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Abstract: 
 

Background: Brain computed tomography (CT) is an accessible and commonly utilized technique for assessing brain 

structure. In cases of idiopathic normal pressure hydrocephalus (iNPH), the presence of ventriculomegaly is often 

neuroradiologically evaluated by visual rating and manually measuring each image. Previously, we have developed 

and tested a deep-learning-model that utilizes transfer learning from magnetic resonance imaging (MRI) for CT-based 

intracranial tissue segmentation. Accordingly, herein we aimed to enhance the segmentation of ventricular 

cerebrospinal fluid (VCSF) in brain CT scans and assess the performance of automated brain CT volumetrics in iNPH 

patient diagnostics.  

Methods: The development of the model used a two-stage approach. Initially, a 2D U-Net model was trained to predict 

VCSF segmentations from CT scans, using paired MR-VCSF labels from healthy controls. This model was subsequently 

refined by incorporating manually segmented lateral CT-VCSF labels from iNPH patients, building on the features 

learned from the initial U-Net model. The training dataset included 734 CT datasets from healthy controls paired with 

T1-weighted MRI scans from the Gothenburg H70 Birth Cohort Studies and 62 CT scans from iNPH patients at Uppsala 

University Hospital. To validate the model's performance across diverse patient populations, external clinical images  
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including scans of 11 iNPH patients from the Universitätsmedizin Rostock, Germany, and 30 iNPH patients from the 

University of Alabama at Birmingham, United States were used. Further, we obtained three CT-based volumetric 

measures (CTVMs) related to iNPH.  

 

Results: Our analyses demonstrated strong volumetric correlations (ρ=0.91, p<0.001) between automatically and 

manually derived CT-VCSF measurements in iNPH patients. The CTVMs exhibited high accuracy in differentiating 

iNPH patients from controls in external clinical datasets with an AUC of 0.97 and in the Uppsala University Hospital 

datasets with an AUC of 0.99.  

 

Discussion: CTVMs derived through deep learning, show potential for assessing and quantifying morphological 

features in hydrocephalus. Critically, these measures performed comparably to gold-standard neuroradiology 

assessments in distinguishing iNPH from healthy controls, even in the presence of intraventricular shunt catheters. 

Accordingly, such an approach may serve to improve the radiological evaluation of iNPH diagnosis/monitoring (i.e., 

treatment responses). Since CT is much more widely available than MRI, our results have considerable clinical impact.  

 

Keywords: CT; MRI; hydrocephalus; CNNs; volumetry; deep learning  
 
 

 

1. Introduction 

 

Idiopathic normal pressure hydrocephalus (iNPH) is a treatable neurological condition principally characterized by an 

enlargement of cerebral ventricles. This condition is associated with a triad of clinical symptoms including gait 

instability, cognitive impairment, and urinary incontinence1,2. A recent scientific discourse suggests the term Hakim 

disease, but consensus use of this nomenclature has not yet been reached3. The standard treatment for iNPH involves 

neurosurgical diversion of cerebrospinal fluid (CSF) via the placement of an intraventricular shunt2,4. The estimated 

prevalence of iNPH is approximately 1.5 to 3.7% among individuals aged 65 and older, rising to 4 to 6% in those aged 

80 and above5,6. The work-up of suspected iNPH requires an assessment of structural brain imaging and clinical history 

consistent with these imaging results2. For those who meet these criteria, the definitive diagnosis often involves a lumbar 

puncture/CSF drainage, complemented by serial clinical assessments at a specialized center7,8. While less invasive than 

intracranial shunting, lumbar punctures can still entail risk, albeit rare, for headaches and discomfort9. 

 

Typical morphological features of iNPH are most often assessed using magnetic resonance imaging (MRI), focusing on 

radiological markers such as the Evans' index10, callosal angle11,12, and disproportionately enlarged subarachnoid 

spaces13. The Evans' index is defined as the ratio of the maximal width of the frontal horns of the cerebral ventricles to 

the maximum inner diameter of the skull. The callosal angle, which measures the angle between the lateral ventricles 

in a coronal image perpendicular to the bi-commissural plane, is another critical radiological marker described in clinical 

guidelines for diagnosing iNPH and assessing ventricular enlargement in the context of potential cerebral atrophy2. 

Importantly, these measurements rely on assessments made in the bi-commissural plane14 and while the Evans’ index 

provides insight into the extent of hydrocephalus by measuring the degree of ventricular expansion, it lacks specificity 

among the elderly population as it does not provide information about cerebral atrophy15,16. Truly volumetric 

measurements offer a more direct method for assessing ventricular size, overcoming previous technical limitations in 

clinical practice. In line with this, research has shown that three-dimensional analysis of ventricular volume, achieved 

through semi-automated volumetric techniques or atlas-based segmentation, is more sensitive than the Evans' index for 

monitoring ventricular size changes after shunt treatment in patients with iNPH17–19. 

 

Ventricular volume measurement is typically performed using automated or manual segmentation of ventricular 

cerebrospinal fluid (VCSF) in research environments. MRI, known for its superior soft-tissue contrast, facilitates the 
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precise identification of the bi-commissural plane and other crucial anatomical landmarks20, making it the preferred 

method for assessing diagnostic metrics related to iNPH and for the automated volumetric quantification of ventricles 

and other brain tissue types21–24. Conversely, computed tomography (CT) offers a more accessible and cost-effective 

alternative, with the advantages of shorter scan durations, broader availability, and the absence of strong magnetic 

fields, making it particularly valuable for patients who are unable to undergo MRI examinations. Moreover, CT scans 

are routinely used in the clinical assessments of traumatic brain injury and other neurodegenerative disorders. The 

frequent use of CT offers the opportunity to detect incidental morphological changes related to iNPH, potentially 

enabling earlier diagnosis and subsequent treatment of the condition25. Despite these advantages, current radiological 

assessments of CT still largely depend on subjective visual rating methods that are time-consuming, labor-intensive, 

require significant expertise, and are highly susceptible to variability in inter-rater reliability1,2. 

 

Interestingly, while numerous studies have successfully demonstrated brain tissue segmentation and volumetric 

assessment using MR images26,27, these techniques have encountered challenges when attempted using CT scans with 

inferior soft tissue contrast. Recent research has thus explored robust automated and semi-automated 

segmentation(s)28,29 and volumetric assessments of CT images using state-of-the-art image processing techniques 

centred on deep learning; specifically, segmentation models employing deep learning architectures, such as fully 

connected convolutional neural networks and 2D/3D U-Nets have been utilized30–33. However, most deep-learning-

based studies have thus far been conducted using limited datasets and relied on manually annotated structural labels. 

In our previous research, we successfully employed MR-based tissue class segmentations, derived automatically using 

established and validated methods, to train deep-learning-models for tissue classification in brain CT scans34. To 

accomplish this, we trained U-Net-based deep-learning-models to segment grey matter, white matter, CSF, and 

intracranial volume (ICV) in brain CT images with slice thicknesses ranging from 3-5 mm34. Leveraging our expertise 

and recognizing the underused potential of CT in diagnosing and managing neurological disorders such as iNPH 

globally, our current goal was to develop deep-learning-models trained on both manually and automatically derived 

labels. These models were designed to segment VCSF, specifically targeting the lateral ventricles in brain CT images, 

using transfer learning techniques that are optimal for scenarios with limited training data35,36. 

 

Furthermore, we aimed to extract CT-based volumetric metrics (CTVMs) related to iNPH through deep learning, and 

to evaluate their performance in differentiating iNPH patients from controls, as well as to quantify VCSF volume before 

and after shunt surgery in iNPH patients as a means to automatically monitor treatment efficacy. We ultimately 

determined three volumetric ratios: the lateral ventricular volume to intracranial volume (VCSF/ICV), also known as 

the 3D Evans' index (3D-EI), which offers a three-dimensional enhancement of the traditional Evans' index with 

potentially increased sensitivity and precision; the brain volume to intracranial volume, occasionally referred to as the 

brain parenchymal fraction (BV/ICV), which indicates total parenchymal atrophy; and the ventricular volume to CSF 

volume (VCSF/CSF), providing a more direct measure of hydrocephalus. We propose that these volumetric parameters 

may therefore enhance our ability to use CT images clinically for the rapid and objective detection of hydrocephalus 

and ultimately other neurodegenerative disorders. 

 

2. Materials and Methods  

We developed models based on deep learning capable of segmenting lateral VCSF from brain CT images. These models 

were trained using a transfer learning approach, incorporating both automatically derived MR labels and manually 

derived CT labels. The model was developed in three stages: pre-processing, training the deep-learning-model with 

MR-based labels, and training the deep-learning-model with manually derived CT labels. In this pipeline, we initialized 

the latter model using transferable features from the MR-VCSF label-trained pre-trained model. Figure 1 provides an 

overview of the model development pipeline. 
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Datasets 

Gothenburg H70 Birth Cohort Studies: The datasets used for training and validating the models obtained through deep 

learning (via MR-derived labels) were obtained from the predominantly healthy participants within the Gothenburg 

H70 Birth Cohort Studies37. These multidisciplinary longitudinal epidemiological studies involve six birth cohorts, each 

initially enrolled and examined at the age of 70, to investigate the ageing population in Gothenburg, Sweden. Data was 

collected from 2014 to 2016. The H70 study was approved by the Regional Ethical Review Board and by the Radiation 

Protection Committee in Gothenburg, Sweden. Brain imaging was conducted at Aleris Röntgen Annedal in Gothenburg 

(Aleris Healthcare AB, Stockholm, Sweden). CT images were available for n = 917 participants of which the vast majority 

(99%; n = 904) were cognitively normal. Of these 917 participants, 79% (n = 744) underwent MR scanning within a day 

from their respective CT scan; for model development, we included these ~same-day acquisitions of CT and MR images 

from the respective 744 participants (52.6% female, 70.44 ± 2.6 years, cognitively normal, n = 722). CT scanning was 

conducted using a 64-slice Philips Ingenuity CT system (Philips Medical Systems, Best, Netherlands); resultant images 

had a slice thickness of 0.9 mm, an acquisition matrix of 512 × 512 and voxel size 0.5 × 0.5 × 5.0 mm3. MR scanning was 

conducted on a 3-Tesla Philips Achieva system (Philips Medical Systems). The protocol included the acquisition of T1-

weighted images with a field of view of 256 × 256 × 160, voxel size: 1 × 1 × 1 mm3, echo time: 3.2 ms, repetition time: 7.2 

ms, flip angle: 9°. 

 

Uppsala University Hospital: For the deep-learning-models trained with manually annotated labels, this dataset included 

62 CT scans from 33 iNPH patients (79.3 ± 6.46 years, 51% female) at Uppsala University Hospital. Manual labels of the 

lateral ventricles were curated for the CT scans. Out of all patients, 23 had post-shunt scans available that featured 

intraventricular catheters. Manual segmentation was performed by three raters under the guidance of a board-certified 

neuroradiology specialist (DF). 

 

Clinical Validation Datasets: To validate the diagnostic performance of the CT-based volumetric measures developed 

using deep learning, an external dataset was assembled. It included 11 iNPH CT scans from Universitätsmedizin 

Rostock (74.5 ± 7.39 years, 21% female) and 30 iNPH scans from the University of Alabama at Birmingham (70.4 ± 9.1 

years, 33.33% female). 

 

Figure 1. Overview of model development and training. Stage I: In the pre-processing stage, 734 CT-MRI pairs of 70-year-old individuals from the 

Gothenburg H70 Birth Cohort Studies were coregistered. MR images were segmented to lateral VCSF using FreeSurfer. Stage II: Paired CT- and 

MR-VCSF labels were split into training, validation, and unseen test datasets for a three-fold cross-validation. A 2D U-Net-based deep-learning-

model was developed and trained to predict lateral VCSF with paired CT images and MR labels as training inputs. Stage III: The weights and biases 

from Stage II deep-learning-models were used to initialize another U-Net-model, which was further trained with paired CT and manual CT-VCSF 

labels from 62 iNPH patient datasets. 
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Model Development  

Pre-processing  

Images were pre-processed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm, MATLAB 2023a). All CT, MR images, and 

CT-derived manual segmentations were converted to NIfTI format(s). In the Gothenburg H70 Birth Cohort, the images 

were visually assessed, and the AC-PC planes were aligned. VCSF segmentations were derived from MR images using 

Freesurfer 5.3.038 processed through theHiveDB system39. To train the model in the CT space, the MR labels were co-

registered to CT images in SPM1240 using rigid body transformation. The registration between output CT and MR labels 

of each dataset was visually assessed; ten datasets were found to have faulty co-registrations and were discarded.  

 

Model Development Using Automatically Derived MR Labels 

At this stage, the deep-learning-models were trained using MR-VCSF labels. The 734 pre-processed datasets from the 

Gothenburg H70 Birth Cohort consisting of CT images, and Freesurfer-derived MR-VCSF labels were subdivided into 

training and cross-validation groups. We used a three-fold cross-validation method for our analysis. From a pool of 734 

datasets, we randomly divided them into three equal parts. For each cycle of validation, one part was designated as the 

unseen test set, and the remaining two were merged and further split into 400 training and 100 validation sets. We 

trained the model parameters using the training sets and fine-tuned them with the validation sets. The effectiveness of 

the model was then evaluated using the test sets, which had not been seen by the model during training. The U-Net-

based deep-learning-model used at this stage was developed in Python 3.10.14, using TensorFlow 2.10.0 and Keras 

2.10.0. The models were trained on an MSI GeForce RTX 2080 Ti, 11GB RAM graphical processing unit (GPU). The CT 

images were provided as training inputs, and the MR labels were assigned as training labels. The U-Net was designed 

to accept 2D slices of size 512 × 512, from the axial plane of the input brain scan. Once the datasets were organized, we 

constructed a model with 1,177,649 trainable hyperparameters. We used a batch size of 16, incorporating features such 

as early stopping and automatic reduction of the learning rate based on the training progress. The model underwent 

training for 50 epochs. For semantic segmentation, we utilized binary cross entropy and the Dice coefficient as loss 

functions to optimize the model's performance. We employed the adaptive moment estimator (Adam) optimizer with 

a learning rate of 0.00001 to estimate these parameters. All weights were initialized using a normal distribution with a 

mean of 0 and a standard deviation of 0.01, while all biases were set to zero. 

Model Development Using Manually Derived CT-VCSF Labels 

In the final stage of the model development, the U-Net-based deep-learning-models were trained with manual labels 

derived from CT images. The 62 datasets from the Uppsala University Hospital consisting of paired CT images, and 

manual lateral CT-VCSF labels were subdivided into training and cross-validation groups for a three-fold cross-

validation. During each training fold, the 62 paired CT and manual CT-VCSF labels were randomly categorized into 

training (n = 32), testing (n = 20), and validation (n = 10), groups. To reduce overfitting, we increased the training and 

validation group sizes using data augmentation41. The U-Net models were developed in Python 3.10.14, using 

TensorFlow 2.10.0 and Keras 2.10.0 and trained on an MSI GeForce RTX 2080 Ti, 11GB RAM graphical processing unit. 

We incorporated the U-Net, previously trained with automatically derived MR-VCSF labels, by initializing the encoders 

of the current U-Net models. All other parameters and training conditions remained consistent with our previous 

models. After adjusting the trainable parameters, the model underwent training propagations within each epoch. These 

propagation algorithms iterated for all epochs, with parameters updated accordingly. Training ceased upon model 

saturation or completion of the specified number of epochs. The resulting models were then preserved for the 

automated VCSF segmentation of CT scans, leveraging features acquired from both automatically derived MR labels 

and manually derived CT labels. 
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Image Processing and Analysis 

CT-based Volumetric Metrics (CTVMs): Deep-learning-based CT-VCSF segmentation was executed in Python 3.10.14, 

using TensorFlow 2.10.0 and Keras 2.10.0. The model’s predictions were independent of MRI or any other label or user 

input, and pre-processing of CT images. The CT images from all cohorts served as inputs to the trained U-Net models. 

As we used cross-validation, we were able to effectively use the same data (from Gothenburg H70 Birth Cohort studies 

and Uppsala University Hospital datasets) for both training and testing our models. Cross-validation allowed us further 

to repeatedly train our model on different subsets of the data and then test it on the remaining portions, instead of 

simply splitting this data into a training set and a separate test set42. Hence, we could use the training inputs as test 

datasets by applying models to data unseen during the training process. The models efficiently generated lateral VCSF 

segmentation maps from CT images using the trained hyperparameters, completing the task in approximately 10 

seconds per dataset. Additionally, we derived grey matter, white matter, ICV, and CSF maps using U-Net-based deep 

learning models trained in our previous study34. 

 

The resulting segmentation maps represent probability or confidence maps, with each pixel indicating the likelihood of 

belonging to the VCSF labels. These maps underwent binarization using global thresholding set at 0.5. Stacking the 

slices of segmentation maps produced a 3D image, from which the sum of voxels was calculated and then multiplied 

by the voxel size to determine brain tissue volume (in mL). Total brain volume (BV) was derived from the binarized 

parenchymal maps. By using the lateral VCSF, CSF, ICV, and BV segmentation maps obtained from CT images via deep-

learning-models, we derived the following iNPH-related CT-based volumetric measures: VCSF/ICV (3D-EI), BV/ICV, 

and VCSF/CSF. 

Ground Truth Label Volumes: Manually derived CT-VCSF labels and automatically derived MR-VCSF labels were 

binarized using global thresholding set at 0.5, and volumes were quantified by the sum of voxels, multiplied by the 

voxel size.  

Statistical Analysis 

Shapiro–Wilk test was used to examine the Gaussian distribution of the continuous volumetric metrics (p > 0.05). The 

volumetric similarity between automatically derived CT-VCSF and manually derived CT-VCSF in the Uppsala 

University Hospital datasets, and CT-VCSF and MR-VCSF in the Gothenburg H70 Birth Cohort was assessed using 

Spearman rank correlation tests, and the agreement was visualized using Bland–Altman plots with 95% limit of 

agreement. We also computed and compared the Spearman rank correlation between manually and automatically 

derived CT-VCSF volumes in pre- and post-shunt procedure in the Uppsala University Hospital datasets. We compared 

the distribution of CTVMs between the iNPH patients from Uppsala University Hospital and controls from Gothenburg 

H70 Birth Cohort using the Mann–Whitney test (p < 0.05). The accuracy of CTVMs in distinguishing iNPH patients from 

cognitively normal individuals was assessed by measuring the area under the receiver operating characteristic curve 

(ROC-AUC) with 95% confidence intervals (CI). Additionally, we conducted a comparison of the distribution of CTVMs 

between iNPH patients and controls, as well as ROC-AUC analysis, on iNPH patients from the validation clinical 

datasets and Gothenburg H70 Birth Cohort. All statistical analyses and visualization curation were performed using R 

version 4.3.2 (2023).  

3. Results 
 
Table 1 lists the iNPH-related CT-based volumetric measures for all participants in all cohorts. As hypothesized, the 

mean CT-VCSF/ICV (3D-EI) was higher among the iNPH patients (0.11 ± 0.05) from the validation iNPH patient 

datasets, as compared to the predominantly healthy Gothenburg H70 Birth Cohort participants (0.04 ± 0.01). Also, the 

CT-BV/ICV was lower in the iNPH patients (0.65 ± 0.11) in comparison to cognitively normal individuals (0.74 ± 0.03) 

from the Gothenburg H70 Birth Cohort.  
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Table 1. Summary of iNPH-related CT-based volumetric measures obtained through deep learning 

Volumetric 

metric 

Gothenburg H70 Birth 

Cohort  

(n = 917) 

Uppsala University 

Hospital patients 

(n = 62) 

Validation  

clinical datasets 

(n = 41) 

p-value 

(Kruskal Wallis  

test) 

VCSF/ICV 0.04 ± 0.01 0.11 ± 0.03 0.11 ± 0.05 p <0.001 

VCSF/CSF 0.15 ± 0.04 0.35 ± 0.07 0.48 ± 0.13 p <0.001 

BV/ICV 0.74 ± 0.03 0.65 ± 0.11 0.71 ± 0.08 p <0.001 

Abbreviations: brain volume, BV; cerebrospinal fluid, CSF; computed tomography, CT; intracranial volume, ICV; idiopathic normal 

pressure hydrocephalus, iNPH; lateral ventricular cerebrospinal fluid, VCSF. 

 

Segmentation performance compared with manually derived CT-VCSF labels 

Figure 2 illustrates the outputs from our deep-learning-models, showcasing the predicted CT-VCSF maps alongside 

their corresponding manual CT-VCSF labels for comparison. In the iNPH patient datasets from the Uppsala University 

Hospital, automatically derived CT-VCSF volumes demonstrated strong correlations with the manually derived CT-

VCSF volumes (ρ = 0.91, p < 0.001; Figure 3a, left). The Bland-Altman analysis performed between these two measures 

yielded a bias of 33.44 mL (24.11%) and a standard deviation (SD) of 19.27 mL (Figure 3a, right) indicating an 

overestimation through the automatically derived CT-VCSF volumes as compared to manually derived CT-VCSF 

volumes. Additionally, in the Gothenburg H70 Birth Cohort, CT-VCSF volumes obtained through deep learning 

demonstrated a strong correlation with the MR-VCSF volumes (ρ = 0.91, p < 0.001) (Figure 3b, left) with Bland-Altman 

analysis indicating a bias of 4.53 mL (14.9%) and SD of 7.31 mL (Figure 3b, right). 

 

Figure 2. Model outputs. a) Input CT images, manual lateral VCSF, and U-Net predicted lateral VCSF maps of two representative test iNPH patient 

datasets; b) and c) 3D visualization of manually derived and automatically derived CT-VCSF. Abbreviations: CT, computed tomography; lateral 

ventricular cerebrospinal fluid, VCSF. 
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Figure 3. Segmentation performance for volumetry. a) Correlation plots and Bland-Altman analysis plots between manually derived and 

automatically derived CT-VCSF; b) Correlation plots and Bland-Altman analysis plots between automatically derived MR- and CT-VCSF. 

Abbreviations: CT, computed tomography; MRI: magnetic resonance imaging; SD: standard deviation; lateral ventricular cerebrospinal fluid, VCSF 

Segmentation performance in the presence of shunt 

The trained deep-learning-models effectively predicted segmentation maps, even in the presence of intraventricular 

catheters. Figure 4a specifically displays the deep-learning-model’s CT-VCSF predictions at the site of the 

intraventricular catheter; both pre-and post-shunt VCSF volumetric differences were similar between manual 

segmentations and those produced automatically by the model, as illustrated in Figure 4b. 
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Figure 4. Model predictions with an intraventricular catheter. a) Input CT images with shunts, and U-Net predicted VCSF maps of two 

representative post-shunt iNPH patient test datasets. On the right, correlation plots between manually derived and automatically derived CT-VCSF 

volumes of b) pre-shunt and c) post-shunt procedure volumes of iNPH patient datasets (n = 23) are depicted. Abbreviations: CT, computed tomography; 

lateral ventricular cerebrospinal fluid, VCSF. 

Diagnostic Performance of CTVMs 

In the clinical validation datasets, iNPH-related CTVMs demonstrated high accuracy in distinguishing iNPH patients 

from controls (datasets from the Gothenburg H70 Birth Cohort), achieving an AUC of 0.97 (95% CI: 0.94 to 1.00) for CT-

VCSF/ICV (3D-EI), as shown in Figure 5a. However, this was not the case for CT-BV/ICV. Overall, CTVMs effectively 

differentiated between the two groups, with average CT-VCSF/ICV (3D-EI) (Figure 6a) and CT-VCSF/CSF (Figure 6b) 

values being higher in iNPH patients compared to controls. 

 

Additionally, in the Uppsala University Hospital datasets, CTVMs also demonstrated excellent accuracy in 

distinguishing iNPH patients from controls with an AUC: 0.99, 95% CI: 0.98, 1.00 for CT-VCSF/ICV (3D-EI) (Figure 5b). 

Similar to the validation clinical datasets, CTVMs significantly differentiated between the two groups, with mean CT-

VCSF/ICV (3D-EI) (Figure 6c), and CT-VCSF/CSF (Figure 6d) higher in iNPH patients as compared to controls.  
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Figure 5. ROC curves for distinguishing iNPH from controls. The plot shows the ROC curves of various CTVMs in distinguishing iNPH patients 

of a) validation clinical datasets (n = 41) and b) Uppsala University Hospital (n = 62) from controls obtained from the Gothenburg H70 Birth Cohort 

(n = 917). ***p < 0.001; nsnot significant. Abbreviations: brain volume, BV; cerebrospinal fluid, CSF; intracranial volume, ICV; idiopathic normal pressure 

hydrocephalus, iNPH; lateral ventricular cerebrospinal fluid, VCSF. 

 
Figure 6: Distribution of CT-based volumetric measures across iNPH patients from a) Validation clinical datasets (n = 41) and b) the Uppsala 

University Hospital (n = 62) and controls from Gothenburg H70 Birth Cohort (n = 917). ***p < 0.001, p values are from the Mann-Whitney test. 

Abbreviations: brain volume, BV; cerebrospinal fluid, CSF; computed tomography, CT; intracranial volume, ICV; idiopathic normal pressure hydrocephalus, 

iNPH; lateral ventricular cerebrospinal fluid, VCSF. 
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4. Discussion 
 
Computed tomography (CT) scans are the major routine method for evaluating brain morphology in both developed 

and developing countries but typically rely on subjective visual inspection and ratings43,44. Adopting reliable automated 

and quantitative methods, such as machine learning for ventricular segmentation, could substantially improve the 

diagnostic performance of CT-derived data through enhanced accuracy and consistency, reducing inter-rater 

variability, and providing substantial benefits in both research and clinical contexts. Most machine learning applications 

for CT scans still rely on time-consuming, labor-intensive manual labelling, which introduces subjectivity and limits the 

availability of training datasets. Our study introduces a pioneering approach using deep learning, trained with both 

automatically and manually derived brain labels; the standard for evaluating iNPH in research and clinical settings. We 

utilized automated labels from MRI to enhance training efficiency and address the scarcity of annotated data, which 

poses significant challenges in brain morphology assessment and quantification. By leveraging transfer learning and 

automated labels, we aim to improve the accuracy and robustness of our models, mitigating the limitations of manual 

annotation. Once trained, these models operated solely on CT data, eliminating the need for MRI inputs and/or visual 

assessments. We successfully applied these models to segment ventricular structures from CT images across two distinct 

diagnostic groups: a predominantly cognitively normal elderly population (n = 917) and iNPH patients (n = 94), utilizing 

data from four different sources, thereby demonstrating the method's robustness and generalizability.  

 

A key finding from our study is that deep learning models, when properly optimized and trained with both 

automatically and manually derived labels, are highly effective at segmenting VCSF from head CT images with different 

slice thicknesses (ranging from 3 to 5 mm). Automatically derived CT-VCSF labels strongly correlated with manually 

derived CT-VCSF (ρ = 0.91, p<0.001). However, the bias of 33.44 mL (24.11%) in the Bland-Altman analysis suggests a 

systematic difference between the two measures, with automatically derived CT-VCSF volumes consistently 

overestimating lateral ventricular volumes in comparison to manually derived CT-VCSF. The systematic overestimation 

could potentially enhance the distinction between iNPH patients and controls. Indeed, the CT-VCSF-based measures 

derived automatically demonstrated a high level of accuracy in differentiating iNPH from control subjects. 

Additionally, the automatically derived CT-VCSF measurements showed a strong correlation with automatically 

derived MR-VCSF, with a bias of 4.53 mL (14.9%) and a standard deviation of 7.37 mL, indicating reasonable agreement 

albeit with some variability. Congruent with the literature, our segmentation performance was in line with previous 

work (i.e., that of Zhou et al. 202132 and Huff et al. 201930). Previously, we confirmed the segmentation similarity between 

CT brain tissue classes obtained using deep learning and their corresponding MR brain tissue classes determined 

through established automated segmentation tools34. In this study, we further validated the similarity of CT volume 

segmentations performed by deep learning against manually derived CT volumes, which currently and still serve as 

the gold standard. 

 

Another critical finding of clinical importance from our study was that CT-based volumetric metrics demonstrated high 

accuracy in distinguishing iNPH patients from cognitively normal individuals in the H70 Cohort, with AUC values of 

0.97 and 0.99 for two volumetric ratios: CT-VCSF/ICV (3D-EI) and CT-VCSF/CSF. This was particularly evident in the 

validation of clinical datasets. In a review by He et al. 202045, the AUC of iNPH vs cognitively normal for manual CT-

derived Evans’ index and anteroposterior diameter of the lateral ventricle index (ALVI) were reported to be 0.95 and 

0.99, respectively. Compared to MR-derived z-Evans’ index (AUC, 0.91), Evans’ Index (AUC, 0.84) and callosal angle 

(AUC, 0.93) in Yamada et al. 201546, CT-based volumetric measures exhibited higher diagnostic accuracies. Additionally, 

in Neikter J et al. 202047, the diagnostic accuracy of MR-derived brain volume ratio (AUC, 0.98), callosal angle (AUC, 

0.97), Evans’ Index (AUC, 0.96), and presence of disproportionately enlarged subarachnoid spaces (AUC, 0.96) was 

comparable to CTVMs. Kockum et al. 202048 developed the INPH Radscale; a radiological assessment tool to quantify 

ventriculomegaly and other brain changes for diagnosing iNPH. CTVMs also exhibited comparable diagnostic 

accuracies to iNPH Radscale (AUC, 0.99). 
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A significant advantage of our findings is that the volumetric ratios reported can be automatically extracted within 

seconds, eliminating the need for time-consuming manual analysis by neuroradiologists. Given the widespread 

availability of CT scans and their ubiquitous use in clinical routine, the potential for automated screening tools that 

enhance and expedite radiological assessments is highly promising and is therefore positioned to have an 

immediate/substantial clinical impact. 

 

Another interesting finding of our study is that the volumetric correlations between automatically and manually 

derived CT-VCSF volumes in pre-shunt (ρ = 0.93, p<0.001) and post-shunt procedure (ρ = 0.92, p<0.001) were similar. 

This implied that the presence of intraventricular catheters in CT scans had minimal impact on the model’s segmentation 

accuracy, as shown in Figure 4. This consistency underscores the potential for using automated CT ventricular volumes 

in the ongoing monitoring of iNPH patients after shunt surgery. Such tools could significantly aid in assessing shunt 

functionality and managing complications related to over- or under-drainage in iNPH and other forms of 

hydrocephalus. Given that the model performs well even with the presence of shunt catheters in postoperative scans, it 

could potentially be used to monitor small volumetric changes associated with shunt dysfunction. Additionally, in 

elderly patients, enlarged ventricles may represent either hydrocephalus or general brain atrophy51, which diminishes 

the specificity of traditional metrics like the Evans' index. Utilizing the specific ratio of brain volume to intracranial 

volume (BV/ICV) may yield results that are indicative of generalized atrophy, while the ventricular volume to CSF 

volume (VCSF/CSF) ratio provides a direct assessment of hydrocephalus, highlighting the potential of such an approach 

as a next-generation screening tool in clinical settings. 

 

To better integrate this method into clinical settings, further research is needed to explore the relationship between 

CTVMs and established iNPH metrics such as the Evans' index and callosal angle. We also plan to explore the potential 

of these variables for differential diagnosis in conditions like iNPH, dementia, and/or other neurodegenerative diseases. 

Additionally, we aim to optimize the model's architecture and hyperparameters and conduct a visual comparison of 

manual and automated CT-VCSF maps. By involving expert raters (senior neuroradiologists), we hope to identify the 

sources of systematic bias, further refine our models, and develop generalizable models.  

In summary, CTVMs enhanced through deep learning, demonstrate a strong correlation with established clinical 

indicators of iNPH. Significantly, these measures effectively distinguish iNPH patients from control groups. As such 

we contend that automated techniques for generating CTVMs and related ratios could serve as valuable tools for 

identifying hydrocephalus in clinical CT scans. Such methods not only support the diagnosis of iNPH but also offer a 

practical and cost-effective alternative to MRI and conventional visual rating scales. 
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