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Abstract 

Traumatic brain injury (TBI) is a risk factor for neurodegeneration and cognitive decline, yet the 
underlying pathophysiologic mechanisms are incompletely understood. This gap in knowledge is 
in part related to the lack of analytic methods to account for cortical lesions in prior neuroimaging 
studies. The objective of this study was to develop a lesion detection tool and apply it to an 
investigation of longitudinal changes in brain structure among individuals with chronic TBI.  We 
identified 24 individuals with chronic moderate-to-severe TBI enrolled in the Late Effects of TBI 
(LETBI) study who had cortical lesions detected by T1-weighted MRI at two time points. Initial 
MRI scans were performed more than 1-year post-injury and follow-up scans were performed 3.1 
(IQR=1.7) years later. We leveraged FreeSurfer parcellations of T1-weighted MRI volumes and a 
recently developed super-resolution technique, SynthSR, to identify cortical lesions in this 
longitudinal dataset. Trained raters received the data in a randomized order and manually 
corrected the automated lesion segmentation, yielding a final lesion mask for each scan at each 
timepoint. Lesion volume significantly increased between the two time points with a median 
volume change of 3.2 (IQR=5.9) mL (p<0.001), and the increases significantly exceeded the 
possible variance in lesion volume changes due to manual tracing errors (p < 0.001). Lesion 
volume significantly expanded longitudinally in 23 of 24 subjects, with all FDR corrected p-values 
≤ 0.02. Inter-scan duration was not associated with the magnitude of lesion growth. We also 
demonstrated that the semi-automated tool showed a high level of accuracy compared to “ground 
truth” manual lesion segmentation. Semi-automated lesion segmentation is feasible in TBI studies 
and creates opportunities to elucidate mechanisms of post-traumatic neurodegeneration. 
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Introduction 

Traumatic brain injury (TBI) is a well-established risk factor for neurodegenerative diseases 
(Dams-O'Connor et al., 2020).  The pathophysiologic mechanisms that link TBI to post-traumatic 
neurodegeneration (PTND) are not fully understood, though emerging evidence implicates a 
“polypathology” (Kenney et al., 2018) that includes axonal injury (Johnson et al., 2013), tau 
deposition (McKee et al., 2013), vascular injury (Dams-O'Connor et al., 2023; Sandsmark, Bashir, 
Wellington, & Diaz-Arrastia, 2019), and neuroinflammation (Johnson et al., 2013).  An 
underexplored factor in the pathogenesis of PTND is the potential impact of focal lesions, such 
as cerebral contusions, which are amongst the most common lesions in individuals with TBI 
(Vande Vyvere et al., 2024). It is unknown whether focal lesion size or pathophysiologic 
characteristics evolve over time, and if so, whether this may have implications for clinical decline.  

In addition to  a paucity of longitudinal studies of chronic to moderate-to-severe TBI survivors, a 
primary barrier to elucidating the impact of lesions on PTND pathogenesis is methodological.  
Historically, lesions that disrupt the surface of the cerebral cortex have prevented MRI 
segmentation tools from segmenting the brain into its anatomic components (Merkley et al., 2008; 
Santhanam, Wilson, Oakes, & Weaver, 2019; Strangman et al., 2010).  As a result, segmentation 
tools distributed with imaging analysis programs such as FreeSurfer (Fischl, 2012), FSL (Smith 
et al., 2004), and SPM (Friston et al., 1994) have been unable to robustly measure longitudinal 
lesion growth.  Hence, patients with cortical lesions have typically been excluded from studies of 
cortical and subcortical volumetrics in individuals with TBI (Ding et al., 2008; Warner et al., 2010).  
Moreover, efforts at lesion segmentation have required substantial time by operators trained in 
human neuroanatomy (Diamond et al., 2020).  In this context, the systematic study of lesions their 
role in PTND has not been performed.  

To address this methodological barrier and knowledge gap, we performed a longitudinal MRI 
study of individuals with chronic TBI and leveraged recent innovations in machine learning image 
analysis (Iglesias et al., 2023; Iglesias et al., 2021) to create a new, semi-automated lesion 
segmentation tool.  We tested the ability of this semi-automated lesion tool to detect longitudinal 
changes in lesion volume in individuals with chronic TBI enrolled in the Late Effects of TBI (LETBI) 
study (Edlow et al., 2018). 

Methods 

Participant selection 

Between 2014 and 2023, a total of 305 participants were enrolled in the ongoing LETBI study 
(Edlow et al., 2018). Criteria to be included in the present longitudinal analysis required 
participants to have undergone two scanning sessions during consecutive study visits (≥2 years 
apart), each producing T1-weighted (T1w) multi-echo magnetization prepared gradient-recalled 
echo (MEMPRAGE) scans (van der Kouwe, Benner, Salat, & Fischl, 2008) with a resolution of 1 
mm isotropic. Based on these criteria, 249 participants were excluded (n = 225 without 
consecutive timepoints, n = 24 due to sequence mismatch between timepoints). Of the remaining 
participants, 56 met these criteria and their T1w images were visually assessed by a trained rater 
as having lesions on both longitudinal imaging sessions (Figure 1). Lesions were defined by 
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visible disruptions in grey matter, white matter, or the grey/white junction. These included areas 
showing ongoing demyelination or asymmetry compared to the opposite hemisphere (where 
applicable). All participants identified with a lesion in the first visit, also had a lesion identified in 
the second visit. After excluding 32 participants without cortical lesions, the final cohort thus 
consisted of 24 participants. 

Data acquisition, quality assessment, and processing 

T1w images were obtained using Siemens Skyra, Philips Achieva, and Philips Ingenia Elition X 
scanners, all operating at 3 Tesla field strength. The images were acquired at 1 mm isotropic 
resolution. Siemens Skyra scans used a repetition time (TR) of 2530 ms and echo times (TE) 
ranging from 1.79 ms to 7.37 ms. Philips Achieva scans used TRs ranging from 2530 ms and TEs 
ranging from 1.67 to 7.07 ms. Philips Ingenia Elition X scans used a TR of 2530 ms and a TE of 
2.14 ms. Further information about the number of scans obtained from each scanner is provided 
in Table 1. 

 
Figure 1: Evaluation of cohort for eligible participants (top). Example of visual review of the T1w images of 
both timepoints to evaluate for lesion presence. Lesioned area is marked with red arrow. 
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Despite these variations in sequence parameters, efforts were made to ensure uniformity and 
comparability across both subjects and scanning platforms. Additional sequence parameters for 
the T1w sequences on each scanner have been previously reported (Edlow et al., 2018). 

Qualitative and quantitative data quality assessments were performed on the processed images 
of all 24 longitudinal lesion subjects at both timepoints. Visual quality assessments were based 
upon accuracy of FreeSurfer-generated surfaces (excluding those encompassing lesioned tissue) 
and segmentation of subcortical structures. Signal-to-noise ratio (SNR) and contrast-to-noise ratio 
(CNR) were measured using the FreeSurfer tools ‘wm-anat-snr’ and ‘mri_cnr’, calculating SNR in 
white-matter and the average of the WM-GM and GM-CSF contrasts, respectively. While no 
subjects were excluded due to quality assessment measures, differences were observed between 
the SNR distributions of enrollment sites, as reported in Table 2. 

The T1w images were then processed and the surfaces constructed using FreeSurfer v7.4 
(Fischl, 2012). FreeSurfer processing involves motion correction, averaging of T1w images, 
removal of non-brain tissue, automated Talairach transformation, and segmentation of brain 
structures. It also includes intensity normalization, gray/white matter boundary tessellation, and 
topology correction. Further steps involve surface deformation, surface inflation, spherical atlas 
registration, cortical parcellation, and creation of curvature and sulcal depth maps. To robustly 
segment neuroanatomic structures in brains with heterogenous pathology, we used the Sequence 
Adaptive Multimodal SEGmentation (SAMSEG) tool (Cerri et al., 2021; Puonti, Iglesias, & Van 
Leemput, 2016) instead of the default automated segmentation (aseg) tool before FreeSurfer 
recon-all. The FreeSurfer reconstructions for all participants were completed successfully. 

“Ground truth” segmentation 

Ground truth segmentations for all participants were established through manual tracing 
performed by a neurologist who was blinded to subject identification and time point. The process 
involved loading each T1w image into the FreeSurfer image viewer, Freeview. A blank label 
volume was created using the same geometry as the T1w image. The neurologist then manually 
segmented each lesioned area using the voxel edit tool, ensuring accurate and detailed 
delineation of the lesions. All segmentations were performed on the same label volume, thus 
creating a single ground truth segmentation volume for each timepoint for all participants.  

Table 1. MRI acquisition parameters for study participants 

Manufacturer Model Field strength 
(T) 

TR/TE 
(msec/msec) 

Number of 
scans 

Siemens Skyra 3T 2530/1.79 – 7.37 18 
Philips Achieva 3T 2530 / 1.67 – 7.07 11 
Philips Ingenia Elition X 3T 2530 / 2.14 19 

 

Table 2. Quantitative quality assessment of MRI data at each enrollment site. 

Enrollment site Longitudinal cohort SNR CNR 
MSSM n=9 23.30 +/- 5.73 0.93 +/- 0.19 

UW n=15 39.29 +/- 12.21 0.75 +/- 0.14 
All sites n=24 33.30 +/- 12.72 0.82 +/- 0.18 
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Longitudinal analyses for each time point were performed in the subject’s native space. This 
method was selected instead of using the FreeSurfer longitudinal pipeline, which combines the 
two time points to generate a base image (Reuter, Schmansky, Rosas, & Fischl, 2012). The 
averaging process in the FreeSurfer pipeline would obscure the examination of lesion progression 
by blending the time points together, thus failing to capture dynamic changes in lesion size and 
location. By performing analyses in native space, we maintain the integrity of individual time point 

 
Figure 2: Overview of semi-automated lesion segmentation method. SynthSR images are generated for 
each acquired T1w image (A). Both images are then processed through Freesurfer recon-all, resulting in 
ASEG label volumes (B). The SynthSR ASEG is subtracted from the acquired T1w ASEG to highlight 
segmentation differences (C). These differences are classified voxel by voxel based on specific rules 
comparing the SynthSR and acquired T1w segmentation volumes. Identified lesions are then refined using 
morphological operations (D). Finally, the cleaned segmentation is reviewed for errors, including incorrectly 
labeled anatomy or missed lesions, and corrected to produce the final modified, semi-automated 
segmentation (E). 
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data, allowing for precise tracking of lesion growth and development over the study period without 
introducing registration artifacts.  

Semi-automated lesion segmentation 

To minimize time requirements and reduce false negatives (i.e., missed labeling) in manual 
tracing, we developed a novel method for semi-automated lesion segmentation. As illustrated in 
Figure 2A, we leveraged SynthSR (Iglesias et al., 2023; Iglesias et al., 2021), a publicly available 
tool (integrated within FreeSurfer) that turns a clinical MRI scan of any orientation, resolution and 
contrast into a 1 mm isotropic T1w image while inpainting lesions. 

We applied SynthSR to T1w images for all participants, and we then repeated the FreeSurfer 
recon-all process on the synthesized images. We define lesional areas by comparing the 
SAMSEG labels from the synthesized image with those from the original T1w image (Figure 2C) 
using the following rules: at each voxel, it is a lesion if 1) the segmentation label changed from 
white matter (in the original T1w recon) to gray matter (in the SynthSR recon); or 2) from CSF to 
background/white matter/gray matter; or 3) from white matter hypo-intensity to white matter. 
These rules were determined heuristically based on the segmentation label changes inside the 
lesional areas from a subset of our samples. Subsequently, we applied morphological image 
processing (Soille, 2004) to remove false positives, reduce noise, and ensure the detected 
lesional areas are topologically correct, including hole filling, spherical erosion/dilation, and area 
opening. Successful application of the above-described pipeline facilitated the isolation of 
significant changes between the SynthSR-impainted volume and the original volume, yielding an 
initial automated lesion segmentation mask (Figure 2E). We then performed manual edits to 
enhance the accuracy of lesion segmentation boundaries, yielding a final semi-automated lesion 
mask.   

Longitudinal changes in lesion volume 

We hypothesized that there are detectable changes in lesion volume size when comparing Visit 
1 to Visit 2 data (Figure 3).  Using the ground truth segmentation volumes to assess the statistical 
significance of changes in lesion volume between the visits, we examined the number of non-zero 
voxels in Visit 1 versus the number of non-zero voxels in Visit 2. We calculated the differences 
(Visit 2 - Visit 1) for each pair of measurements taken from the ground truth segmentation 
volumes. Statistical analysis was performed using the Wilcoxon Signed Rank test. This approach 
allowed for a direct comparison of how volumes varied between the two time points. 

Evaluation of inter-rater reliability and null hypothesis construction 

To establish inter-rater reliability for lesion segmentation, 10 randomly selected T1w images were 
analyzed by three raters who were blinded to the identity of the participant and the timepoint of 
the scan. Raters were provided with SynthSR-generated segmentation masks (i.e., the raw 
automated lesion mask, see Figure 2E) and instructed to revise the segmentations, creating the 
final semi-automated lesion mask. The raters’ lesion masks were then compared against each 
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other to measure inter-rater variability.  Specifically, we calculated the Dice coefficient between 
lesion masks from each pair of raters: Rater 1 versus Rater 2, Rater 1 versus Rater 3, and Rater 
2 versus Rater 3. We aggregated the Dice scores from each pair and combined them into a single 
comprehensive list, encapsulating the full range of variability among all three raters. These Dice 
scores form a null distribution for statistical testing of the lesion expansion.   

Evaluation of lesion expansion compared to inter-rater variability 

To test if the longitudinal changes in lesion size is beyond the possible variability due to manual 
tracing errors, we measured Dice score between Visit 2 and Visit 1 for each subject, whereby 
larger expansion leads to a lower Dice score. We hypothesized that longitudinal lesion volume 
changes are larger in magnitude than inter-rater variability in lesion tracing (i.e., we expect that 
the Dice scores between two longitudinal time points are significantly lower than those in the null 
distribution derived from inter-rater testing). We tested this hypothesis using the Wilcoxon Rank 
Sum test, with a significance level of 0.05, to minimize the impact from outliers and the small 
sample size. To account for multiple comparisons, the p-values were adjusted using the False 
Discovery Rate (FDR).  

Evaluation of  lesion expansion as a function of time between scans 

We examined the relationship between changes in lesion size (measured in voxels) and the 
interval between imaging sessions (measured in days).  We determined the longitudinal change 
in lesion size by subtracting ground truth lesion size at Visit 1 from lesion size at Visit 2 for each 

 
Figure 3: T1w images from Visit 1 of six representative subjects demonstrating the heterogeneous nature 
of the lesion size and varying locations. Images are overlayed with the ground truth lesion segmentations 
from visit 1 (red shaded regions) and visit 2 (blue outlined regions). 
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subject. Pearson correlation coefficient (R) and two-tailed p-value were computed to assess the 
strength and significance of any linear relationship between changes in lesion size and duration 
between study visits. We applied Ordinary Least Squares (OLS) regression analysis to further 
investigate how age, sex and interval between study visits relate to changes in lesion volume.  

Comparison of semi-automated segmentation to ground truth measurements 

To evaluate the accuracy of the semi-automated segmentations, trained raters made edits to each 
raw output of the semi - automated segmentation, as shown in Figure 4, creating modified semi-
automated segmentation volumes. 

An additional aim of the present study was to evaluate the performance of the semi-automated 
lesion segmentation tool by comparing the necessary edits (see examples in Figure 2E and 
Figure 4) to the raw segmentation volumes with those of the manually edited volumes. We 
compared the  raw and modified segmentations the ground truth at both time points using 
Wilcoxon ranked-sum tests.  

To analyze the variance between the modified semi-automated and ground truth segmentations, 
we evaluated dice scores and non-zero voxel counts. We further assessed this variance using  
Mean Absolute Error (MAE) and Pearson correlation coefficients. Lastly, we calcula we calculated 
dice scores for ground and semi-automated segmentations at both timepoints and analyzed them 
with the Wilcoxon ranked-sum test to determine if there were statistically significant differences 
between the methods. 

Lastly, we calculated dice scores for ground and semi-automated segmentations at both 
timepoints and analyzed them with the Wilcoxon ranked-sum test to determine if there were 
statistically significant differences between the methods.  

 
Figure 4: Zoomed in comparison of the raw output from semi-automated lesion segmentation method, 
against the modified semi-automated segmentation, which was revised by a trained rater, and the manually 
traced “ground truth” segmentation volume.  
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Results 

Patient Characteristics  

The 24 participants ranged in age 
from 33 to 73 years old, with a 
median age of approximately 57 
years (IQR = 13.5). Nineteen were 
males. Full descriptive statistics information can be found in Table 3. 

Longitudinal changes in absolute lesion volume 

Lesion segmentations were assigned voxel values of 1. Lesion sizes derived from ground truth 
segmentations at Visit 1 and Visit 2 ranged from 2,459 to 104,334 non-zero segmentation voxels. 
The Wilcoxon signed-rank test results yielded a statistic of 23.0 and a corresponding p-value of 
0.00007, indicating a statistically significant difference in lesion volume between Visit 1 and Visit 
2. The magnitude of longitudinal lesion volume change for each individual subject is illustrated in 
Figure 5.  

Table 3. Patient characteristics 

n=24 M SD Range 
Age (Years) 55.08 11.56 33 - 73 
Visit Interval (Days) 1328.50 498.74 734-2366 
Gender (Male:Female) 19:4   

 

 
Figure 5: Overview of ground truth and semi-automated lesion tracing volumes across timepoints. For each 
subject, visit 1 and visit 2 ground truth and semi-automated lesion mask volumes are plotted according to 
subject index (sorted alphanumerically). Dotted lines indicated change in lesion volume in a single subject 
across timepoints. Ground truth and semi-automated tracings tend to show similar changes longitudinally, 
which are generally in the positive direction. 
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Inter-rater reliability 

We first computed the mean Dice 
coefficient for each pair of raters, resulting 
in mean values of 0.73, 0.59, and 0.66, 
respectively. To obtain an overall measure 
of agreement, we calculated the average of 
these mean Dice coefficients, yielding an 
overall mean Dice coefficient of 0.66. This 
value indicates a moderate level of 
agreement among the raters, suggesting 
reasonable consistency in lesion 
segmentation across the three raters and 
highlighted the heterogeneity of lesion 
conditions represented in Figure 6. 

Changes in lesion Dice compared to null distribution 

The comparison of each individual dice score and the interrater dice scores revealed statistically 
significant differences for 23 of 24 subjects (Figure 7).  

All FDR corrected p-values for these comparisons were below the significance threshold of 0.05, 
indicating a significant deviation from the interrater scores.  The findings from the Wilcoxon rank-
sum test (Figure 5) revealed a statistically significant difference in group-level lesion volume 
changes when compared against the null distribution (test statistic: 3.887, z = 13.172, p = 0.0001). 
The 95% confidence interval for the test statistic ranged from 3.24 to 4.54, suggesting a robust 
and statistically significant deviation. 

Lesion Size Variation Across Different Visit 
Intervals 

Inter-visit intervals ranged from 727 to 2,366 
days. Correlation analyses revealed no 
relationship between visit intervals and 
differences in lesion size (R = 0.17, p = 0.44; 
Figure 8). The regression model explained 
10.7% of the variance in lesion volume 
change with an R-squared value of 0.11. After 
adjusting for number of predictors, the 
adjusted R-squared value was -0.027, 
indicating reduced explanatory power. None 
of the individual predictors: age, sex, or visit 
interval, were statistically significant. The 
intercept showed no significant effect on 
lesion volume change (p=0.71), while the 
coefficients for age (p=0.34), sex (p=0.26), 

 
Figure 6: Distribution of inter-rater dice scores, forming 
the null distribution. 

 

 

 
Figure 7: Box plots illustrating ground truth and inter-
rater dice scores, demonstrating the distribution of the 
data. Scatter points, color-coded to represent 
calculated p-values from comparisons of individual 
dice scores against the null distribution, are overlaid 
on the ground truth data. This analysis highlights that 
statistically significant deviations from the null 
distribution were observed in 23 out of 24 participants. 
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and visit interval (p=0.996), lacked 
statistical significance. The overall F-
statistic was 0.7954 (p=0.511), suggesting 
the model did not predict changes in lesion 
volume based on the variables examined. 
Together, these findings suggest the 
changes observed here are not expected 
or explained by age-related change or 
influenced by sex.  

Semi-automated segmentation 
performance compared to ground truth 
segmentations 

To assess volumetric differences in lesion 
volume, six Wilcoxon ranked-sum tests 
with FDR corrections to account for 
multiple comparisons were conducted to 
examine the relationship between raw, modified, and ground truth segmentation volumes across 
two time points. There were no statistically significant differences between raw and modified semi-
automated volumes at Visit 1 (W = 262.0, p = 0.60) or Visit 2 (W = 244.0, p = 0.37). This suggests 
that the modifications made to the semi-automated segmentations did not result in significant 
changes in volume compared to the original raw segmentations. Furthermore, when compared to 
ground truth segmentations, neither the raw segmentations at Visit 1 (W = 296.0, p = 0.88) nor 
Visit 2 (W = 327.0, p = 0.88), nor the modified segmentations at Visit 1 (W = 260.0, p = 0.57) or 
Visit 2 (W = 292.0, p = 0.94) showed statistically significant differences. These findings suggest 
that both raw and modified semi-automated segmentations closely approximate the ground truth, 
indicating robustness in the segmentation process across both time points (Figure 9). Though 
time required to perform each segmentation method varied across scans depending on lesion 
burden, we estimated the time required to perform each method as 10-20 minutes per scan for 
lesion adjustment using the semi-automated method and 60-90 minutes for manual segmentation.  

To provide additional insights into the variance between the modified semi-automated 
segmentations and ground truth segmentations, MAE was across both time points.  At Visit 1 the 
MAE of  5686.29 (R = 0.95), signifies a very strong linear relationship and high concordance in 
lesion segmentation accuracy between the two methods. At Visit 2, the MAE increased to 8973.71 
(R = 0.94), further substantiating a robust positive correlation but suggesting a higher average 
discrepancy at the second timepoint.  

The results of the Wilcoxon ranked-sum test were used to determine whether there were statically 
significant differences between the dice scores of the modified semi-automated segmentations 
and ground truth segmentations. This analysis was conducted to assess both volumetric 
discrepancies and spatial overlap accuracy, as represented by Dice scores, between the modified 
segmentations and ground truth. The results yielded a test statistic of 373.00 and corresponding 
p-value of 0.0813 indicating no statistically significant difference between methods. This result is 

 
Figure 8: Correlation analysis examining the time 
between study visits and the calculated difference in 
lesion volume. 
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further illustrated in Figure 10, highlighting the performance of the semi-automated tool in 
accurately segmenting lesions when compared to ground truth.  

Discussion 

In this longitudinal MRI study of 24 individuals with chronic TBI, we demonstrate the feasibility 
and efficiency of a semi-automated lesion segmentation tool. Our findings indicate this 
FreeSurfer-based tool performs robustly against ground-truth manual tracings to segment 
neuroanatomic structures in the presence of lesions with improved efficiency, as compared to 
previously developed methods (Diamond et al., 2020).  Further, in a proof-of-principle application 
of the semi-automated lesion tool, we provide initial evidence that cortical lesions continue to 
expand even beyond one-year post-injury, with 23 of 24 subjects experiencing lesion expansion.  
These observations raise the possibility that lesion expansion may be a contributing factor in 
PTND – a finding that will require confirmation in larger longitudinal studies with clinical-radiologic-
pathological correlations. The semi-automated lesion tool thus creates new opportunities to 
investigate the role of cortical lesions in the pathogenesis of post-traumatic PTND. 

The semi-automated lesion segmentation tool developed here builds upon recent innovations in 
machine learning-based imaging analysis, most notably SynthSR (Iglesias et al., 2023; Iglesias 
et al., 2021).  What distinguishes this tool from previously developed tools are: 1) increased 
efficiency when compared to traditional manual tracing; 2) scalability for rapid initial segmentation 
of large datasets; and 3) improved accessibility and reproducibility, providing preliminary 
segmentations that are both consistent and  highlight potentially impacted areas and offer manual 

 
Figure 9: Comparative analysis of voxel volume distributions across different segmentation methods and 
time points. Box plots representing voxel volume for Ground Truth, Raw Semi Automated, and Semi 
Automated groups across two visits. The left column displays data for Visit 1, and the right column displays 
data for Visit 2. For each visit, three box plots illustrate the distribution of voxel volume for the respective 
groups: Ground Truth (light red), Raw Semi Automated (light blue), and Semi Automated (light green). 
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raters a starting point for refinement of 
segmentations.  The new semi-automated 
tool demonstrates strong performance 
characteristics against “ground-truth” 
manual lesion segmentations, as 
evidenced by the strong positive 
correlations observed between the two 
methods and lack of statistically significant 
changes between ground truth and raw 
segmentation volumes. These findings 
underscore the consistent and reliable 
performance of semi-automated 
segmentation compared to traditional 
manual tracing across both evaluation 
points in our study.   

Importantly, the new method continues to 
require human input to refine and optimize 
the lesion’s boundaries – a step that 
reflects the inherent challenge of training 
automated tools to detect traumatic 
lesions, which often have heterogeneous 
signal characteristics related to 
hemorrhagic and non-hemorrhagic 
components.  Nonetheless, the time 

required for this manual step is far less than for our previously published lesion segmentation 
method (Diamond et al., 2020).  Specifically, while the prior tool required manual creation of set 
points along the entire lesion surface, the new method requires only a small number of voxel-
based edits in volumetric space.   

The lesion expansion observed in this cohort is consistent with, and builds upon, the growing 
evidence base indicating that pathological processes in TBI persist and progress in the chronic 
setting, even beyond one year-post injury. Whether lesion expansion is attributable to chronic 
inflammation, gliosis, microvascular ischemia, or some combination of factors will require 
pathological-radiologic correlation analyses, which the LETBI study is designed to perform, given 
the premortem consent for autopsy provided by LETBI participants (Edlow et al., 2018).  The 
absence of an association between lesions expansion and time between scans suggests that 
lesion expansion occurs at variable rates, though this preliminary observation will require future 
studies with larger sample sizes to confirm.  The potential contribution of lesion expansion to the 
pathogenesis of PTND remains unknown and will require future studies with sufficiently large 
sample sizes to account for other risk factors, and protective factors.  The short-term cognitive 
and functional correlates of lesion expansion is also an area for future inquiry.  

Despite the promising findings from use of semi-automated segmentation tools utilized in this 
longitudinal MRI study, several limitations should be considered. The small sample size of 24 
individuals with chronic TBI limits the generalizability of our results, necessitating larger cohorts 

 
Figure 10: Application of the semi-automated lesion 
segmentation method showcases the accuracy attainable 
through comparison with ground truth segmentations, 
highlighting the method's performance in accurately 
delineating lesions. 
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for validation. The follow-up period may also be insufficient to fully capture the long-term trajectory 
of lesion expansion and its implications for PTND. While the semi-automated tool improves 
efficiency, it still requires manual input for refining lesion boundaries, introducing potential 
variability and subjectivity. Additionally, the heterogeneous nature of the lesions, as demonstrated 
by a heatmap illustrating the locations of all lesions included in our study (Figure 11), including 
both hemorrhagic and non-hemorrhagic components, further complicates the segmentation 
process, as the tool may not uniformly handle all types of lesions with the same accuracy. Lastly, 
this study did not test for cognitive and functional correlates of lesion expansion – a crucial area 
for future research. Addressing these limitations will be essential for advancing our understanding 
of lesion dynamics in chronic TBI. 

In summary, we developed and implemented a semi-automated lesion detection tool that 
accurately and efficiently identifies chronic lesions in patients with TBI.  Further, we provide proof-
of-principle evidence that this lesion segmentation tool can detect longitudinal lesion growth in 
individuals with chronic TBI.  Future applications of this tool have the potential to elucidate the 

 
Figure 11: Volumetric distribution of ground truth lesions across timepoints. Heatmap of all 48 
ground truth lesion tracings registered to MNI space and overlayed on anatomical average, 
revealing the most prevalent neuroanatomical positions of lesions in this cohort. Color and alpha 
of the heatmap is modulated by the percent of lesion traces in each voxel, with the maximum 
overlap observed being 33%. Lesions are most prevalent in the anterior temporal lobe and ventral 
anterior frontal lobe. 
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potential pathophysiologic links between lesion expansion and PTND. Ultimately, the integration 
of lesion segmentation into clinical MRI workflows also has the potential to inform preventive, 
diagnostic, prognostic, and therapeutic strategies in clinical care.  
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