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Abstract 

DNA methylation age (MA), brain age (BA), and frailty index (FI) are putative aging 

biomarkers linked to dementia risk. We investigated their relationship and combined potential 

for prediction of stages of cognitive impairment and future risk of dementia using the ADNI 

database. Of several MA algorithms, DunedinPACE had the strongest association with 

neuropsychological tests and was included alongside BA and FI in predictive analyses. 

The pairwise correlations between age- and sex-adjusted measures for MA 

(aDundedinPACE), brain age (aBA), and frailty (aFI) were low (all <0.15). In a prediction 

model including age, sex, and aFI, we achieved an area under the curve (AUC) of 0.95 for 

differentiating cognitively normal controls (CN) from dementia patients in a held-out test set. 

The best models for CN vs. mild cognitive impairment (MCI) and MCI vs. dementia 

contained age, sex, aFI and aBA as predictors, and achieved out-of-sample AUCs of 0.82 and 

0.83 respectively. When combined with clinical biomarkers (apolipoprotein E ε4 allele count, 

memory, executive function), a model including aBA and aFI predicted 5-year dementia risk 

among MCI patients with an out-of-sample AUC of 0.83. aDunedinPACE did not improve 

the predictions. FI had a stronger adverse effect on prognosis in males, while BA's impact 

was greater in females. 

Our findings highlight complementary value of BA and FI in dementia prediction. The results 

support a multidimensional view of dementia, including an intertwined relationship between 

the biomarkers, sex, and prognosis. The tested MA's limited contribution suggests caution in 

their use for individual risk assessment of dementia. 

Keywords 

Biological age, brain age, dementia, methylation age, frailty index, deep learning, machine 

learning 
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Introduction 

Dementia prevalence increases exponentially after age 65 [31], but the underlying biological 

mechanisms linking aging to dementia remain elusive [12]. One hypothesis holds that 

neurodegenerative diseases leading to dementia may be manifestations of accelerated aging 

[16]. By quantifying deviations in biological age from expected chronological age with aging 

biomarkers, we might identify individuals at higher dementia risk and assess the effects of 

interventions targeting aging and aging-related neurodegenerative processes [12, 16].  

Various biomarkers of biological age or aging have shown promise in predicting a diagnosis 

of dementia or future risk of the disease [3, 6, 28, 29, 35–37, 40, 42, 46]. Still, geroscience 

lacks a standard definition of biological aging and its ideal biomarker [8, 47]. The search for 

biomarkers is complex due to aging manifesting at multiple levels: molecular, phenotypic, 

and functional [9]. Here, we investigated the interrelated role of three leading aging 

biomarkers in dementia risk prediction, with each biomarker representing one of the three 

levels proposed by Ferruci, et al. [9].  

At the molecular level, alterations in methylation patterns of DNA is a hallmark of aging 

[24]. The methylation states in CpG dinucleotides across the genome can be measured in 

peripheral blood [15]. Algorithms called epigenetic clocks leverage this data to calculate an 

individual's epigenetic or methylation age (MA). Often, MA is statistically adjusted for 

chronological age to generate an “age acceleration” metric [14], which quantifies deviation of 

an individual's methylation pattern from what is expected given their chronological age. 

Here, positive values indicate that an individual’s biological age as reflected by MA is higher 

than their chronological age. Several studies have used epigenetic age acceleration to study 

dementia risk [10, 20, 26, 36, 37, 45, 48]. For instance, Mcmurran, et al., found that 

epigenetic age acceleration, as measured by the Horvath and GrimAge MAs increases future 

dementia risk [26]. Another study found that an epigenetic clock reflecting aging pace 
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(DunedinPACE) was associated with current cognitive impairment and future dementia risk 

[36, 37]. Other studies, including a systematic review, have yielded mixed results [10, 45, 48] 

and highlight the need for further research. While single-gene methylation states were shown 

to predict a diagnosis of dementia due to Alzheimer´s disease (AD) with high in-sample 

accuracy in one study [43], we are unaware of studies examining the predictive power of MA 

algorithms for individual dementia risk assessment based on out-of-sample verification. In 

contrast, the predictive potential of phenotypic biomarkers, in particular those captured by 

brain age models, has been more frequently examined in the context of individual risk 

assessment [11, 25, 29]. 

A notable example of a phenotypic aging biomarker is the difference between magnetic 

resonance brain imaging (MRI)-predicted and chronological age, denoted the brain age gap 

(BAG) [1, 11, 14]. The individual's brain age (BA) is calculated by algorithms trained with 

machine learning, with recent BA models repeatedly producing reliable estimates across wide 

age ranges [1]. Studies have found positive associations between elevated BAG, AD 

biomarkers and cognitive status [28, 46]. Importantly, BAG has also been tested for 

individual dementia prediction. For example, using BAG, Persson, et al., achieved an area 

under the receiver operating characteristic curve (AUC) of 0.68 in classifying individuals 

with dementia from non-dementia [29].  

Aging eventually manifests as functional deterioration [9, 47]. Functional aging is frequently 

quantified using a frailty index (FI) [33, 34]. FI is a composite score that reflects 

accumulation of health deficits [33]. Multiple studies have demonstrated that a greater degree 

of frailty, as measured by higher FI scores, correlates positively with poorer cognitive status 

and future dementia risk [4], even independent of cognitive test results [35]. The latter study 

by Song et al., [35], obtained an AUC of 0.64 and 0.66 for prediction of 5-year and 10-year 

future dementia risk.  
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A cross-sectional study by Phyo and colleagues, [30] was the first to compare the three 

reviewed biomarkers representing different hierarchical levels of aging (MA, BAG and FI). 

The authors found mostly low correlation between MA measures and FI, while BAG was not 

correlated with either. The findings suggested a possible complementary value of the three in 

predicting age-related disease risk. While this has yet to be examined in the context of 

dementia, studies investigating another aging-related endpoint — mortality — offer support 

for this notion. Li, Ploner, and colleagues [21] as well as Li, Zhang, et al. [22], found that the 

combination of different epigenetic clocks and FI scores enhanced mortality risk prediction 

compared to using any of these biomarkers in isolation. Moreover, Cole et al., found that 

combining BAG and MA improved mortality risk prediction [5]. These findings highlight the 

potential power of combining biomarkers from different levels of aging to improve prediction 

of age-related outcomes. To date, a direct comparison of molecular, phenotypic, and 

functional aging biomarkers in the context of dementia prediction is lacking.   

Our primary objective was to assess the individual and combined predictive value of the 

reviewed aging biomarkers (measures of MA, BA, and FI) for current cognitive impairment 

and future dementia risk utilizing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database. We hypothesized that combining biomarkers from each of the hierarchical levels of 

aging would improve model performance compared to using them individually. Our 

secondary objective was to examine the predictive potential of the aging biomarkers when 

incorporated into models alongside well established, accessible clinical biomarkers: number 

of apolipoprotein E ε4 (APOE4) alleles and cognitive tests (memory, executive function). We 

anticipated that the aging biomarkers would provide added predictive value beyond these 

clinical markers.  

For both objectives, we employed machine learning classifiers with out-of-sample 

verification, using AUC as our main performance metric. Theoretically, functionally apparent 
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aging emerges when resilience mechanisms at upstream levels become exhausted. 

Consequently, we hypothesized that "age acceleration" at the functional level (measured by 

FI) would be a stronger predictor of dementia-related outcomes compared to an upstream 

phenotypic measure (BA). In turn, we expected phenotypic age acceleration to be a stronger 

predictor than upstream molecular metrics. Finally, we expected sex disparities in the aging 

biomarkers [30] and conducted sensitivity analyses to evaluate sex differences in their 

predictive power.  

 

Methods 

Data source 

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial MRI, positron emission tomography, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-

info.org. For the purposes of the present study, we drew subjects from three observational 

prospective case–control ADNI cohorts called ADNI1, ADNI2 and ADNIGO. Eligible 

subjects had available brain MRI, DNA methylation and FI data obtained within 90 days of 

the baseline visit; cognitive test results and demographics were drawn from the baseline visit. 

Data are publicly available (https://ida.loni.usc.edu/). 

Sample 

Inclusion criteria included age 55 to 90 years; study partner to provide evaluation of function; 

speaks English; ability to undergo all testing, blood samples for genotyping and biomarkers, 
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and neuroimaging procedures; completed six grades of education or work history; for women 

postmenopausal or surgically sterile, not depressed, and a modified Hachinski score less than 

five to rule out vascular dementia. Individuals with dementia (hereafter abbreviated “DEM”) 

satisfied criteria for NINCDS/ADRDA for probable AD DEM. Importantly, we used the 

clinical diagnosis reported in the ADNI database and did not require Alzheimer's disease 

pathology biomarkers. Subjects enrolled as MCI had memory complaints verified by a study 

partner, Mini Mental Status Examination (MMSE) score of 24 to 30, Clinical Dementia 

Rating (CDR) global score (CDR-GS)�=�0.5 with sum of boxes (CDR-SB) score of at least 

0.5, and general cognition and functional performance sufficiently preserved such that a 

diagnosis of DEM could not be made. AD biomarkers were not required for a diagnosis of 

MCI in the present study. Cognitively normal (CN) controls had MMSE scores of 24 to 30, 

CDR-GS=0 (with CDR-SB score=0) and were deemed normal based on an absence of 

significant impairment in cognitive functions or activities of daily living. In addition to the 

functional tests used to determine diagnosis, the participants underwent standard 

neuropsychological assessment at baseline, including Rey's Auditory Verbal Learning Test 

(RAVLT) and the Trail Making Test (TMT) which probes hallmark cognitive subdomains 

(memory and executive function, respectively) associated with AD DEM [7, 19, 32, 44]. For 

the present study, we selected the immediate recall part of RAVLT (simply denoted RAVLT 

throughout for brevity) for memory and part B of TMT (TMT-B) for executive function.  

Molecular age 

We quantified biological age at the molecular level by evaluation of DNA methylation 

(DNAm) patterns in white blood cells obtained from peripheral blood samples. DNAm data 

profiling was previously performed by the ADNI investigators for 653 unique ADNI 

participants using the Illumina Infinium HumanMethylationEPIC BeadChip Array 

(www.illumina.com).  We used a subset of these (n=385) that also had available MRI and FI 
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data within 90 days of the baseline visit. If more than one DNAm sample existed for each 

unique participant, we selected the sample from the baseline visit. If a baseline sample was 

not available, we drew the sample at the temporally closest time point to baseline, excluding 

cases where were the baseline to sample interval was 90 days or more apart. Median 

(absolute) time between baseline visit and blood sampling was 0.5 days (interquartile range 

(IQR) = 0 to 7) and was similar between diagnostic groups and stable versus progression 

MCI (Wilcoxon tests, p-values > .05). 

Several state-of-the-art MA algorithms may be used to obtain measures of aging from blood 

cell DNAm data. Here, we selected five candidate MA algorithms that have been associated 

with either neuropsychological test results, diagnosis and/or future conversion to dementia 

risk in one or more observational studies [15, 26, 27, 37, 45, 48]: Horvath's first-generation 

epigenetic clock (DNAmAge), Horvath's epigenetic “Skin-Blood” clock (Skin-BloodClock), 

second generation PhenoAge and GrimAge epigenetic clocks, and a third generation "pace of 

aging" MA measure, DunedinPACE. Given the lack of a single or gold standard MA 

algorithm for DEM prediction and the inconsistent association between present MA measures 

and neurocognitive outcomes, the best subset of MA metrics was decided via exploratory 

data analysis in the training set prior to the predictive modelling (details provided below). 

Phenotypic age 

We used BA to operationalize aging at the phenotypic level. We estimated BA using a 

previously published deep neural network that has been shown to generalize to unseen 

scanners and cohorts [18], and which is freely available online 

(https://github.com/estenhl/pyment-public). Briefly, this is a convolutional neural network 

with an architecture consisting of six blocks of convolutional and max-pooling layers. Prior 

to modelling, T1-weighted MRI scans were minimally processed to remove non-brain tissue 

with the recon-all pipeline from FreeSurfer 5.3. Further, they were rigidly registered to the 
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same stereotactic space, using flirt from FSL with six degrees of freedom. Further details of 

the pipeline are described in the original publication [18]. In cases where participants had 

multiple MRI scans, we chose the imaging session closest to baseline and excluded cases 

where were the baseline to scan interval was 90 days or more apart. The median (absolute) 

baseline to scan interval was 16 days (IQR = 10 to 27). 

Functional age 

We operationalized aging at a functional level using a 26-item FI based on the accumulation 

of deficits model of frailty by Rockwood and Mitnitski [33]. We manually selected health 

deficits available at the screening or baseline visit in the ADNI database following a standard 

procedure [34]. Then, we used a combination of factor analysis of mixed data, cluster 

analysis, and regression analysis to reduce the number of deficits and maximize explained 

variance (for details regarding calculation, included items and cut-offs, see [6]). The code for 

calculating the present FI using ADNI data is also freely available 

(https://github.com/LAMaglan/ADNI-FI-clustering). The FI variable contained health deficits 

covering a range of systems including non-cognitive clinical tests, such as blood test results 

(red and white blood cells counts), blood pressure, history of disease, symptoms such as low 

energy, alterations in gait and functional measures. Higher FI scores indicate greater degree 

of frailty (i.e., lower level of physical or systems-level function). The present FI has been 

validated against mortality and DEM risk in ADNI previously [6]. 

Age and sex-adjusted biomarkers 

To derive comparable measures of aging at the three different levels, we first adjusted each 

measure by regressing out sex and chronological age using linear models. These were fit 

using the training data (see below), and then applied to both the training and test data to 

produce residuals instead of raw measures, representing sex and age-adjusted values. Next, 

we standardized the residuals by subtracting the mean and dividing by the standard deviation 
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to obtain z-scores for subsequent modelling. The deviations from expected values based on 

sex and chronological age at different levels (i.e., biological, phenotypic, and functional) was 

denoted by adding the prefix 'a' to the adjusted measures: aDunedinPACE, aBA, and aFI. The 

same age-adjustment and standardization procedure was done for RAVLT (aRAVLT) and 

TMT-B (aTMT-B) to render variants of these uncorrelated with sex and age. To explicitly 

assess the impact of chronological age and sex in the predictive models, we included these as 

predictors when appropriate.  

Statistical analyses 

Before any analyses were performed, we split the data into subsets to facilitate 

hyperparameter-tuning and unbiased out-of-sample estimates of model performance (Fig. 1). 

We aimed to use as much data as possible to fit the models, despite the participants having 

various combinations of the relevant measures. Starting from the full dataset (n=1876), we 

first extracted all participants lacking methylation data into a stage 1 modelling dataset 

(n=1491), to be used for identifying the optimal selection of BA and FI (e.g., only aBA, only 

aFI, or aBA+aFI) as predictors, across all predictive tasks. The remaining 385 participants 

(with DNAm data) were stratified using diagnosis, age, and sex, before 260 were drawn to 

form the dataset for a second modelling stage (stage 2 dataset). The remaining 125 

participants were reserved in a held-out test set. 
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Fig. 1 a) Data were split into subsets to facilitate hyperparameter-tuning and obtain unbiased out-of-sample 

estimates of model performance. Due to various combinations of missing biomarker data, we first extracted all 

participants with complete frailty index (FI) and brain age (BA) data, but lacking methylation data into a stage 1 

modelling training set (n=1491). This was used to identify the optimal selection of age- and sex-adjusted BA 

and FI (i.e., aBA, aFI, or aBA+aFI) as predictors across all predictive tasks. The remaining 385 participants 

(with complete FI, BA and DNA methylation data) were stratified using diagnosis, age, and sex and divided into 

another training set for a second modelling stage (stage 2) or a hold-out test set. b) All training data was utilized 

for descriptive statistics. We employed data-driven variable selection to determine which DNA methylation age 

markers to use. After selecting the best combination of BA and FI as predictors, stage 2 modeling was done to 
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find the optimal selection of all three types of aging biomarkers. The best models from stage 1 and 2 were 

compared in a cross-validation loop, before evaluating the best model in the test set to obtain an unbiased 

estimate of model performance 

 

Given the lack of a principal MA measure of molecular age, we performed data-driven 

feature selection in the stage 2 training dataset to identify a subset of candidate MA measures 

prior to any modelling. Here, we tested for associations between each of the five adjusted 

MA measures (aDNAmAge, aGrimAge, aPhenoAge, aSkin-BloodClock, aDunedinPACE) 

and age- and sex-adjusted tests of memory (aRAVLT) and executive function (aTMT-B), 

which are well-known risk factors for DEM [7, 44]. We employed linear regression models 

for each univariate analysis. Next, we retrieved the coefficient and p-value for each of these 

bivariate relationships from the models and corrected the p-values for multiple tests to reduce 

the false discovery rate (FDR) using the Benjamini-Hochberg procedure. Finally, MA 

measures with at least one p-value <0.05 post-correction for any of the predictive targets 

were retained for the subsequent analyses.  

Next, we performed multiple descriptive analyses in the training set to assess the 

interrelationship between the aging biomarkers, and how they relate to the diagnostic and 

prognostic groups. Here, for prognostic comparison, we divided MCI subjects into those who 

converted to DEM within 5-years from baseline (progressive MCI, pMCI) and those who 

remained stable (stable MCI, sMCI). First, we investigated the distribution of values for each 

measure in the two groups comprising each of four binary partitions of the training set (Fig. 

3a): CN vs DEM patients, CN vs MCI patients, DEM vs MCI patients, and sMCI vs pMCI, 

respectively. For each comparison, a Kruskal-Wallis H-test was employed to determine 

whether the medians of the two groups differed significantly, with p-values corrected to 

control the FDR. Lastly, we investigated the covariance between the measures, also in the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2024. ; https://doi.org/10.1101/2024.06.23.24309078doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.23.24309078


 13

stage 2 dataset, by computing all pairwise Pearson correlations (Fig. 3b). Here we also 

included their correlation with aTMT-B, aRAVLT and the number of APOE4 alleles (0, 1 or 

2), coded as an ordinal variable. 

We then fit logistic regression models with an ��-loss to assess the predictive value of the 

aging biomarkers. We first tested diagnostic predictions: For each of three predictive tasks 

(CN vs DEM, CN vs MCI, MCI vs DEM) this was performed in two stages, based on the 

stage 1 and 2 datasets. First, we used stage 1 data to perform a ten-fold cross-validation (CV) 

to determine the best combination of aBA and aFI and the optimal value for the 

regularization parameter �, fitting multiple models for each permutation of these two. Each of 

these models included age and sex as additional predictors, and we also fit a fourth model 

containing only age and sex as a baseline. The best stage 1 model was determined as the one 

yielding the highest mean AUC across the ten validations. Next, we performed a similar ten-

fold cross-validation (CV) using the stage 2 data to determine whether to include 

aDunedinPACE, and alternatively the ideal value of �. Here, we fit two models for 

aDunedinPACE: one containing only age and sex as additional predictors, and one also 

including the best stage 1 predictors. Also, here we selected the model yielding the highest 

mean CV AUC. Finally, we calculated the AUC of the best performing model in the held-out 

test set. We performed this process to determine the optimal combination of predictors among 

the three aging biomarkers, and to procure an unbiased out-of-sample estimate of predictive 

performance. 

In the final analysis we investigated whether any of the three aging biomarkers at baseline 

provided prognostic value for detecting which MCI patients would progress into DEM within 

5 years, by differentiating the sMCI and pMCI cohorts. We deemed a 5-year timeframe to be 

clinically relevant while ensuring enough converting subjects for modelling. First, we 

performed the same variable selection process as above to identify the best set of predictors 
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among the aging biomarkers. Next, we fit a model using clinical biomarkers, e.g. aTMT-B, 

aRAVLT and APOE4, using the same training data as the candidate model chosen for the 

aging biomarkers (e.g. either stage 1 or stage 2 data). Finally, we fit a model containing both 

the best set of aging biomarkers measures and the clinical (also using the same data). To 

investigate whether the two sets of covariates (aging, clinical) were complementary, we 

triangulated the AUCs achieved in the test set between these three models. For 

interpretability, and to allow for comparisons with other studies, we calculated the balanced 

accuracy, sensitivity, specificity and positive predictive value of the best performing model 

alongside the AUC. Given the ��-loss employed attempting to nullify the coefficients of 

predictors not contributing to the predictions, we also report the non-zero coefficients used in 

the best performing model as a proxy of which variables contributed to the prediction. 

To tease apart potential sex differences in the interrelatedness and predictive power of the 

proposed biomarkers, we supplemented the main prediction analyses with a similar analysis 

while splitting the dataset based on sex. Here, we fit models independently for males and 

females, keeping the standardized aging biomarkers and chronological age as predictors. Due 

to the smaller sample size resulting from analyzing male and female sub-groups separately, 

we compared the sex-specific results using 100 bootstrapped training and test subsets, to 

yield distributions of both performance metrics and coefficient estimates. 

Results 

Descriptive statistics 

The training dataset consisted of 1751 subjects (Fig. 1). As described under Methods, a 

subset of 260 subjects had DNAm data obtained within 3 months of baseline and was used 

for stage 2 modeling. Within this subset, 158 had a baseline diagnosis of MCI with complete 

aging biomarker data where 22% converted to DEM within 5 years (Table 1). 
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 5-year conversion status  

Variables Stable, N = 124 Progression, N = 35 p-value 

Age, years   0.019 

Median (IQR) 70.0 (65.5, 75.6) 74.3 (69.8, 76.3)  

Sex   0.98 

Female 57 (46%) 16 (46%)  

Male 67 (54%) 19 (54%)  

MMSE, score   <0.001 

Median (IQR) 29.0 (28.0, 29.0) 27.0 (26.0, 29.0)  

Number of APOE4 
alleles 

  <0.001 

0 82 (66%) 9 (26%)  

1 33 (27%) 22 (63%)  

2 9 (7.3%) 4 (11%)  

aRAVLT (z-score)   <0.001 

Median (IQR) 0.3 (-0.2, 0.8) -0.6 (-1.0, 0.0)  

aTMT-B (z-score)   0.007 

Median (IQR) -0.4 (-0.7, -0.1) -0.1 (-0.5, 0.7)  

aDunedinPACE (z-
score) 

  0.56 

Median (IQR) 0.0 (-0.6, 0.6) 0.3 (-0.9, 0.8)  

aBA (z-score)   0.004 

Median (IQR) -0.1 (-0.8, 0.4) 0.2 (0.0, 0.5)  

aFI (z-score)   0.001 

Median (IQR) -0.3 (-0.7, 0.2) 0.2 (-0.3, 0.9)  

Table 1 Baseline characteristics of mild cognitive impairment (MCI) subgroups in training sample with 
complete biomarker data (N = 159) 

 

Table note: The table shows distributions of the proposed baseline predictors in progression (pMCI) and stable 

(sMCI) MCI subgroups with complete biomarker data in the training set. pMCI subjects progressed to dementia 

within 5 years, while sMCI remained stable. P-values were calculated using Chi-squared test for APOE4, 

Fisher's exact test for sex, and Wilcoxon rank sum test for the remaining. Additional abbreviations: APOE4 = 

Apolipoprotein E epsilon 4. MMSE = Mini Mental State Exam. Prefix "a" means that the biomarker is reported 
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as the standardized age- and sex-adjusted residual (i.e., z-score) from linear regressions. RAVLT = Rey's 

Auditory Verbal Learning Test, Immediate recall score. TMT-B = Trail Making Test, part B. BA = Brain age, 

FI = Frailty index 

 

Correlations between adjusted MA measures and tests of memory and executive function are 

shown in Fig. 2. After p-value correction only two of the 15 correlations remained significant 

(adjusted p-value < 0.05): Increased aDunedinPACE was significantly associated with poorer 

memory, i.e., lower scores on aRAVLT ( =-0.2, adjusted p-value = 0.02), and worse 

executive function, i.e., increased scores on TMT-B ( =0.18, adjusted p-value = 0.03). Based 

on results suggesting poorer cognitive test scores with higher aDunedinPACE, we retained 

this as the sole MA measure for subsequent analyses. 

 

 

Fig. 2 Scatterplots showing individual data and model fit lines from linear regressions from the stage 2 training 

dataset of age- and sex-adjusted candidate methylation ages (MA) and memory (Rey Auditory Verbal Learning 

Test, immediate recall (RAVLT), upper row) and executive function (Trail Making Test, part B (TMT-B), lower 

row). β represents the linear regression coefficient of each MA and the corresponding False Discovery Rate-

corrected p-value 
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Next, we compared distributions of the adjusted aging biomarkers in four binary partitions, 

each consisting of two disjunct diagnostic groups (CN vs MCI, CN vs DEM, MCI vs DEM, 

sMCI vs pMCI), in the training set (Fig. 3a). Here, aDunedinPACE did not show significant 

group differences in either comparison (all adjusted p-values > 0.05), while both aBA and aFI 

showed significant differences between the groups in all four (all adjusted p-values < 0.01). 

For aBA, the largest group difference was observed between the sMCI and pMCI groups 

(0.88 difference in group medians), whereas for aFI the largest discrepancy was seen for the 

CN and DEM patients (1.98 difference in group medians).  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2024. ; https://doi.org/10.1101/2024.06.23.24309078doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.23.24309078


 18

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2024. ; https://doi.org/10.1101/2024.06.23.24309078doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.23.24309078


 19

Fig. 3 a) Training set density plots illustrate the distributions of age and sex-adjusted aging biomarkers 

(standardized residuals) for the subgroups used for diagnostic and prognostic classification. 1st row shows the 

distributions for subjects with normal cognition (CN) and dementia (DEM), respectively; 2nd row CN and 

subjects with mild cognitive impairment (MCI); 3rd row MCI and DEM. 4th row subjects with MCI progressing 

to DEM within 5-years (pMCI) and subjects with MCI remaining stable (sMCI). The blue and red values are 

subgroup adjusted aging biomarker medians. P-values are False Discovery Rate-adjusted from Kruskal-Wallis 

H-tests of subgroup differences in the biomarkers. b) Pearson correlations between the adjusted aging 

biomarkers and common clinical markers in the training set. Additional abbreviations: prefix a = standardized 

age- and sex-adjusted residual. APOE = Apolipoprotein E epsilon 4 allele count. BA = Brain age. FI = Frailty 

index. RAVLT = Rey Auditory Verbal Learning Test, immediate recall. TMT-B = Trail Making Test, part B 

 

Finally, we computed bivariate correlations for the adjusted aging biomarkers, executive and 

memory function, and APOE4-status, still in the training sample (Fig. 3b). Besides aRAVLT 

which is coded in the opposite direction (i.e., lower values mean more severe impairment), all 

measures were positively correlated, indicating general agreement. The highest absolute 

correlation was observed between aTMT-B and aRAVLT (-0.46). The highest correlation 

containing at least one aging biomarker was between aBA and aTMT-B (0.39). Among the 

aging biomarkers, the highest correlation was observed between aDunedinPACE and aBA 

(0.14). Although there was concordance in the directionality among the three aging 

biomarkers, their correlation was relatively low (all <0.15), underscoring the possibility that 

they are sensitive to complementary information. Correlations among age-adjusted 

biomarkers for males and females separately are shown in Supplemental Fig. 1. 
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Predictive analyses: BA and FI provide complementary information for predicting 

current cognitive status 

Next, we performed predictive analyses, utilizing the adjusted aging biomarkers as predictors 

in three binary diagnostic classification problems: CN vs DEM, CN vs MCI and DEM vs 

MCI (Fig. 4).  
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Fig. 4 Predictive performance––reported as Area under the Receiver Operating Characteristic Curve (AUC)–– 

for the various models for each of three predictive (diagnostic) tasks. For each task, a baseline model was first 

fit in the stage 1 dataset using age and sex as predictors. Next, models including standardized age- and sex-

adjusted brain age (aBA) and frailty index (FI) residuals, both independently and in combination, were trained 

using the same data. The best model was retained for the stage 2 data and compared with another baseline-

model, a model containing aDunedinPACE, and a model adding aDunedinPACE to the best models from stage 

1. The x-axis denotes these different models, and the y-axis denotes AUC. Individual points represent 

performance in independent folds in the cross-validation, whereas the black line denotes their mean. The red 

line represents the performance of the best model in the hold-out test set. Additional abbreviations: Additional 

abbreviations: CN = Cognitively normal, MCI = Mild Cognitive Impairment, DEM = Dementia 

 

For CN vs DEM, the model containing only aBA (alongside age and sex) outperformed a 

baseline model containing only age and sex (mean CV AUC = 0.73 vs 0.65). However, this 

was greatly surpassed by the model containing aFI (CV AUC = 0.94), which also 

outperformed the one combining aBA and aFI (CV AUC = 0.94). In the stage 2 dataset the 

model with aFI (i.e., the best model from stage 1) reached a mean CV AUC of 0.98. This 

result was unchanged when adding aDunedinPACE as a predictor, indicating that neither this 

variable, nor aBA complemented aFI for distinguishing CN and DEM. As a final test of 

model efficacy, the best model (containing only aFI) achieved an out-of-sample AUC of 0.95 

in the held-out test set.  

For classification of CN vs MCI, the best stage 1 model contained both aFI and aBA (CV 

AUC = 0.80), which marginally outperformed the model with only aFI (CV AUC = 0.79). As 

above, the best model from stage 1 (aBI+aFA, stage 2 CV AUC = 0.80) was superior to the 

best stage 2 model including aDunedinPACE (CV AUC = 0.79), demonstrating its 

redundancy also here. For this task, the best model containing both aFI and aBA achieved an 
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out-of-sample AUC of 0.82 in the held-out test set, indicating good classification 

performance.  

For MCI vs DEM the best stage 1 model also included both aFI and aBA, although here the 

gap to the model containing only aFI was minute (AUCaFI+aBA = 0.7947 vs AUCaFI = 0.7946). 

The model containing aFI and aBA as predictors also outperformed the models including 

aDunedinPACE (mean CV AUC = 0.79 vs 0.78 in the stage 2 data) and achieved an AUC of 

0.83 in the held-out test set.  

To summarize, the best model for differentiating CN and DEM included aFI (alongside age 

and sex) and reached an AUC of 0.95 in the held-out test set. This indicates excellent ability 

to distinguish subjects with normal cognition from those living with DEM, also when applied 

to unseen data. For both CN vs MCI and MCI vs DEM, the best model contained aFI and 

aBA, yielding out-of-sample AUCs of 0.82 and 0.83 respectively. The latter results indicate 

that a model including age, sex, aBA and aFI had good ability to distinguish MCI from those 

with DEM and from those with normal cognition (CN). In supplementary analyses excluding 

aFI, we found that combining aBA and aDunedinPACE did not improve any of the 

predictions beyond using each predictor independently (Supplementary Fig. 2). 

BA and FI complement common clinical markers to predict prognosis 

Next, we investigated the efficacy of the aging biomarkers to differentiate sMCI and pMCI 

patients, effectively attempting to answer the clinical question “Will this patient with MCI 

convert to DEM over the next 5 years?”. Here, the best stage 1 model included both aFI and 

aBA (CV AUC = 0.74, Fig. 5a), with both variables bringing substantial and similar 

predictive gains (CV AUC = 0.66 for only aBA and 0.71 for only aFI).  
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Fig. 5 a) Comparison of the different prognostic models for predicting progression from mild cognitive 

impairment (MCI) at baseline to dementia (DEM) within 5-years. b) Comparison of the best prognostic aging 

model with a prognostic model containing tests commonly used in clinical workup of suspected DEM: 

Apolipoprotein E epsilon 4 allele count (APOE), the Rey Auditory Verbal Learning Test, immediate recall 

(RAVLT), and the Trail Making Test, part B (TMT-B). The final model denoted aging+clinical combines 

predictors from these two. All models included age and sex. The individual points denote Area under the 

Receiver Operating Characteristic Curve (AUC) in independent folds in the cross-validation (CV), the black line 

the CV mean, and the red line model performances in the hold-out test set. c) Distribution of predictions in the 

two groups (stable MCI, progressive MCI). The dashed line denotes the classification threshold t, determined 

via the receiver operating curve. d) The regression coefficients of the best performing model for predicting 5-

year DEM progression 

 

The models containing aDunedinPACE did not yield further predictive gains in the stage 2 

CV (AUC = 0.78 vs 0.79 when only using aBA and aFI), and the model with aFI and aBA 

was retained, reaching an AUC of 0.71 in the held-out test set (Fig. 5b).  

To establish a baseline for determining whether the aging biomarkers provide additional 

prognostic value beyond predictors commonly used in DEM work-up, we fitted a model 

using age, sex and clinical test results (aRAVLT, aTMT-B and APOE4 allele count), yielding 

a mean CV AUC of 0.89. Building on this, we fitted another model that included the clinical 

tests, age, sex, and aFI and aBA as aging biomarkers, yielding a mean CV AUC of 0.91, 

indicating excellent classification performance. The result suggests that the enhanced model 

incorporating the aging biomarkers outperformed the one with clinical markers, age and sex. 

This final model reached an AUC of 0.83 in the held-out test set (compared to 0.81 for the 

model containing only the clinical variables), suggesting good to excellent out-of-sample 

capability to differentiate between subjects progressing to DEM and those with a stable 

condition. In the test set, the enhanced model had a balanced accuracy of 74%, sensitivity of 

0.72, specificity of 0.77, and positive predictive value of 0.70 (Fig. 5c). Despite the ��-loss 
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attempting to eliminate superfluous covariates, all coefficients remained non-zero (Fig. 5d), 

with aRAVLT having the largest absolute value (-1.52), followed by age (1.03), aTMT-B 

(0.71), aFI (0.69), APOE4 (0.61), aBA (0.43), and sex (-0.05). 

The predictive power of aging biomarkers differs between males and females 

Finally, we compared the best performing models for females and males separately. Table 2 

displays the standardized regression coefficients, model performance and p-values for 

statistical tests of sex differences in coefficients and performance.  

 

 MCI subgroup  

Coefficient/model 
performance 

Female Male p-value 

βAge 0.37 (0.33-0.41) 0.39 (0.35-0.42) 4.22*10-1 

βFI 0.62 (0.58-0.66) 0.87 (0.82-0.91) 7.33*10-15 

βBA 0.52 (0.48-0.55) 0.33 (0.30-0.36) 8.25*10-11 

AUC 0.73 (0.72-0.73) 0.75 (0.74-0.76) 4.02*10-5 

Table 2 Regression coefficients and model performance for prediction of 5-year dementia conversion in female 

and male subgroups with baseline mild cognitive impairment 

 

Table note: The table shows standardized regression coefficients, β, for chronological age, FI and BA from 

logistic regression of 5-year dementia risk in female and male subgroups with mild cognitive impairment (MCI) 

at baseline as well as model performance for each subgroup. The p-values were calculated with a Mann Whitney 

U-test with 100 bootstrapped train/test splits. Model performance was assessed by the Area Under the Receiver 

Operating Characteristic Curve (AUC) metric calculated from the full model (including age, FI and BA as 

predictors) for female and male MCI subgroups, respectively. Coefficient and AUC estimates are reported as 

mean (95% confidence interval) 

Here, the best model of aging biomarkers predicting 5-year DEM risk (sMCI vs. pMCI) 

performed slightly better for males compared with females (Table 2). The standardized β-

value for aFI was significantly higher in males (95% CI β 0.82 to 0.91) compared with 

females (β 0.58 to 0.66), clearly suggesting a greater risk of DEM progression in men with 
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increasing level of frailty. Conversely, in the same model, increased aBA (i.e., higher 

apparent brain age)) was a stronger predictor of future DEM risk in females compared with 

males (Table 2).   

The sex difference in aBA on future DEM risk was diminished in the model also including 

clinical biomarkers. The model including both aging and clinical biomarkers showed 

comparable overall performance in predicting 5-year DEM risk for males and females (AUC 

0.87 and 0.86 for females and males, respectively). The sex differences in aFI β-values, 

however, remained significant (Table 2) and suggested higher adverse effect of increased 

frailty in males compared with females also when adjusting for APOE4 allele count and 

neuropsychological test performance. 

Discussion 

We investigated the predictive value of three aging biomarkers for assessing baseline 

cognitive impairment and future DEM risk in ADNI. Our main findings include: 1) Age, sex 

and FI effectively distinguished CN from baseline DEM (out-of-sample AUC 0.95), 2) BA 

and FI independently enhanced prediction of MCI diagnosis (e.g., out-of-sample AUCDEM vs 

MCI 0.83) and 5-year DEM risk in MCI subjects (out-of-sample AUC 0.71), 3) BA and FI 

further added prognostic value beyond routine clinical tests, with increases in frailty having a 

particularly strong adverse influence on males, and 4) DunedinPACE was associated with 

poorer neuropsychological test results but provided negligible benefit to clinical predictions. 

To our best knowledge, this is the first study to test the combined predictive value of MA, 

BA and FI in prediction of dementia-related outcomes. Classification performance for normal 

cognition versus MCI was 0.82, and 0.83 for MCI versus DEM in models including both BA 

and FI - suggesting good discriminatory performance for these challenging diagnostic tasks. 

Our best model for distinguishing those with normal cognition from DEM included age, sex 
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and FI, achieving an AUC of 0.95 in the held-out test set, indicating excellent classification. 

The results confirm the significant relationship between indices of frailty and cognitive 

impairment previously found in meta-analysis [4]. While both frailty and DEM diagnosis are 

based on evaluation of function––and thus may overlap–– previous research shows that level 

of frailty is still predictive for DEM risk independently of global cognition (e.g., CDR-SB) 

and neuropsychological test performance (e.g., MMSE) [6, 35, 42]. As such, our results 

strengthen the notion that frailty should be integral in the assessment of older individuals 

seeking evaluation for cognitive problems [2].  

Studies examining both phenotypic and functional-level aging biomarkers for predicting 

individuals’ level of cognitive impairment are scarce. Our results are in line, however, with 

the landmark investigation of postmortem neuropathology and frailty by Wallace, et al. [39]. 

Here, the authors investigated the predictive value of a 41-item FI and neuropathological 

index (NI) counting the number of diverse pathologies on postmortem brain examination on 

the prediction of normal cognition, MCI and DEM. Both indices significantly classified CN 

versus MCI (in-sample AUCs of 0.64 and 0.58 for NI and FI, respectively) and MCI versus 

DEM (in-sample AUCs of 0.70 and 0.68, respectively). For the same classifications, we 

obtained similar or superior out-of-sample AUCs using BA and FI, which confirms the 

predictive value of FI and highlights BA as a putative non-invasive brain marker for clinical 

diagnosis [29]. The unique contribution of aBA in prediction of 5-year DEM risk reported 

here, on top of frailty and conventional biomarkers, is novel and strengthens a 

multidimensional view of DEM [39].  

Our findings of sex differences in the prognostic impact of BA and FI on 5-year DEM risk 

corroborate recent work by Phyo et al. [30]. We found that increased BA had a more adverse 

impact on 5-year prognosis in females with MCI than males, although this effect was 

attenuated when adjusting for APOE4 and cognitive tests. Conversely, increased frailty had a 
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more negative effect on prognosis in males, aligning with the well-documented "sex-frailty 

paradox" where frailty has a greater adverse impact on mortality risk in males [13, 41]. The 

stronger adverse impact of frailty on DEM risk in males is, however, novel (c.fr. [41]) and 

merits further study. 

Our findings suggest that higher-level biological aging biomarkers, which theoretically 

represent more advanced stages of aging, are more strongly associated with DEM risk. 

Specifically, in all comparisons, FI outperformed BA in predictive performance. 

Furthermore, when predicting 5-year DEM progression, the coefficients of aFI and aBA were 

0.69 and 0.43 respectively, hinting towards the predictive superiority of the former. MA 

provided negligible predictive value when included alongside BA or FI. While novel in the 

context of DEM, the results align with one study of mortality risk. Kim et al. compared a 34-

item FI with MA in predicting 4.4-year mortality risk using Cox regressions [17]. 

Individually, MA strongly predicted mortality, but the relationship became non-significant 

when accounting for baseline frailty. Conversely, Li et al. found GrimAge, PhenoAge, and a 

mortality risk score DNAm algorithm predicted 17-year mortality risk independently of a 34-

item FI [23]. Also, while Cole, et al. [5], found that combining measures of MA and BA 

improved mortality risk prediction, we failed to find any added predictive power of 

combining the two in prediction of dementia-related outcomes (Supplemental Fig. 2). The 

discrepancy in predictive power of the aging biomarker in classifying mortality and 

dementia-related outcomes needs further investigation. 

To our knowledge, no prior studies have evaluated both FI and DunedinPACE for DEM risk. 

Discrepancies in our findings compared to previous reports might be partially explained by 

differences in follow-up duration. For example, Thomas et al., reported a 34% increased 

DEM risk over 14 years for each 1-SD increase in baseline DunedinPACE with Kaplan-

Meier curves showing divergence in risk for all DunedinPACE tertiles from 6 to 7 years 
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onwards [37]. These results, along with those of Li et al. [22], suggest the intriguing 

possibility that different aging biomarkers might play temporally distinct roles in risk 

prediction across the lifespan, supporting a life course model of DEM risk. 

We found an association between DunedinPACE and neuropsychological test results, 

aligning with Sugden et al., [36]. The results suggest age acceleration (as reflected by the 

chronological age-adjusted DunedinPACE score) may relate to the biological underpinnings 

of variation in cognitive function. Unlike Sugden et al., [36], we did not find group-level 

differences in DunedinPACE between cognitive status levels (CN, MCI, DEM) in our study 

which uses the same ADNI data. We believe the discrepancy is due to our study's smaller, 

split sample and exclusion criteria, resulting in reduced statistical power. 

Limitations 

Our study has limitations. Firstly, our sample size was relatively small and the nature of 

sampling in ADNI may limit generalizability to the broader population.  Replication in larger, 

population-level samples such as UK Biobank would be valuable. Furthermore, the sample 

size was particularly small with respect to participants with methylation data, which could 

explain the lack of predictability deduced from the MA measures. Secondly and relatedly, we 

examined molecular aging using a limited set of published MA algorithms. As the field 

progresses, incorporating novel MA measures may offer better predictive value than what we 

report here. Thirdly, we focused on dementia-related functional outcome measures (i.e., 

clinical diagnosis), not disease-pathology measures such as amyloid or tau. Future studies 

may evaluate the interplay between aging biomarkers, disease-specific markers and cognition 

for a more complete understanding of DEM development and risk (see, e.g., [25]). Finally, 

we used single-timepoint measurement of the aging biomarkers, which limits interpretation of 

temporal dynamics of aging reflected by the markers. For instance, intriguing research by 

Vidal-Pineiro, et al., has shown that BA variation may reflect static, early life factors above 
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current rates of brain aging [38]. While this caveat pertaining to all cross-sectional data is 

central to the interpretation of the biological underpinnings of the biomarkers, it does not halt 

their practical use in predictive medicine. 

Conclusion 

Our results underscore the potential predictive value of combining higher-level biological 

aging biomarkers in the context of dementia-related outcomes. Future research could explore 

the biomarkers longitudinally and across longer time frames, tracking changes within 

individuals to pinpoint inflection points in the aging process and uncover stages of the life 

span where they provide most value in risk assessment. The results suggest caution in using 

or marketing MA algorithms such as DunedinPACE as individual risk markers for shorter-

term prognosis or prediction of current cognitive impairment. Additionally, studies 

integrating disease-specific markers (amyloid, tau) with the present aging-related biomarkers 

could further our understanding of the interplay between aging and disease. 
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