared edited semi-automated

segmentations to the ground-truth segmentations (Figure 3) at both time points using Wilcoxon

signed-rank tests and Bland-Altman analyses. The Wilcoxon tests assessed whether there were

statistically significant differences in the volumes generated by the two methods, while the

Bland-Altman analyses estimated the mean difference (bias), standard deviation, and limits of

agreement between them. 

 

Testing for longitudinal changes in lesion volume 

We hypothesized that there are detectable changes in lesion volume when comparing Visit 1 to

Visit 2 for the entire cohort and when comparing single-subject changes in lesion volume to the

null distribution of inter-rater variability (Figure 4).  We tested these two hypotheses using the

semi-automated segmentations, as well as the ground truth segmentations.  We began by

comparing lesion voxel volumes, measured in mL, between Visit 1 and Visit 2, and then

Figure 3: Comparison of the initial automated lesion segmentation (yellow), the modified semi-automated 
segmentation (green), which was revised by a trained rater, and the manually traced “ground truth” 
segmentation volume (blue).  
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calculating the difference (Visit 2 - Visit 1) for each pair of measurements to determine the

change in lesion volume. The statistical significance of these changes were assessed using the

Wilcoxon Signed Rank test.  

 

Testing for changes in lesion volume compared to inter-rater variability 

Next, we tested whether the observed longitudinal changes in Dice overlap and lesion volume

exceeds the degree of inter-rater variability. Dice overlap and lesion volume differences were

calculated for each lesion segmentation. For inter-rater data, Dice overlap and lesion volume

differences were averaged across the three raters to generate composite scores for each lesion.

For the semi-automated and ground truth groups, dice overlap and lesion volume differences

were derived by comparing Visit 2 to Visit 1 segmentations. Statistical significance of the

differences between longitudinal changes in lesion measurements (i.e., Dice overlap and

 
Figure 4: T1w images from Visit 1 of six representative subjects demonstrating the heterogeneous nature 
of lesion size and location. Images are overlayed with the ground truth lesion segmentations from visit 1 
(red shaded regions) and visit 2 (blue outlined regions). 
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volume) and inter-rater variability was assessed using the Wilcoxon Rank Sum test, with a 

significance threshold of 0.05, to account for outliers and the small sample size.  Finally, we 

operationally defined lesion expansion at the individual lesion level based on an increase in 

lesion volume greater than 1.5 times the SD over the mean of the inter-rater volume variability.  

We selected 1.5 

SD as the cutoff based on the application of this statistical threshold to define abnormal 

cognitive performance in clinical practice (de Vent et al., 2020). 

 

Longitudinal analyses of lesion volumes were performed in the subject’s native space at each 

time point. This method was selected instead of using the FreeSurfer longitudinal pipeline, 

which combines the two time points to generate a base image (Reuter, Schmansky, Rosas, & 

Fischl, 2012). The averaging process in the FreeSurfer pipeline would obscure the examination 

of lesion progression by blending the time points together, thus failing to capture dynamic 

changes in lesion size and location. By performing analyses in native space, we maintain the 

integrity of individual time point data, allowing for precise tracking of lesion growth and 

development over the study period without introducing registration artifacts.  

 

Evaluation of factors associated with lesion volume change 

We examined the relationship between changes in lesion size (measured in mL) and the interval 

between imaging sessions (measured in days).  We calculated the longitudinal change in lesion 

size for each subject by subtracting the lesion size at Visit 1 from that at Visit 2, separately for 

both the semi-automated and ground truth methods. Individual lesion clusters were matched 

between visits to directly compare changes over time. Pearson correlation coefficient (R) and 

two-tailed p-value were computed to assess the strength and significance of any linear 
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relationship between changes in lesion size and duration between study visits. We applied 

Ordinary Least Squares (OLS) regression analysis to further investigate how age, sex and 

interval between study visits relate to changes in lesion volume.  

 

Results 

Patient and lesion characteristics  

The 24 longitudinal participants ranged in age at Visit 1 from 33 to 73 years old, with a median 

age of 55.8 years (IQR = 14.3). Of these participants, nineteen were males. The 10 inter-rater 

participants ranged in age from 31 to 73 with a median age of 51.8 years (IQR = 22.8). Nine of 

the inter-rater participants were male. Additional descriptive statistics are provided in Table 3.  

Lesions were heterogeneous with respect to their neuroanatomic locations and were most 

prevalent in the anterior frontal and temporal lobes (Figure 5).   

 

Table 3. Patient characteristics 

 Longitudinal Dataset (n=24) Inter-rater Dataset (n=10) 

 M SD Range M SD Range 

Age at First Visit 
(Years) 

55.8 11.2 33 - 73 51.8 14.5 31 - 73 

Visit Interval (Days) 1328.5 498.7 734-2366 - - - 
Sex (Male:Female) 19:5   9:1   
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Inter-rater variability 

We first assessed agreement among the three raters using Bland-Altman analysis (Table 4).

The mean bias values between each pair of raters ranged from -0.98 mL to 1.44 mL, with LOA

spanning from -3.57 mL to 4.60 mL. Additionally, the ICC was calculated to evaluate reliability

among raters. The ICC (2,1) was 0.98 (95% CI: 0.93–0.99), indicating excellent reliability. These

results demonstrate a high level of consistency across the raters, with minor differences likely

attributable to individual rater preferences or the inherent complexity of lesion-tracing in chronic

 
Figure 5: Neuroanatomic distribution of ground truth lesions across time points. 
Heatmap of all 48 ground truth lesion tracings registered to MNI space and overlayed 
on anatomical average, revealing a predominance of frontotemporal cortical lesions in 
this cohort. Color and opacity of the heatmap are modulated by the percent of lesion 
traces in each voxel, with the maximum overlap observed being 33%.  
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TBI. Variability within the LOA reflects the heterogenous and complex nature of the lesions, 

leading to differing identifications and tracings by raters. 

 

Table 4. Inter-Rater Bland Altman Agreement Results  
Comparison Mean Difference (Bias) 

[mL]  
Upper LOA [mL] Lower LOA [mL] 

Rater 1 vs. Rater 2 1.44 4.60 -1.72 

Rater 1 vs. Rater 3 0.47 2.03 -1.10 

Rater 2 vs. Rater 3 -0.98 1.62 -3.57 

 

Semi-automated segmentation performance compared to ground truth segmentations 

At Visit 1, the semi-automatic volume measurements yielded a mean bias of 2.42 mL (SD = 

7.06 mL) relative to the ground truth measurements. The limits of agreement ranged from 

−11.41 mL to 16.25 mL, demonstrating a reasonably close alignment between the two methods. 

The Wilcoxon signed-rank test indicated no statistically significant difference (W = 276.00, p = 

0.26), suggesting that the semi-automated method closely approximates the ground truth.  

At Visit 2, the semi-automated measurements showed a higher mean bias of −3.08 mL (SD = 

9.71 mL) compared to the ground truth, with a wider range of agreement (−22.13 mL to 15.96 

mL). This observation suggests that measurement differences varied more than in the first visit. 

A Wilcoxon signed-rank test revealed a significant difference between the two methods at this 

timepoint (W = 197.00, p = 0.019), suggesting that the discrepancies between the semi-

automated and ground truth measurements were more pronounced at this visit.  
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Collectively, these findings at Visit 1 and Visit 2 suggest that the semi-automated method

provides a reliable alternative to ground truth tracing, offering comparable accuracy and

consistency, despite increased variability at the second timepoint (Figure 6). Although the time

required for each segmentation method varied depending on lesion burden, we estimated that

lesion adjustment using the semi-automated method required approximately 10–20 minutes per

scan, compared to 60–90 minutes for manual segmentation. 

 

Longitudinal changes in lesion volume 

Longitudinal changes in lesion sizes derived from semi-automated segmentations at Visit 1 and

Visit 2 ranged from -0.11 to 55.21 mL. The Wilcoxon signed-rank test results yielded a statistic

of 1.0 at p < 0.0001, indicating an increase in lesion volume between Visit 1 and Visit 2.

Figure 6: Bland-Altman agreement plots comparing lesion volume measurements across visits and
methods. Each plot shows the difference versus the mean, with bias (dashed black lines) and limits o
agreement (dashed red lines).  
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Repeating the Wilcoxon signed-rank test using the ground truth segmentations similarly

revealed an increase in lesion volume, ranging from 1.30 to 79.45 mL (W = 1.00, p < 0.0001).  

 

Changes in lesion volume compared to inter-rater variability 

The longitudinal changes in Dice overlap from Visit 1 to Visit 2 exceeded inter-rater variability for

both the semi-automated method (W = 1299.0, p < 0.0001) and the ground truth method (W =

684.5, p < 0.0001). Similarly, the increase in lesion volume from Visit 1 to Visit 2 exceeded inter-

rater variability (i.e., the volume difference between raters for the same lesion) for both the

semi-automated method (W = 225.0, p < 0.0001) and the ground truth method (W= 16.0, p <

0.0001) (Figure 7).  Further, 93.8% of lesions for the ground truth and 65.6% of lesions for the

semi-automated experienced an increase in lesion volume greater than 1.5 times the SD over

Figure 7: Comparison of Longitudinal Lesion Changes with Inter-rater Variabil
The longitudinal changes in Dice scores (left panel) and volume measurements (right panel) from Visit 1
Visit 2 are compared to their respective inter-rater reliability measures. The respective mean (red line) a
1.5 SD intervals (purple dashed lines) pertain to the inter-rater data.   
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the mean of the inter-rater results (top dashed line in Figure 7, right). 

 

Lesion size variation across different visit intervals 

Inter-visit intervals ranged from 

727 to 2,366 days. Correlation 

analyses revealed no relationship 

between visit intervals and 

changes in lesion size for both 

the semi-automated (R = -0.12, p 

= 0.38) and ground truth (R = -

0.10, p = 0.58) methods (Figure 

8). Regression models 

accounting for age, sex, and visit 

interval explained only 7.3% (R² 

= 0.073) and 5.2% (R² = 0.052) 

of the variance in lesion volume 

change, for the semi-automated and ground truth methods, respectively. After adjusting for the

number of predictors, the adjusted R² values were 0.024 for semi-automated and -0.049 for

ground truth, indicating minimal explanatory power. None of the individual predictors were

statistically significant in either model (all p > 0.11)l. The overall F-statistics were 1.49 (p = 0.23)

for semi-automated and 0.52 (p = 0.68) for ground truth, suggesting that the models did not

effectively predict lesion volume changes. Together, these findings indicate that the observed

changes in lesion size are not explained by age-related factors or influenced by sex, regardless

of the measurement method used. 

 
Figure 8: Correlation analysis examining the time between study 
visits and the calculated difference in lesion volume both for 
ground truth (blue) and semi-automated (green) methods. 
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Discussion 

In this longitudinal MRI study of 24 individuals with chronic TBI, we demonstrate the reliability 

and efficiency of a semi-automated cortical lesion segmentation tool. Our findings indicate that 

this FreeSurfer-based tool performs robustly against ground-truth manual tracings to segment 

lesions with improved time efficiency compared to previously developed methods (Diamond et 

al., 2020).  Further, in a proof-of-principle application of the semi-automated lesion 

segmentation tool, we provide preliminary evidence that cortical lesions expand beyond one 

year post-injury, with 40 of 61 measured lesions (65.6%) experiencing lesion expansion on MRI 

scans performed at least 2 years apart.  These observations raise the possibility that lesion 

expansion may contribute to PTND – a finding that will require confirmation in larger longitudinal 

studies with clinical-radiologic-pathological correlations. The semi-automated lesion tool thus 

creates new opportunities to investigate the role of cortical lesions in the pathogenesis of post-

traumatic PTND. 

 

The semi-automated lesion segmentation tool developed here builds upon recent innovations in 

machine learning-based imaging analysis, most notably SynthSR (Iglesias et al., 2023; Iglesias 

et al., 2021).  What distinguishes this tool from previously developed lesion segmentation 

methods is: 1) increased efficiency when compared to traditional manual tracing; 2) improved 

accessibility and reproducibility; and 3) scalability for rapid, anatomically accurate lesion 

segmentation of large datasets. The new semi-automated tool demonstrates robust 

performance characteristics against “ground-truth” manual lesion segmentations, as evidenced 

by the strong agreement observed between the two methods at Visit 1. The observed 

discrepancies at Visit 2 may reflect a heightened sensitivity of the semi-automated method to 
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more complex lesion morphologies, which could account for the increased variability in 

measurements. Collectively, these findings underscore the reliable performance of semi-

automated segmentation compared to traditional manual tracing, but also the potential for future 

improvement in the reliability of the method.    

 

Importantly, the semi-automated lesion segmentation tool requires human input to refine and 

optimize lesion boundaries – a step that reflects the inherent challenge of training automated 

tools to detect traumatic lesions, which often have heterogeneous signal characteristics related 

to variable distributions of gliosis, demyelination, and encephalomalacia. This manual editing 

step required approximately 10-20 minutes per MRI scan, and we estimate that several hours of 

training were required for each rater performing the manual editing. Nonetheless, the time 

required for the manual editing step in the newly proposed method is far less than for our 

previously published lesion segmentation method (Diamond et al., 2020). While the prior tool 

required manual creation of set points along the entire lesion surface, the new method requires 

only a small number of voxel-based edits in volumetric space.  A key future direction will be to 

determine whether full automation is reliable. This goal may be attainable via integration with 

recently developed methods such as VoxelPrompt (Hoopes, Butoi, Guttag, & Dalca, 2024) and 

FastSurfer-LIT (Pollak, Kugler, Bauer, Ruber, & Reuter, 2025). We currently recommend 

manual editing of segmented lesions until further studies confirm the reliability of fully automated 

methods.  

 

The lesion expansion observed in this cohort is consistent with and builds upon the growing 

evidence base indicating that pathological processes in TBI persist and progress in the chronic 

setting, even beyond one year post-injury. The clinical significance of lesion expansion is well 

established in the acute stages of care (Adatia, Newcombe, & Menon, 2021), wherein 
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expansion of an acute lesion may cause mass effect and herniation. In the chronic stage, there 

are many unanswered questions about the underlying mechanisms and temporal dynamics of 

TBI lesion expansion. Prior evidence from histopathology (Johnson et al., 2013; Witcher et al., 

2021) and neuroimaging studies suggests that inflammation persists in the chronic stage of TBI 

(Edlow et al., 2024; Scott et al., 2018), but whether chronic lesion expansion is attributable to 

inflammation, gliosis, microvascular ischemia, or some combination of factors is unknown. 

Elucidating mechanisms of chronic lesion expansion will require pathological-radiologic 

correlation analyses, which the LETBI study is designed to perform, given the premortem 

consent for autopsy provided by LETBI participants (Edlow et al., 2018).  The absence of an 

association between lesion expansion and time between scans suggests that lesion expansion 

occurs at variable rates, though this preliminary observation will require future studies with 

larger sample sizes to confirm.   

 

Several limitations should be considered when interpreting the results of this study. The small 

sample size of 24 individuals with chronic TBI limits the generalizability of our results, 

necessitating larger cohorts for validation. Only investigating two imaging time points and the 

relatively brief follow-up period of 3.5 +/- 1.2 years is also insufficient to elucidate the long-term 

trajectory of lesion expansion and its implications for PTND. The potential contribution of cortical 

lesion expansion to the pathogenesis of PTND is unknown and will require future studies with 

sufficiently large sample sizes to account for other risk factors, as well as protective factors. 

While the semi-automated tool improves efficiency, it still requires manual input for refining 

lesion boundaries, introducing potential variability and subjectivity. Additionally, the 

heterogeneous neuroanatomic locations and signal characteristics of traumatic lesions further 

complicate the segmentation process, as the tool may not uniformly handle all types of lesions 

with the same accuracy. Lastly, this study did not test for cognitive and functional correlates of 
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lesion expansion – a crucial area for future research. Addressing these limitations will be 

essential for advancing our understanding of cortical lesion dynamics in chronic TBI. 

 

In summary, we developed and implemented a semi-automated lesion detection tool that 

accurately identifies and efficiently quantifies the volume of cortical lesions in individuals with 

chronic TBI.  Further, we provide proof-of-principle evidence that this lesion segmentation tool 

can detect longitudinal lesion growth in the chronic stage of TBI. Future applications of this tool 

have the potential to elucidate the pathophysiologic links between lesion expansion and the 

clinical expression of PTND, including in individuals with TBI resulting in large cortical lesions 

that would otherwise exclude them from analyses of neuroimaging data. Ultimately, the 

integration of lesion segmentation into clinical MRI workflows has the potential to inform 

preventive, diagnostic, prognostic, and therapeutic strategies for individuals with chronic TBI. 
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