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ABSTRACT 

Objectives: To determine the impact of segmentation techniques on radiomic features extracted from 

ultrahigh-field (UHF) MRI of the brain. 

Materials and Methods: Twenty-one 7T MRI scans of the brain, including a 3D magnetization-

prepared two rapid acquisition gradient echo (MP2RAGE) T1-weighted sequence with an isotropic 

0.63 mm³ voxel size, were analyzed. Radiomic features (histogram, texture, and shape; total n=101) 

from six brain regions -cerebral gray and white matter, basal ganglia, ventricles, cerebellum, and 

brainstem- were extracted from segmentation masks constructed with four different techniques: the 

iGT (reference standard), based on a custom pipeline that combined automatic segmentation tools and 

expert reader correction; the deep-learning algorithm Cerebrum-7T; the Freesurfer-v7 software suite; 

and the Nighres algorithm. Principal components (PCs) were calculated for histogram and texture 

features. To test the reproducibility of radiomic features, intraclass correlation coefficients (ICC) were 

used to compare Cerebrum-7, Freesurfer-v7, and Nighres to the iGT, respectively. 

Results: For histogram PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.99, 

0.42, and 0.11 for the gray matter; 0.84, 0.25, and 0.43 for the basal ganglia; 0.89, 0.063, and 0.036 for 

the white matter; 0.84, 0.21, and 0.33 for the ventricles; 0.94, 0.64, and 0.93 for the cerebellum; and 

0.78, 0.21, and 0.53 for the brainstem. For texture PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, 

and Nighres were 0.95, 0.21, and 0.15 for the gray matter; 0.70, 0.36, and 0.023 for the basal ganglia; 

0.91, 0.25, and 0.023 for the white matter; 0.80, 0.75, and 0.59 for the ventricles; 0.95, 0.43, and 0.86 

for the cerebellum; and 0.72, 0.39, and 0.46 for the brainstem.  For shape features, median ICCs for 

Cerebrum-7T, FreeSurfer-v7, and Nighres were 0.99, 0.91, and 0.36 for the gray matter; 0.89, 0.90, 

and 0.13 for the basal ganglia; 0.98, 0.91, and 0.027 for the white matter; 0.91, 0.91, and 0.36 for the 

ventricles; 0.80, 0.68, and 0.47 for the cerebellum; and 0.79, 0.17, and 0.15 for the brainstem.   

Conclusions: Radiomic features in UHF MRI of the brain show substantial variability depending on 

the segmentation algorithm. The deep learning algorithm Cerebrum-7T enabled the highest 

reproducibility. Dedicated software tools for UHF MRI may be needed to achieve more stable results. 
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INTRODUCTION 

Ultrahigh-field (UHF) whole-body MRI scanners operating at 7T have recently been introduced into 

clinical practice following their initial CE certification. The higher field strength offers several 

advantages over standard 1.5 and 3T scanners, including increased spatial resolution and tissue 

contrast [1], which enables improved visualization of subcentimeter anatomic tissue properties. 

However, 7T MRI also has drawbacks, such as more pronounced artifacts at tissue-air interfaces (e.g., 

at the skull base and orbits) and secondary to motion, and substantial B0 and B1 field inhomogeneity 

[1].  

Inhomogeneity and data size at 7T are also a problem for the application of segmentation tools that 

were developed using MR images obtained at lower field strengths. Such tools are now widely used in 

MRI research, for example to map functional MRI data to underlying brain structures. To address this 

problem in the area of neuroimaging, the deep-learning algorithm Cerebrum-7T has recently been 

proposed for fast and fully automatic segmentation of major brain structures on 7T images [2]. 

Cerebrum-7T showed good performance when compared to a partly automatic and partly manual, de-

facto reference standard, and, in few cases, also to a purely manual segmentation. Cerebrum-7T also 

performed favorably compared to other commonly used segmentation tools [2].  

The prior evaluation of Cerebrum-7T used three measures of segmentation similarity for evaluation of 

segmentation accuracy, with an emphasis on the Dice coefficient [2], but did not explore the impact of 

differences in segmentation masks on radiomic features at 7T that capture intra-volume properties 

such as signal heterogeneity. This topic is of interest because radiomic features –which are now widely 

used for the analysis of both focal brain lesions and diffuse abnormalities within the brain [3-9]– are 

sensitive to the type of segmentation method [10-14].   

Based on the hypothesis that differences in segmentation masks would have a particularly strong effect 

on histogram-, texture-, and shape-based radiomic features at 7T, we reanalyzed the publicly 

accessible, held-out dataset that was used to test Cerebrum-7T. It was our aim to compare the 

reproducibility of radiomic features extracted from segmentation masks produced by Cerebrum-7T 

and two other segmentation tools, relative to partly manual reference standard segmentation.  
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MATERIALS AND METHODS  

Subjects and design 

We retrospectively analyzed 21 T1-weighted MRI scans of the brain from the Glasgow test dataset of 

the Cerebrum-7T study that are publicly available in the repository of the project (URL: 

https://rocknroll87q.github.io/cerebrum7t/). No Institutional Review Board or Ethics Committee 

approval was required as no patient identifiable information was accessed, and all data used for the 

analysis was sourced from a publicly available repository.  

 

MRI protocol 

A 3D magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) T1-weighted MRI 

sequence of the brain was obtained on a 7 Tesla MRI scanner (Siemens 7T Terra Magnetom) equipped 

with a 32-channel head coil, as previously described by Svanera et al [2]. Acquisition parameters 

were: repetition/echo time (TR/TE), 4680 ms/2.07 ms; inversion times (TI), 840 and 2370 ms; flip 

angles 5° and 6°; voxel size 0.63 x 0.625 x 0.625 mm³ with a base resolution was 384; FOV 204 x 220 

x 178.5 mm.  MP2RAGE is a commonly used sequence at 7T, because it is free of proton density and 

T2 contrasts and reduces magnetic field inhomogeneity effects while providing a high contrast-to-

noise ratio [15]. The de-identified images are available for research purposes from 

https://rocknroll87q.github.io/cerebrum7t/data.  

 

Image analysis 

We used the 3D Slicer software package (https://www.slicer.org/) version 5.4.0 [16] for all image 

analyses. Segmentations of six anatomic structures, as provided in the project repository –gray matter, 

basal ganglia, white matter, ventricles, cerebellum, and brainstem– which were obtained using the 

following four previously described segmentation techniques, were used:  

1. iGT (“inaccurate ground truth”): A custom segmentation pipeline, used as the de-facto reference 

standard for the other three segmentation techniques. The iGT relied on two processing branches: 
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one for white and gray matter segmentation, using a combination of the AFNI-3dSeg algorithm 

and a geometric and clustering technique [17, 18]; and one for specific segmentation of basal 

ganglia, ventricles, brainstem and cerebellum, using a combination of denoising and Freesurfer-v6 

[19, 20]. Results of the two processing branches were then combined, and manual supervision and 

correction of the segmentations by an expert rater was performed as the final step, to ensure 

satisfactory results [2].  

2. Cerebrum-7T: A fully automatic, deep-learning segmentation algorithm (deep encoder/decoder 

network with three layers) based on the original Cerebrum algorithm developed for 3T data [21]. 

Using the whole MRI volumes as network input, the convolutional neural network (CNN) was 

specifically trained on 7T MRI data (Glasgow training dataset), using the iGT segmentations as a 

reference standard [2]. The Cerebrum-7T code is available for download from 

https://github.com/rockNroll87q/cerebrum7t.   

3. Freesurfer-v7: Version 7 of the Freesurfer image analysis suite, which is documented and freely 

available for download at http://surfer.nmr.mgh.harvard.edu and was utilized in a large number of 

neuroimaging studies, including several using 7T MRI [22-24]. Partly built on atlas information, 

this tool offers improvements for UHF image segmentation compared to prior versions [25]. 

4. Nighres: A Python-based toolbox building on the quantitative and high-resolution image-

processing capabilities of the CBS High-Res Brain Processing Tools software suite, which was 

designed to specifically deal with submillimeter resolution MRI [26, 27]. Nighres is available for 

download from https://github.com/nighres/nighres.  

Based on these segmentations, the PyRadiomics software module for 3D Slicer was used (available 

from https://github.com/AIM-Harvard/SlicerRadiomics) to extract a total of 101 three-dimensional 

radiomic features from each of the six brain regions, separately for each of the four segmentation 

algorithms: 18 based on the gray-level histogram; 74 texture features (including 24 from the co-

occurrence matrix, 16 from the run-length matrix, 16 from the size-zone matrix, 13 from the gray-level 

dependence matrix, and 5 from the neighboring gray-tone difference matrix), and nine shape features 

(Elongation, Flatness, Maximum diameter, Major axis length, Minor axis length, Least axis length, 

Mesh volume, Sphericity, Surface area) [28]. The full list of features and equations is available at 
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https://pyradiomics.readthedocs.io/en/latest/features.html. As preprocessing steps, intensity 

discretization using a fixed number of 64, and Z-score intensity normalization were performed. No 

spatial resampling was performed; the original isotropic voxel size of 0.63 mm³, which was identical 

for all included scans, was used.    

 

Statistical analysis 

Given the large number of radiomic features, many of which may be highly correlated, dimensionality 

and data redundancy reduction by principal component analysis (PCA, based on Eigenvalues >1, with 

a maximum of 25 iterations for convergence) was applied, independently to the 18 gray-level 

histogram features and to the 74 texture features, across all brain structures and algorithms. No PCA 

was performed for the nine shape features. To test the reproducibility of radiomic features of the three 

classes, intraclass correlation coefficients (ICC) using a two-way mixed-effects model for absolute 

agreement were used to compare Cerebrum-7, Freesurfer-v7, and Nighres to the iGT, respectively. 

ICCs were interpreted as previously recommended: <0.5, poor; 0.5-0.75, moderate; 0.76-0.9, good; 

and >0.90, excellent reproducibility [29]. Analyses were performed using SPSS 28.0 (IBM Corp., 

Chicago, IL, USA). 
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RESULTS 

Feature extraction was successful for all segmentations (see Fig. 1). PCA identified five principal 

components (PC) for the gray-level histogram (originally 18 features), and seven PCs across all 

texture feature categories (originally 74 features).  

Histogram and texture features extracted from the Cerebrum-7T segmentations generally showed 

clearly better reproducibility than those extracted from Freesurfer-v7 and Nighres segmentations, 

relative to features extracted from iGT segmentations (see Tables 1 and 2, Fig. 2). Reproducibility of 

features from Cerebrum-7T segmentations was excellent with ICCs >0.9 for 14/30 histogram PCs, and 

for 18/42 texture PCs (Tables 1 and 2); whereas it was poor (ICC<0.5) for only 2/42 texture PCs, and 

for none of the histogram PCs. Conversely, few histogram and texture PCs from Freesurfer-v7 and 

Nighres segmentations showed excellent, and many PCs, poor reproducibility, relative the iGT. For 

histogram PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.99, 0.42, and 0.11 

for the gray matter; 0.84, 0.25, and 0.43 for the basal ganglia; 0.89, 0.063, and 0.036 for the white 

matter;  0.84, 0.21, and 0.33 for the ventricles; 0.94, 0.64, and 0.93 for the cerebellum; and 0.78, 0.21, 

and 0.53 for the brainstem. For texture PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and 

Nighres were 0.95, 0.21, and 0.15 for the gray matter; 0.70, 0.36, and 0.023 for the basal ganglia; 0.91, 

0.25, and 0.023 for the white matter; 0.80, 0.75, and 0.59 for the ventricles; 0.95, 0.43, and 0.86 for the 

cerebellum; and 0.72, 0.39, and 0.46 for the brainstem. 

Shape features extracted from the Cerebrum-7T segmentations again showed the overall best 

reproducibility relative to the iGT, but differences to the two other segmentation techniques were less 

pronounced, especially to Freesurfer-v7, which showed better reproducibility for several individual 

features (Table 3). For the feature Sphericity, reproducibility was poor for all three segmentation tools. 

Median shape feature ICCs for Cerebrum-7T, FreeSurfer-v7, and Nighres were 0.99, 0.91, and 0.36 

for the gray matter; 0.89, 0.90, and 0.13 for the basal ganglia; 0.98, 0.91, and 0.027 for the white 

matter;; 0.91, 0.91, and 0.36 for the ventricles; 0.80, 0.68, and 0.47 for the cerebellum; and 0.79, 0.17, 

and 0.15 for the brainstem.   
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DISCUSSION 

The results of our study demonstrate that the fully automatic Cerebrum-7T deep-learning segmentation 

algorithm, specifically developed for 7T data, achieved the overall highest reproducibility of radiomic 

features across the different brain regions, relative to the iGT. This was especially true for histogram 

and texture features, and most prominently visible in the cerebral gray and white matter as well as the 

cerebellum, where many PCs showed ICCs of >0.9 (see Tables 1 and 2). Contrary to that, both 

Freesurfer-v7 and Nighres performed poorly for the majority of evaluated PCs, and across all 

segmented brain regions. While this is not particularly surprising for Nighres, for which Svanera et al. 

reported low Dice coefficients especially for the gray and white matter, it is quite surprising for 

Freesurfer-v7, which had previously demonstrated good segmentation performance for most brain 

regions [2]. These results provide further proof that, within the radiomics workflow, segmentation is a 

critical step where minor differences in segmentation masks can have a profound effect on calculated 

feature values. This is also underscored by the fact that even Cerebrum-7T, although trained directly 

on iGT segmentations, showed only moderate-to-good histogram and texture feature reproducibility in 

the brainstem, and partly also in the ventricles (although the clinical value of signal characteristics 

obtained from the ventricles is probably limited). 

Shape feature results, on the other hand, differed in several aspects from the above-described 

histogram and texture feature results. While Nighres again performed quite poorly for the majority of 

features, with only few exceptions, feature reproducibility differences between Cerebrum-7T and 

Freesurfer-v7 segmentations were less pronounced, and for some features and anatomic regions, 

minimal or nonexistent (see Table 3). Axis length measurements, which may also be used clinically, 

for example to assess cortical thickness, showed mostly good to excellent reproducibility across brain 

regions for both Cerebrum-7T and Freesurfer-v7. Only for the brainstem was Cerebrum-7T clearly 

superior to both Freesurfer-v7 (and also Nighres). Surprisingly, for the feature Sphericity, which is a 

descriptor of roundness of the segmented shape relative to a sphere, there was practically no 

correlation between the iGT and all three segmentation methods evaluated, the reason for which is 

unclear.     
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Svanera et al. originally used three metrics, which were previously recommended in the MICCAI 

MRBrainS18 challenge to benchmark segmentation algorithms, for comparison of Cerebrum-7T to the 

reference standard: the Dice coefficient to assess the overlap between segmentations; the 95th 

percentile of the Hausdorff Distance to assess the proximity between segmentation contours; and the 

Volumetric Similarity as a non-overlap-based metric to assess volumetric similarity [30]. While these 

well-established metrics capture the quality of the segmentation, they do not assess quantitative 

differences between segmentations in terms of voxel-based gray-level statistics and patterns contained 

therein. This information, which is captured by radiomic features, is currently evaluated in a wide 

array of diseases of the brain, with recent MRI applications including detection of cognitive 

impairment [8], distinguishing between active and chronic multiple myeloma lesions [9], EGFR and 

HER2 status prediction in adenocarcinoma brain metastases [5], corticospinal tract involvement in 

glioma [4], and prediction of local tumor control in patients with brain metastases following 

postoperative radiotherapy [6].  

Previous studies have demonstrated that the results of radiomics-based classification are generally 

improved at higher spatial resolution [31, 32], which is one of the key strengths of UHF MRI over 

MRI at lower field strengths. However, voxel intensity inhomogeneity and artifacts at 7T may 

negatively impact feature values, and in particular, their reproducibility. Based on prior MRI research 

in different areas of the body, including the brain, which already showed that radiomic feature are 

sensitive to variations in segmentation [10-14], we hypothesized that differences in segmentation 

masks would have a particularly strong impact of radiomic features at 7T. Such major differences 

were indeed observed in our study, in particular for segmentation tools that were not optimized for the 

specific type of MRI dataset.  

Our study has several limitations, including first the use of the iGT as a reference standard. The reason 

is that Cerebrum-7T was trained using the iGT –although on a different dataset that was not used in 

this study– and that therefore, Cerebrum-7T segmentations may more closely resemble those of the 

iGT than segmentations created by the two other methods, which were independent of the iGT. On the 

other hand, the iGT included a manual, human expert-level correction step at the end, and therefore, 

was the logical choice of reference standard out of the available segmentation techniques. Another 
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limitation was our inability to directly compare the reproducibility data at 7T to a matching dataset 

obtained at 3T or 1.5T, because no such data was available in the repository. Finally, the analysis only 

included a single, T1-weighted MRI pulse sequence, whereas clinical as well as research protocols 

also include other sequences, such as fluid-attenuated inversion recovery (FLAIR) and/or T2-weighted 

sequences.        

In conclusion, the results of our study demonstrate that the deep learning-based segmentation 

algorithm Cerebrum-7T, which was specifically trained on 7T data, provided a higher degree of 

radiomic feature reproducibility than other available segmentation tools. These findings support the 

notion that, for the processing of UHF MRI data, dedicated analysis tools such as segmentation 

algorithms may need to be developed, especially since 7T MR scanners have now entered the clinical 

stage. Our results also provide further evidence that histogram, texture, as well as shape features are 

highly sensitive to the choice of segmentation technique, and comparison between results of different 

studies must take this factor into account.      
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Table 1. Histogram feature ICCs for the three segmentation algorithms relative to reference 
iGT. 

 Gray 
matter 

Basal 
ganglia  

White 
matter 

Ventricles Cerebellum  Brainstem 

Cerebrum-7T:       
PC-1 0.95  0.84*  0.89*  0.84*  0.94* 0.64 
PC-2 0.99 0.79 0.98 0.52 0.88  0.78* 
PC-3  0.99* 0.91 0.71 0.98 0.93 0.81 
PC-4 1.0 0.78 0.86 0.91 0.99 0.64 
PC-5 0.86 0.95 0.94 0.61 0.99 0.82 
       
Freesurfer-v7:       
PC-1 0.15 0.19 0.022 0.14 0.47 0.46 
PC-2 0.22 0.66 0.081 0.43 0.79 0.56 
PC-3 0.91  0.25* 0.34 0.81 0.89 0.062 
PC-4  0.42* 0.42 0.28  0.21* 0.40  0.21* 
PC-5 -0.022 0.036  0.063* 0.14  0.64* 0.17 
       
Nighres:       
PC-1 0.066 0.49 -0.065  0.33* 0.88 0.005 
PC-2 0.19 0.082  0.036* 0.051 0.84 0.84 
PC-3  0.11*  0.43* -0.002 0.53  0.93* -0.23 
PC-4 0.75 0.89 0.11 0.66 0.98 0.68 
PC-5 0.021 0.19 0.047 0.14 0.95  0.53* 
 
* Median within each anatomic region 
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Table 2. Texture feature ICCs for the three segmentation algorithms relative to reference iGT 

 Gray 
matter 

Basal 
ganglia  

White 
matter 

Ventricles Cerebellum  Brainstem 

Cerebrum-7T:       
PC-1 0.91 0.93 0.70 0.63  0.95* 0.87 
PC-2 0.99  0.70* 0.82 0.93 0.73 0.79 
PC-3  0.95* 0.72 0.99  0.80* 0.80  0.72* 
PC-4 0.38 0.91 0.97 0.48 0.99 0.57 
PC-5 0.98 0.66  0.91* 0.64 0.74 0.70 
PC-6 0.92 0.67 0.68 0.86 0.96 0.71 
PC-7 0.97 0.53 0.96 0.91 0.97 0.85 
       
Freesurfer-v7:       
PC-1  0.21* 0.35 0.13 0.48  0.43*  0.39* 
PC-2 0.19 0.19 -0.048 0.94 0.021 0.30 
PC-3 0.54 0.73 0.62 0.53 0.65 0.49 
PC-4 -0.027 0.72  0.25* 0.20 0.57 0.14 
PC-5 0.52 0.52 0.96  0.75* 0.27 0.40 
PC-6 0.12  0.36* -0.048 0.75 0.67 0.48 
PC-7 0.61 0.26 0.36 0.94 0.18 0.32 
       
Nighres:       
PC-1 0.099 0.27 0.12  0.59* 0.91 0.29 
PC-2 0.51 0.20  0.023* 0.80 0.55  0.46* 
PC-3 0.71 -0.025 -0.008 0.50  0.86* 0.51 
PC-4 0.0001 0.67 -0.064 0.013 0.98 0.31 
PC-5 0.069 0.001 0.098 0.46 0.73 0.43 
PC-6  0.15* -0.012 -0.11 0.89 0.95 0.52 
PC-7 0.74  0.023* 0.024 0.81 0.70 0.51 
 
* Median within each anatomic region 
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Table 3. Shape feature ICCs for the three segmentation algorithms relative to reference iGT 

 Gray 
matter 

Basal 
ganglia  

White 
matter 

Ventricles Cerebellum  Brainstem 

Cerebrum-7T:       
Elongation 1.0 0.90 1.0 0.95 0.82  0.79* 
Flatness  0.99*  0.89* 0.96 0.91* 0.72 0.77 
Maximum diameter -0.013 0.77 0.99 0.64 0.72 0.83 
Major axis length 1.0 0.84 1.0 0.95 0.70* 0.72 
Minor axis length 0.99 0.97 1.0 0.92 0.63 0.94 
Least axis length 0.99 0.94 0.94 0.78 0.91 0.82 
Mesh volume 0.92 0.89  0.98* 0.98 0.65 0.82 
Sphericity 0.081 0.004 0.44 0.18 0.032 0.015 
Surface area 0.44 0.12 0.72 0.68 0.081 0.12 
       
Freesurfer-v7:       
Elongation 0.93 0.95 0.94 0.94  0.68* 0.15 
Flatness 0.46  0.90* 0.50  0.91* 0.64 0.10 
Maximum diameter 1.0 0.75 0.99 0.47 0.72 0.079 
Major axis length 0.94 0.79 0.97 0.93 0.74 0.11 
Minor axis length 0.93 0.94 0.96 0.92 0.77 0.89 
Least axis length 0.52 0.90 0.54 0.74 0.47 0.73 
Mesh volume 0.38 0.95 0.87 0.98 0.69 0.47 
Sphericity 0.31 0.067 0.46 0.47 -0.005 0.23 
Surface area  0.91* 0.29  0.91* 0.76 0.28  0.17* 
       
Nighres:       
Elongation 0.89 0.18 0.15 0.79 0.65 0.34 
Flatness 0.55 0.27 0.24 0.14 0.49 -0.049 
Maximum diameter 0.97  0.13* 0.003 0.20 0.33 0.035 
Major axis length 0.61 0.018 0.12  0.36* 0.52 0.33 
Minor axis length  0.36* 0.17 0.12 0.36 0.70  0.15* 
Least axis length 0.12 0.19 0.024 0.004  0.47* 0.077 
Mesh volume 0.056 0.082 -0.002 0.94 0.44 0.49 
Sphericity 0.001 -0.034  0.027* 0.73 -0.036 0.15 
Surface area 0.013 0.095 0.004 0.72 -0.16 0.086 
 
* Median within each anatomic region 
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Figure 1. Comparison of the four segmentation techniques. While segmentation maps for gray matter 

(green), basal ganglia (yellow), white matter (brown), ventricles (blue), cerebellum (purple), and 

brainstem (light blue) were overall quite similar for the iGT, Cerebrum-7T and Freesurfer-v7 –

although the inferior portion of the brainstem was missed by Freesurfer-v7– Nighres segmentation 

maps clearly differ, most prominently for the white matter.   
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Figure 2. Exemplary scatter plots for two evaluated brain regions, based on the respective first 

histogram and texture principal components (PC). For the gray matter, Cerebrum-7T and iGT 

measurements show a considerable overlap, and a partial overlap with Freesurfer-v7 data, whereas the 

Nighres cluster is clearly separate. On the other hand,  for the brainstem, there is less overlap 

between iGT measurements and those based on the other three segmentation techniques, including 

Cerebrum-7T.    
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