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Abstract

Intensity-modulated radiation therapy (IMRT) is one of the most

important modern radiotherapy techniques and is often modeled as an

optimization problem. The objective function and constraints consist

of multiple clinical requirements designed for different clinical settings.

When a tightly constrained optimization problem has no solution,
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the planner can empirically relax certain constraint parameters and

re-solve the problem until a more satisfactory solution is obtained.

This process is time-consuming and laborious. Several inverse plan-

ning studies have been devoted to automated radiotherapy planning

schemes. Reinforcement learning has been used by many studies to

model this process, but they suffer from two important drawbacks:

1) designing a sub-network for each organ, which makes it difficult

to extend the model to other patients with a different number of or-

gans. Clinically, it is common for different patients to have inconsis-

tent numbers of organs considered for radiotherapy, even for the same

type of cancer; 2) directly feeding low signal-to-noise DVH curves as

states into the reinforcement learning network, which ignores its func-

tional characteristics and leads to low training efficiency. In this study,

within the framework of deep reinforcement learning, a DVH function-

based embedding layer was designed to directly extract the effective

information of DVH and allow different organs to share a strategic

network. The test results on a dataset of 135 patients with cervical

cancer find that our proposed model can be applied to radiotherapy

planning in real-world scenarios.

1 Introduction

1.1 Treatment planning problem Statement

Cancer is a leading cause of death worldwide, accounting for approximately

10 million deaths in 2020 (nearly one in six deaths worldwide) [10]. Radiation

therapy is one of the most essential treatments for cancer that uses beams

of intense energy to control the planning target volume(s) (PTVs). The

challenge lies in the presence of organs-at-risk (OARs). That is, the beams
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not only kill cancer cells but also affect nearby healthy tissue (OARs). Inverse

treatment planning, such as intensity-modulated radiation therapy (IMRT),

is a critical way of modern radiation therapy.

1.2 Basic framework of IMRT

In practice, IMRT is often achieved via a challenging optimization process.

The objective of the optimization typically contains several dose-level con-

strains to maximize the delivery of radiation of targets and minimize the

hurts for OARs simultaneously. However, the formulation of the optimiza-

tion problem of IMRT is typically based on a set of empirical parameters,

such as relative importance weights and the level of the constraints for PTVs

and OARs that aim to satisfy several clinical considerations. These empirical

parameters are initialized by human planner but can be adjustable later. For

a given parameter, we can solve the corresponding optimization via a mod-

ern treatment planning system (TPS). However, the current solution may

contradict the clinical considerations. Then the planner has to adjust these

parameters manually and let the TPS to re-optimize it. This trial-and-error

process will repeat for many times until get a satisfied result. What’s more,

the quality of the resulting treatment plan depends on planners’ experience

and skill. Therefore, there is a strong desire to develop automatic methods

for high-quality and efficient treatment planning.

1.3 Existing solutions and their shortages

Over the past years, plenty of efforts in automatic planning have been endeav-

ored. A typical solution is to add an outer-loop optimization for parameter

searching on top of the inner optimization. Some typical examples of the

double-optimization are [12, 4, 11]. Recently, people are beginning to focus
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on the prospect of modeling automatic treatment planning with deep learning

[1]. The deep neural networks make the parameter searching process more

flexible than the traditional methods. More specially, the trial-and-error

process of human planner can be well imitated by the technique of deep re-

inforcement learning. In fact, studies have shown that deep reinforcement

learning can be used to adjust the parameters of treatment plans[7, 3, 2]. For

example, Shen et al.[8] propose a virtual therapy planner network (VTPN)

based on deep reinforcement learning (DRL) to model the behavior of human

planners in treatment planning parameters (TPPs) adjustment for prostate

cancer. The limitations of the existing methods lie in the following two per-

spectives, 1) Existing methods design a separate sub-network for each organ

[5, 3], which makes it difficult to apply their models to other cases because

the number of organs involved is not necessarily the same for each patient,

even those suffering from the same disease. 2) these methods ignore the func-

tional characteristics of DVH that accept the original DVH image or DVH

curve coordinates as input for the deep models, however, the signal-to-noise

ratio of these inputs is very low, which increases the learning difficulty and

thus limiting the number of organs they can plan. For example, as claimed in

their discussion [7, 5], they only consider the bladder and rectum as OARs,

yet clinical settings often have more than a dozen organs that need to be ad-

justed. Therefore, the generalization of multi-parameter TPPs adjustment

on multiple organs has great development prospects.

1.4 Our solution

We present a deep reinforcement learning framework by considering the func-

tional characteristics of DVH, named functional Automatic Treatment (or

Automatic Treatment Planner) Parameters Adjustment Network (fATPAN),
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trained to manipulate the Treatment Planning System (TPS) and adjust

treatment planning parameters to generate high-quality plans. fATPAN can

automatically generate adjusted prescription doses based on patient data,

replacing human planners to obtain treatment plans that satisfy clinical re-

quirements.

Usually, a patient’s situation is highly variable. Even for different pa-

tients diagnosed with the same type of cancer, the area to be considered

by the doctor for radiation therapy varies, because different patients have

individual variables, such as the stage of tumor development and the size

of their own body organs. The personality requirements make it difficult to

apply a model based on a single organ corresponding to a sub-network to

the clinic. To solve the above problem, fATPAN designed an organ-sharing

tuned neural network, i.e., the DVH of all organs are input to the same net-

work for training. When testing, the DVH of different organs of the patient

can be directly input into the network to get the adjusted action prediction

results. That is, we can no longer be used to limit the number of organs

in the treatment planning. To further improve learning efficiency, fATPAN

uses a functional decomposition layer to learn the feature of the DVH curves

first. The signal-to-noise ratio of the input data is greatly improved by the

functional mapping layer, which allows for a corresponding increase in model

training efficiency and thus can be applied to real scenarios.

2 Results

2.1 Parameters adjusting process for IMRT

Figure 1(a) and 1(b) demonstrate the tuning process, with the clinical tar-

get volume (CTV) represented by a dashed line and the five organs-at-risk
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(OARs) (Bladder, Femoral Head R/L, Rectum, Small Intestine) represented

by solid lines. Initially, the proposed model aims to reduce the dose levels

of the five OARs while maintaining the CTV dose at 50 Gy for the first

five steps as shown in Figure 1(a). Starting from step 5, fATPAN begins to

incrementally increase the dose level of the CTV until convergence at step

10. This alternating adjustment of the dose levels for the CTV and OARs

is observed in the tuning process. Figure 1(b) showcases the changes in the

area under the dose-volume histogram (DVH) curves (rewards), referred to

as DVH AUC, for both the target and the five OARs. The five decreasing

solid lines represent the changes in the DVH AUC for the five OARs. It can

be observed that the Small Intestine receives the lowest dose level, while the

Rectum initially has a DVH AUC of around 1.76, which gradually drops to

1.6 by the end of the iteration, satisfying the prescribed dose for the OARs.

The DVH AUC for the target continuously increases, while the DVH AUC

for the OARs decreases correspondingly, demonstrating the effectiveness and

efficiency of the proposed model.
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Figure 1: The Process of Treatment Planning.

Figure 2 provides a visual representation of the treatment planning pro-

cess for a representative patient case using our model. The figure includes
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Figure 2: Variations of DVHs and dose distributions

three stages: the initial step, step 5, and step 10. The treatment plans are vi-

sualized through dose distribution heat maps and corresponding dose-volume

histograms (DVHs). The heat maps display the dose distribution across the

delineated areas, including the CTV and five OARs. The quality of the plans

can be assessed by evaluating the dose parameter metrics for each structure

in the dose distributions. The changes in dose distribution in these areas

provide insights into the dynamic planning process.

The initial DVHs are shown in the bottom left panel of Figure 2, repre-

sented by solid lines. The corresponding initial dose distribution is displayed

in the top left panel, with the segmentation curves delineated by clinicians.

This visualization helps in understanding the initial state of the dose distri-

bution. The bottom middle panel represents the results of step 5, and the

bottom right panel represents the results of step 10. At step 5, the DVH

changes are compared by plotting the initial step results (solid line) along-

side the step 5 results (dashed line). It can be observed that the CTV curve

was dragged to the right side, indicating an increase in dose level, while the

OAR curves were dragged to the left, indicating a decrease in dose level. The
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dose distribution map in the middle top panel reflects these changes, with a

significant reduction in the dose level of the OAR areas and increased focus

on the CTV. At step 10, the dose level gap between the CTV and OARs

becomes more pronounced. The top right panel displays the overall dose

distribution, which consistently satisfies the desired distribution determined

by the clinician’s delineation. By visually analyzing the changes in the dose

distribution and comparing the DVHs, the effectiveness and progression of

the treatment planning process can be evaluated.

Table 1 provides an overview of the key DVH parameters that clinicians

are most interested in during the planning process. It includes both target

structures, such as the planning target volume (PTV), CTV, and PTV rings,

as well as OARs. For the PTV and CTV, the following parameters are

evaluated:

• D95: The minimum absorbed dose that covers 95% of the volume of

the region of interest.

• Dmean: The mean absorbed dose within the region of interest.

• CI (Conformity Index): A measure of how well the prescribed dose

conforms to the target volume, taking into account the dose distribution

outside the target.

• HI (Homogeneity Index): A measure of dose homogeneity within the

target volume, indicating how evenly the dose is distributed within the

target.

The PTV rings, which act as buffer tissues between the target and OARs,

are generally evaluated based on their average dose. In this specific case,

there are five PTV rings, labeled as Ring1PTV to Ring5PTV in Table 1.
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Table 1 summarizes the average DVH parameters for 12 organs, including

both target structures and OARs. These parameters are essential for quan-

titative comparisons and assessing the quality of the treatment plans. For

the target structures (PTV and CTV), the D95 (minimum absorbed dose

covering 95% of the volume) and Dmean (mean absorbed dose) are evalu-

ated. From the provided information, it is observed that the D95 and Dmean

values for the CTV increase from the initial step to step 5 and step 10. For

example, the D95 of the CTV increases from 1.79 to 1.81 and 1.83 at step

5 and step 10, respectively. Similarly, the Dmean shows a similar increasing

trend. It is noted that the final D95 value of 1.83 already satisfies the clini-

cal standard. The changes in HI for the target structures are reported to be

small, while the CI shows a significant improvement from the initial step to

step 5.

For the OARs, two different categories are mentioned: serial organs and

parallel organs. For serial organs such as the bladder, rectum, and small

intestine, the DVH parameters that need to be controlled simultaneously are

V30, V40, V45, and Dmean. The other category, parallel organs, includes

Femoral Head R and Femoral Head L, where only the Dmean parameter is

evaluated. Comparing the results at step 5 and step 10, it is observed that

most DVH parameters for the OARs, except for V50 at step 10, are lower than

or equal to the values at the initial step and step 5. For example, compared

to the results at step 5, the V30 and V40 values of the bladder decreased by

1% and 8%, respectively, while the V30 and V40 values of the small intestine

decreased by 1% and 4%, respectively. The mean dose of all OARs at step

10 was reduced compared to the results at step 5. Specifically, compared to

the initial mean dose, the mean dose of the bladder, rectum, small intestine,

femoral head R/L at step 10 was reduced by 0.177 Gy, 0.101 Gy, 0.129 Gy,
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0.182 Gy, and 0.25 Gy, respectively. These quantitative comparisons provide

insights into the improvement in treatment plan quality achieved by the

proposed model, as evidenced by the changes in DVH parameters for both

target structures and OARs.

2.2 Impact of the reward function on the model

According to the definition of the second reward, the reward changes only

when the distribution of the high dose in the OAR changes. Therefore,

when the target dose density distribution changes, it has a greater impact

on the reward. Under the second reward function, the model would pay

more attention to the dose variation of the target. In other words, when

learning parameter adjustment, the decision network will first consider the

target dose to meet the clinical requirements. We show in Figure 3 the

patient’s probability density function changes in the dosage distribution of

each structure and the optimal dose area during the adjustment process.

During the adjustment process, the dose distribution of OARs moved to the

low dose area and became more uniform, while the dose distribution of the

target moved to the high dose area and the dose value was concentrated near

the prescription dose.

3 Discussion

The proposed automatic treatment planning framework was developed to

mimic the behavior of human planners. It addresses two key challenges in

automatic treatment planning. The first one is we broke through the restric-

tion that the number of organs to be planned must be the same for different

patients. In radiotherapy planning, even for patients with the same type of

10
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Table 1: Summary of Interested DVH Parameters Changes (with standard

deviation) to the CTV, PTV, and OARs.

ROI parameter init Step5 Step10

CTV D95(Gy) 1.794±0.003 1.81±0.014 1.83±0.028

HI 0.024±0.003 0.029±0.007 0.03±0.232

CI 0.104±0.013 0.46±0.007 0.448±0.201

Dmean(Gy) 1.81±0.006 1.84±0.011 1.85±0.02

PTV D95(Gy) 1.783±0.001 1.757±0.028 1.752±0.036

HI 0.172±0.004 0.059±0.019 0.067±0.015

CI 0.029±0.017 0.503±0.102 0.6±0.209

Dmean(Gy) 1.807±0.004 1.823±0.011 1.832±0.024

Bladder V30(%) 1±0 0.991±0.054 0.976±0.065

V40(%) 1±0 0.915±0.159 0.749±0.16

V50(%) 0.102±0.025 0.162±0.001 0.175±0.017

Dmean(Gy) 1.744±0.177 1.631±0.056 1.567±0.078

Rectum V30(%) 0.995±0.201 0.995±0.208 0.994±0.203

V40(%) 0.991±0.202 0.989±0.222 0.932±0.172

V50(%) 0.075±0.01 0.155±0.023 0.163±0.028

Dmean(Gy) 1.759±0.346 1.7±0.342 1.658±0.306

Small intestine V30(%) 0.703±0.201 0.687±0.208 0.675±0.203

V40(%) 0.63±0.202 0.59±0.222 0.451±0.172

V50(%) 0.021±0.01 0.027±0.023 0.033±0.028

Dmean(Gy) 1.255±0.346 1.181±0.342 1.126±0.306

Femoral Head R Dmean(Gy) 1.645±0.039 1.512±0.056 1.463±0.078

Femoral Head L Dmean(Gy) 1.666±0.027 1.498±0.07 1.416±0.089

Ring1PTV Dmean(Gy) 1.786±0.003 1.763±0.024 1.752±0.033

Ring2PTV Dmean(Gy) 1.773±0.005 1.727±0.031 1.703±0.039

Ring3PTV Dmean(Gy) 1.754±0.007 1.676±0.033 1.632±0.037

Ring4PTV Dmean(Gy) 1.736±0.01 1.634±0.025 1.572±0.022

Ring5PTV Dmean(Gy) 1.724±0.012 1.614±0.021 1.554±0.027
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Figure 3: Variations dose distribution
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cancer, the areas (organs) of radiotherapy to be considered will be different.

However, traditional DRL-based models design an exclusive sub-network for

each organ to be planned, which implies the model to be consistent with the

training patient in the test patient, severely reducing the scalability of the

model [9, 5, 3]. To improve the model scalability, we only use one network

that is shared by all organs in fATPAN. During training, the functional fea-

tures of DVH of different organs are fed into the network sequentially, and

the rewards of each organ are accumulated in one round of iterations before

the gradient is passed back. In this way, the proposed model can be applied

to real clinical scenarios where the number of organs planned for radiother-

apy need not be the same for different patients. That is, personal planning

protocols can be implemented for different patients.

The proposed automatic treatment planning framework was developed to

mimic the behavior of human planners. It addresses two key challenges in

automatic treatment planning. First, the ability to handle varying numbers

of organs in treatment planning is indeed an important challenge addressed

by the proposed method. Traditional methods often assume a fixed number

of organs and design separate sub-networks for each organ, making it diffi-

cult to generalize the model to patients with different organ configurations

[9, 5, 3]. In contrast, the fATPAN framework overcomes this limitation by

using an organ-sharing tuned neural network. It takes into account the DVH

of different organs sequentially and accumulates the rewards of each organ

within one round of iterations before the gradient is propagated back. This

approach enables the model to be more adaptable and scalable, accommo-

dating patients with varying organ structures and facilitating personalized

treatment planning.

Second, we design a functional embedding layer to extract the input DVH

13
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curve features, which is a valuable contribution to improving the efficiency

and effectiveness of the training process. Traditional approaches often treat

DVH curves as raw data and process them directly using convolutional op-

eration [3, 5, 6]. While this approach may capture certain spatial patterns

in the DVH curves, it overlooks the inherent functional characteristics of the

DVH data. By incorporating a functional embedding layer, fATPAN takes

advantage of the functional nature of DVH curves, enabling more effective

feature extraction. This layer helps enhance the signal-to-noise ratio of the

processed features, leading to improved learning efficiency and more accurate

representations of the DVH data.

The functional data embedding layer in fATPAN facilitates efficient com-

putation for complex tumor patients by capturing the functional aspects

of the DVH curves, enabling the model to better understand the dose dis-

tribution patterns and make more informed decisions during the treatment

planning process. This contributes to the overall effectiveness and efficiency

of the automatic treatment planning framework.

Currently, automated radiotherapy planning algorithms proposed in the

existing literature are far from clinical needs and are generally considered to

be solved under a simplified problem only. For example, some of the existing

methods require additional human intervention to narrow the state-action

space [5]. And in [5], the authors only evaluate the case of one PTV and two

OARs. This is because as the number of organs to be considered increases,

the process of solving the optimization problem becomes more complex or

even infeasible. In contrast, our algorithm makes the computational process

efficient due to the two aforementioned strategies, thus simplifying the solu-

tion process. For example, the results demonstrate in Figure 1,2 and Table

1 are the treatment planning for cervical carcinoma patients which involve

14
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12 areas. In the example of Figure 2, the results of 12 organs are actually

processed, and only the results of the most critical 6 of them are kept in

order to facilitate the presentation of the DVH curves. In Table 1, we give

the results of a patient with 12 organs to be considered during treatment

planning.

There are several limitations of our work. First, we know that radiother-

apy planners are able to make planning across tumor categories for patients

with different cancers. Although we have designed the organ-sharing TPPs

network for patients from the same kind of cancer but with different num-

bers of organs, it is poorly trained in cases with different tumors. Second,

the computational speed of our system is not fully satisfactory, taking 3 to 4

hours for a single test, which is close to the time of a human planner. Hence,

it fails to reflect the advantages of the machine. The most time-consuming

computational module is the interaction with the environment. During the

interaction, a new optimization problem (from Pytorch) needs to be formed

based on the action selection results predicted by DRL. Our model passes

the constraint parameters of this new optimization problem to matRad (a

MatLab-based TPS used in the environment) to perform the next step of the

optimization solution.

4 Methods

4.1 Overall Framework

Figure 4 illustrates the overall framework. The proposed method contains

three important modules, a functional embedding layer, a virtual treatment

planner neural network (VTPNN), and an environment for DRL.

In clinical radiotherapy, radiotherapy planners often have to manually
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adjust the dosage and weight to obtain a high-quality treatment plan. This

trial-and-error process is time-consuming and labor-intensive. Therefore, au-

tomatic radiotherapy regimens with automatic dose and weight adjustments

are needed by planners. We propose a deep reinforcement learning network,

a functional Automatic Treatment Parameters Adjustment Network (fAT-

PAN), trained to learn adjusting treatment parameters via an end-to-end

algorithm called Actor to Critic(A2C) as shown in Figure 4. The trained

network can automatically generate adjusted prescription doses based on pa-

tient data, replacing human planners to obtain high-quality treatment plans.

Figure 4: The overall framework of the proposed fATPAN.

4.2 Functional embedding layer

4.2.1 Dose-volume histogram

Dose-volume histograms (DVH) are a straightforward way to represent the

dose distribution of each structure in the treatment area. Figure 5 shows

a typical example of DVH for an OAR and a target in a treatment plan.
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The horizontal axis of DVH represents the dose level, and the vertical axis

represents a fraction of volume. For example, the point P of the target DVH

in Figure 5 suggests that at least 60% volume of the target voxels receiving

1.8Gy or less dose level. Ideally, the DVH in the target area is vertical at the

prescribed dose, indicating that all PTV voxels receive the prescribed dose,

while the OAR is vertical at a relative dose of 0, indicating that the received

dose is 0.

Oncologists are often willing to sacrifice some portion of an OAR close

to the target area to achieve adequate tumor control probability. Therefore,

OAR must be required to have at least a certain percentage of the dose below

the specified level.

Figure 5: Solution quality is typically assessed by DVH

Figure 5 illustrates that the DVH observations x(t) ∈ [0, 1] are recorded

17
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as a functional relationship between the fraction of volume x(t) and dose

level t [Gy](or relative dose level).

4.2.2 Functional Embedding of DVH

Rather than feed the DRL model with DVH directly, we propose represent-

ing it into a finite-dimensional vector via a functional neural network first.

We think the embedding vector is more appropriate to adapt to regular deep

neural networks subsequently. In particular, for a DVH input x(t), its corre-

sponding functional embedding h = (h1, h2, ..., hD) ∈ RD can be calculated

as follows,

hi = σ

(∫
T
wi(t)x(t)dt+ bi

)
(1)

where i = 1, 2, ..., D, D is the hidden dimension, and wi(t) are functional

weights. We further decompose wi(t) with its basis representation, that is,

wi(t) =
K∑
k=1

cikϕik(t) (2)

where ϕik(t) is the basis function of the functional weights wi(t), which

could be a Fourier basis or spline basis. K is the number of basis functions

we choose. We select ϕk(t) as Fourier basis,

ϕ0(t) =

√
2√
2

ϕ2k−1(t) =
sin(2πk

T
t)√

T
2

ϕ2k(t) =
cos(2πk

T
t)√

T
2

(3)

and set K = 5 as shown in Figure 6.
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Therefore, we have

hi = σ

(∫
T

K∑
k=1

cikϕik(t)x(t)dt+ bi

)

= σ

(
K∑
k=1

cik

∫
T
ϕik(t)x(t)dt+ bi

)
= σ

(
cTi ϕi + bi

)
(4)

where

ϕi =



∫
τ
ϕi1(t)x(t)dt∫

τ
ϕi2(t)x(t)dt

...∫
τ
ϕiK(t)x(t)dt


Our problem usually involves multiple organs, that is there are input

DVHs. Suppose there are N organs required to adjust. For each DVH

xn(t), n = 1, 2..., N , we perform a Fourier basis expansion, i.e., project xn(t)

onto several Fourier bases. That is, express each DVH as a linear combination

of J Fourier bases as follows,



x1(t) =
∑J

j=1 a1jφj(t)

x2(t) =
∑J

j=1 a2jφj(t)

...

xN(t) =
∑J

j=1 aNjφj(t)

where J is the number of the B-spline basis, we set J = 35 as shown in

Figure 7, anj, n = 1, 2, · · · , N, j = 1, 2, ..., J is the corresponding coefficients

of xn with respect to the basis φj(t). φj(t) could be a Fourier basis or spline

basis.

In practice, the integral
∫

τ
ϕk(t)x(t)dt, k = 1, 2, ..., K in Equation (4) can

be approximated with numerical integration methods such as the composite
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Simpson’s rule.

Figure 6: The 5 Fourier basis ϕ(t).

4.3 Treatment Planner Network

The virtual treatment planner network contains two parts, a three-layer Full-

Connected layer and a normal random layer. The numbers of hidden neurons

of the first part are as shown in Figure 4. The second part is Gaussian random

layer. We assume that each TPP action follows a Gaussian distribution

ai ∼ N (µ, σ2), and the parameters µ and σ2 depend on the output feature

z ∈ Rd by the first part. One solution could be,

µ(h) = c⊤h+ d (5)

log σ2(h) = e⊤h+ f (6)
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where h is learned by two single-layer perception using feature z. After

getting the distribution of actions, we can randomly sample a value from the

distribution as the next adjustment action.The purpose of this is to make

the output of the model more consistent with the actual process of dose

adjustment by physicists by introducing continuous actions.

4.4 Environment

We built an interactive environment for reinforcement learning. The overall

framework of the environment is as shown in the Top panel of Figure 4. The

input of the environment module is the adjustment action of the constraint

parameters that output from the previous virtual treatment planner network

module. The resulting new constraint yields an updated optimization prob-

lem. Then the optimization engine computes a corresponding new DVH by

solving this new optimization problem. We can compare the new DVH with

the old DVH in the previous step to calculate the reward. The details of

reward computation will be introduced in section 4.4.2.

4.4.1 Actor and critic (A2C) network

We implement the deep reinforcement learning in the framework of A2C

network. The most important concept of A2C network is the state-value

function, which is an expectation of the action-value Qπ(st, at) with respect

to action at,

Vπ(st) = EA[Qπ(st, A)] =
∑
a

π(a|st)Qπ(st, a), (7)

where A ∼ π(·|st), for a given policy function π(·|st), Vπ(st) evaluate the

current state good or bad. In our case, the state st is the current DVH of

each organ, and the action at is dose adjustment options, that is, increase
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Figure 7: The 35 B-spline basis φ(t).
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or decrease its value by 2%, increase or decrease by 1%, and keep

it unchanged. The expectation in Eq. (7) is in summation form rather

than integral form because the action is discrete in our case.

The state space S (DVH) is huge, hence the Actor-Critic method tries to

approximate the policy function π(a|s) (actor) with a policy neural network

π(a|st; Θ), where Θ is the parameter of the neural network. That is,

Vπ(st; Θ) =
∑
a

π(a|st; Θ)Qπ(st, a)

Therefore, we have a policy based training object to maximize

J(Θ) = ES[Vπ(S)] (8)

Obviously, we can get the optimal via policy gradient ascent,

∇wJ(Θ) =
∂J(Θ)

∂Θ

= ES[
∑
a

∂π(a|s; Θ)

∂Θ
Qπ(s, a)]

= ES[
∑
a

π(a|s; Θ)
∂ log π(a|s; Θ)

∂Θ
Qπ(s, a)]

= ES[EA[
∂ log π(a|s; Θ)

∂Θ
Qπ(s, a)]]

(9)

In practice, we use the following process to approximate the policy gradi-

ent. For an observed state st, we first randomly sample action at according to

π(·|st; Θt), then compute Qπ(st, at), then the an approximate policy gradient

is,

g(at, st; Θ)
∆
= Qπ(st, at) · ∇Θ log π(at|st; Θ) (10)

we can update the policy network with g(at, st; Θ) with gradient ascend.

As we stated before, we use a policy network π(a|st; Θ) to approximate

the real policy function π(a|st) (actor). Similarly, we approximate the value
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function Qπ(s, a) with a value network q(s, a; Φ) (critic), that is

Vπ(st) =
∑
a

π(a|st)Qπ(st, a) ≈
∑
a

π(a|s,Θ)q(s, a; Φ)

where Φ is the parameter of the value network.

We update the actor-network π(a|s,Θ) using the policy gradient as intro-

duced before and update the critic-network q(s, a; Φ) using the time difference

(TD) algorithm as follow.

We first calculate q(st, at; Φt) and q(st+1, at+1; Φt) first, then calculate the

TD target

yt = rt + γ · q(st+1, at+1; Φt) (11)

where γ is a parameter. The corresponding loss function is the square error

between q(st, at; Φt) and yt,

L(w)
∆
=

1

2
(q(st, at; Φt)− ŷt)

2 (12)

That is, the critic-network q(s, a; Φ) can be updated with gradient descent

algorithm.

We set training stop conditions based on clinical experience. For example,

the algorithm stops updating when the D95 in the target area exceeds its

prescribed dose and when the V50 of the OAR is higher than its prescribed

dose.

4.4.2 Reward function

Based on the updated DVH, we can calculate the reward for the current

iteration. The learning goal of the proposed model is to have the Target dose

as high as possible and OAR dose as low as possible. From this perspective,

we can consider the area change between the DVH curves of the targets and

OARs as part of the reward. In addition, D95 on the DVH curve is an
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important indicator on the clinician’s attention, so we use the change in D95

as another source of reward. The final reward is,

Rewardarea = ∆D95 +∆(ATarget − AOARs). (13)

4.4.3 Optimization (matRad)

For IMRT, the planning process can be formulated as solving a set of opti-

mization problems. This problem usually contains certain well-defined objec-

tive functions and constraints. In this work, we choose a overall optimization

objective as a weighted summation of some individual components fn(w) as

shown in Eq 14.

min
w∈RB

f(w) =
∑
n

pnfn(w)

subject to ckl ≤ ck(w) ≤ c, 0 > w

(14)

the ckl and cku in the constraints indicate lower and upper bounds on the k-th

constraint function ck(w). The positivity constraint 0 ≤ w ensures that only

positive radiation fluences are considered.

In this work, the individual objective fn(w) and the corresponding con-

straints are chosen as follows,

fminDVH =
1

Ns

∑
i∈s

Θ(di − d̂)Θ(di − d̂)Θ(di − d̂)
2

(15)

fmaxDVH =
1

Ns

∑
i∈s

Θ(d̂− di)Θ(d̂− di)Θ(d̂− di)
2

(16)

cminDVH =
1

Ns

∑
i∈s

Θ(di − d̂) (17)
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cmaxDVH =
1

Ns

∑
i∈s

Θ(d̂− di) (18)

Here,Ns is the number of voxels, di represents the dose in voxel i,and d̂ is

the prescribed dose that we need to fine-tune.Θ(x) is Heaviside function.

We used the Matrad toolkit to solve the above optimization problem.matRad

is an open source, cross-platform radiotherapy planning toolkit written by

MATLAB that enables automatic radiotherapy planning based on dose dis-

tribution. It adopts an algorithm based on flow mapping and uses interior

point method to optimize (IPOPT).

matRad is an open-source software for radiation treatment planning of

intensity-modulated photon, proton, and carbon ion therapy. It is entirely

written in MATLAB. matRad is used to accurately simulate the impact of

radiation on patient tissue, including the entire treatment planning workflow

from setting treatment parameters and optimizing the plan to visualizing

and evaluating the results, and finally generating an accurate radiotherapy

plan. An independent modified treatment planning system (TPS) based on

the radiation treatment planning toolkit matRad was used to evaluate our

method. Patients’ CT and structure files were imported to matRad. Then

matRad generates the beam geometry based on the specified treatment plan

parameters and computes the dose matrix for each radioactive source element

to the target area and surrounding normal tissue. Finally, matRad optimizes

the radiation dose according to the defined clinical objectives and constraints

to find the optimal dose distribution.

4.5 Datasets

Five cervical cancer patients treated with IMRT in our institution were se-

lected for this study. The clinical target volume(CTV) and OARs include
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the bladder, rectum, bilateral femoral heads, and small intestine. The pre-

scription was 50.40Gy(1.8Gy per fraction). All IMRT plans were optimized

in MatRad.Equally spaced 5 coplanar photon beams were employed and op-

timized with IPOPT for all IMRT plans.
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