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Abstract

Background and purpose: Intensity-modulated radiation ther-

apy (IMRT) is a crucial radiotherapy technique, often formulated as an

optimization problem. However, when the constraints are too tight to

provide a feasible solution, human planners resort to relaxing the op-

timization parameters and re-evaluating until an acceptable solution

is obtained. This process is laborious and time-consuming which has

prompted attempts to automate radiotherapy through inverse plan-

ning studies using reinforcement learning. Unfortunately, these stud-

ies face two major limitations. Firstly, a separate sub-network must

be designed for each organ, rendering them difficult to apply to pa-

tients with an inconsistent number of structures. Secondly, the low

signal-to-noise inputs and discrete action space result in low training

efficiency. To address these limitations, this study proposes a novel

and effective model.

Methods: This study proposes an organ-sharing network called

Functional automatic treatment PlannI ng N etwork (FatPIN), which

contains a functional embedding layer to extract curve features of the

dose-volume histogram (DVH). It outputs continuous actions that ad-

just the optimization parameters, thereby automating the radiother-

apy planning process.

Results: Experiments were conducted on the cervical cancer dataset
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and the results show that the FatPIN is feasible and effective in real-

world radiotherapy. With automatic iteration, FatPIN gradually in-

creased the PTV dose, while reducing the dose levels of the OARs.

Specifically, at step 50, the D95 of the PTV reached 51.68 Gy, exceed-

ing the clinical standard of 50.40 Gy, the V30, V40 and V50 of all OARs

were within clinical requirements.

Conclusion: We proposed FatPIN to implement automatic ra-

diotherapy treatment planning. Experimental assessments conducted

on cases of cervical cancer demonstrate significant improvements in

patient metrics facilitated by FatPIN, thus confirming its practical

applicability in clinical contexts.

1 Introduction

Cancer is a leading cause of death worldwide, accounting for approxi-

mately 10 million deaths in 2020 (nearly one in six deaths worldwide) [1].

Among the various treatment modalities available, radiation therapy plays

a pivotal role in effectively managing cancer. It utilizes concentrated beams

of high-energy radiation to target and control the planning target volume(s)

(PTVs). However, a significant challenge arises due to the presence of organs-

at-risk (OARs) in close proximity to the targeted area. The beams employed

in radiation therapy not only aim to eradicate cancer cells but also inad-
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vertently affect adjacent healthy tissues, which comprise the OARs. To ad-

dress this challenge, inverse treatment planning techniques, such as intensity-

modulated radiation therapy (IMRT), have emerged as crucial components

of modern radiation therapy strategies.

In practice, achieving IMRT involves a complex optimization process

as shown in eq. (12). The objective of the optimization typically contains

several dose-level constrains to maximize the delivery of radiation of targets

and minimize the hurts for OARs simultaneously. However, the formulation

of the optimization problem of IMRT is typically based on a set of empirical

parameters, such as relative importance weights and constraint levels for

PTVs and OARs, which aim to accommodate various clinical considerations.

These empirical parameters are initially initialized by human planners but

can be adjusted as needed. To determine the optimal solution for a given

set of parameters, a modern treatment planning system (TPS) is employed.

However, it is not uncommon for the resulting solution to be inconsistent

with the desired clinical considerations. In such cases, the planner must

manually adjust these parameters and re-optimize the treatment plan using

the TPS. This trial-and-error process is often repeated multiple times until

a satisfactory result is achieved. Furthermore, the quality of the resulting

treatment plan heavily relies on the experience and expertise of the planners.

Consequently, there is a significant need to develop automatic methods that
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can produce high-quality and efficient treatment plans, thereby reducing the

reliance on manual intervention.

Over the past years, significant efforts have been made to develop au-

tomatic planning methods. A typical solution is to add an outer-loop op-

timization for parameter searching on top of the inner optimization. Sev-

eral notable examples of this double-optimization approach can be found

in [2, 3, 4]. More recently, attention has turned towards the potential of

deep learning in automatic treatment planning [5]. Deep neural networks

offer greater flexibility in the parameter searching compared to traditional

methods. Particularly, the trial-and-error process of human planners can be

effectively emulated using deep reinforcement learning techniques. Indeed,

studies have demonstrated that deep reinforcement learning can be employed

to adjust treatment plan parameters[6, 7, 8].

For instance, Shen et al.[9] propose a deep reinforcement learning-based

virtual therapy planner network to model the decision-making behavior of

human planners when adjusting treatment planning parameters (TPPs) for

prostate cancer. However, existing methods suffer from several limitations,

1) Firstly, they typically design separate sub-networks for each organ [10, 7],

making it challenging to generalize their models to different cases. This is

because the number of organs involved in treatment planning can vary among

patients, even for those with the same disease. 2) Secondly, these methods
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neglect the functional characteristics of the dose-volume histogram (DVH)

curve and often take it as an image, resulting in a significant reduction in

the signal-to-noise ratio of the input. Consequently, the learning process be-

comes more challenging, and the number of organs that can be effectively

planned is limited. For example, as discussed in [6, 10], these methods only

consider the bladder and rectum as OARs, while clinical settings frequently

involve adjusting more than a dozen organs. 3) Thirdly, existing methods

model the process of dose adjustment as a classification problem, for ex-

ample, setting five possible TPPs adjustment options {+2%, +1%, 0, -1%,

-2%}, corresponds to increase or decrease TPP values by 2% or 1%, or keep

them unchanged [9]. However, this classification approach severely restricts

the search capability of the model. Therefore, there is substantial potential

for advancing the generalization of multi-parameter TPP adjustment across

multiple organs.

In this study, we introduce a deep reinforcement learning framework that

takes into account the functional characteristics of the dose-volume histogram

(DVH). We refer to this framework as the Functional automatic treatment

PlannIng N etwork (FatPIN). The primary objective of FatPIN is to train a

model capable of manipulating the TPS and adjusting treatment planning

parameters to generate high-quality treatment plans automatically. This

automated approach aims to enhance the efficiency and accuracy of treatment
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planning by leveraging the capabilities of deep reinforcement learning. The

ultimate goal is to deliver treatment plans that effectively adhere to clinical

standards while reducing the reliance on manual intervention.

In the realm of clinical practice, the condition of patients displays no-

table variability. Even among individuals diagnosed with the same type of

cancer, the specific considerations for radiation therapy by medical practi-

tioners may diverge due to unique factors such as tumor stage and organ

size. The presence of these individualized requirements presents challenges

when implementing a model predicated on a singular organ corresponding to

a sub-network in a clinical context.

To mitigate this issue, FatPIN incorporates a neural network architec-

ture tuned for organ-sharing. This innovative design facilitates the incor-

poration of DVHs from all tissue structures (organs) into the same network

during the training phase. Subsequently, in testing, the DVHs of diverse

structures for a particular patient can be directly input into the network to

yield adjusted action prediction results. Essentially, this approach removes

the constraint on the number of organs involved in treatment planning im-

posed by the model.

To bolster the learning efficiency of FatPIN, a functional decomposi-

tion layer is employed to initially extract features from the DVH curves.

This functional mapping layer markedly enhances the signal-to-noise ratio
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of the input data. Additionally, departing from the conventional method of

modeling dose adjustment as a classification problem, we propose learning

the distribution of dose adjustment. Specifically, we establish a connection

between the output of FatPIN and the mean and variance of the dose ad-

justment distribution. Ultimately, parameterization techniques are utilized

to generate continuous dose adjustments based on the acquired mean and

variance. This strategic approach enhances the overall efficiency of model

training, facilitating its application in real-world scenarios with heightened

effectiveness and reliability.

2 Continuous Functional Treatment Param-

eters Adjustment Networks

Manual adjustment of dosage and weight to achieve a high-quality treat-

ment plan is a cumbersome and time-consuming process in clinical radio-

therapy. Therefore, automatic radiotherapy regimens are required with au-

tomatic dose and weight adjustments by planners. The overall framework

will be introduced in next section.
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2.1 Overall Procedure

Figure 1 depicts the overall framework of our proposed method, Functional

automatic treatment PlannIng N etwork (FatPIN). It comprises three essen-

tial modules: a functional embedding layer, a continuous treatment planning

neural network, and an environment for deep reinforcement learning (DRL).

The overall process of automatic planning can be divided into the following

steps:

1. The functional embedding layer accepts DVHs (state) st = (st(1), st(2),

· · · , st(200)) at time t as input and outputs the functional embedding

of DVHs xt.

2. The treatment planning neural network take functional embedding of

DVH xt as input and yield a compressed feature zt;

3. Estimates the mean µt ∈ RM and the logarithmic form of variance

diag(log σ2
t ) ∈ RM×M of the TPP action at ∈ RM for the M tissue

structures with zt;

4. Randomly samples TPP actions: at ∼ N (µt, diag(log σ2
t )) ;

5. Updates the constraints of the optimization with at (see eq. (15)).

6. Solves the new optimization problem with TPS and yields a correspond-

ing new state st+1 (updated DVH) and calculates the corresponding
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reward rt;

7. Stores (at, st, rt, st+1) into sample set C;

8. Updates the parameters of FatPIN and repeats the above steps until

convergence.

The following sections will introduce the details of the modules involved in

the above process.

2.2 Functional Embedding Layer

2.2.1 Dose-volume Histogram

In radiotherapy planning, dose-volume histograms (DVH) s is a curve

that depicts the distribution of the dose for each structure present in the

treatment area, including the OAR and the target. Figure 2 presents a

typical example of a DVH for an OAR and a target in a treatment plan. The

horizontal axis in the DVH represents the dose level, while the vertical axis

represents the fraction of the volume. For instance, the point P in the target

DVH in Figure 2 indicates that at least 60% of the volume of the target

voxels receive a dose level of 1.8 Gy or less. Ideally, the DVH in the target

area should be vertical at the prescribed dose, indicating that all the voxels

in PTV receive the prescribed dose, while the OAR should be vertical at a

10

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.06.23.24309060doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.23.24309060
http://creativecommons.org/licenses/by-nc/4.0/


relative dose of 0, indicating that it receives a dose of 0. Oncologists may

be willing to sacrifice a certain portion of the OAR close to the target area

to ensure optimal tumor control probability. Thus, OAR must be required

to have at least a certain percentage of the dose below the specified level to

reduce the risk of damaging the nearby healthy tissue.

2.2.2 Functional Embedding of DVH

Instead of directly feeding the DVH curves into the DRL model, FatPIN

embeds them into finite-dimensional vectors. We assert that these embedding

vectors are a more suitable input for subsequent adaptation to standard deep

neural networks. The details are as following.

Let st(u) denotes a single input DVH curve at timestamp t with hori-

zontal axis u, the calculation of a hidden neuron in the neural network is

h = σ
(∫

U
w(u)st(u)du + b

)
(1)

where w(u) are functional weights and b is the intercept term. We further

decompose w(u) using its basis representation,

w(u) =
K∑

k=1
ckϕk(u) (2)

where ϕk(u) represents the basis function of the functional weights w(u).

This basis function can be a Fourier basis or a spline basis, and we choose
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K as the number of basis functions. In our approach, we select ϕk(u) to be

the Fourier basis, 

ϕ0(u) =
√

2√
2

...

ϕ2k−1(u) = sin( 2πk
T

u)√
T
2

ϕ2k(u) = cos( 2πk
T

u)√
T
2

and set K = 5 as shown in Figure 3.

Therefore, we can reformulate eq. (1) as,

h = σ

(∫
U

K∑
k=1

ckϕk(u)st(u)du + b

)

= σ

(
K∑

k=1
ck

∫
U

ϕk(u)st(u)du + b

)

= σ
(
cTxt + b

)
(3)

where

xt =



∫
U ϕ1(u)st(u)du

∫
U ϕ2(u)st(u)du

...
∫

U ϕK(u)st(u)du


is the functional embedding of DVH what we try to get. In practice, the

integral
∫

U ϕk(u)st(u)du in eq. (3) can be approximated with numerical inte-

gration methods such as the composite Simpson’s rule.

As for effectively handling the DVH curve st(u), we employ a B-spline

basis expansion approach. That is, we express each DVH as a linear combi-
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nation of J B-spline bases, which can be represented as follows:

st(u) =
J∑

j=1
αjφj(u)

where αj, j = 1, 2, · · · , J , is the corresponding coefficients of st(u) with re-

spect to the basis φj(u), φj(u) is the B-spline basis, J is the number of the

B-spline basis, we set J = 35 as shown in fig. 4.

In our problem, we often encounter scenarios where multiple organs are

involved, resulting in a set of input DVHs. Let’s assume that M is the number

of organs that need to be adjusted, then we will get functional embedding of

DVHs Xt ∈ RM×K in matrix form.

2.3 Treatment Planner Neural Networks

We use a similar framework of Deep Deterministic Policy Gradient [11]

to implement the virtual treatment planner neural networks. The planner

network can output actions a ∈ RM for M structures. Suppose a is i-th

component of a, which corresponds to the action of the i-th tissue structure.

The process of estimate a with the virtual treatment planner neural networks

is as follows.

In the context of deep reinforcement learning, our virtual treatment

planner neural network acts as an agent that aims to interact with the en-

vironment. This network comprises two parts: the actor network m (s|Θ) is

13
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tasked with learning a policy for the agent and the critic network Q (s, a|Φ)

aims to estimate the action-value function Qπ (st, at).

To fully explore the environment, we add two linear layers to respectively

output the mean µt and the logarithmic form of variance log σ2
t of action at

based on the original actor network output zt as follows,

µt := µt(zt) = c⊤zt + d (4)

log σ2
t := log σ2

t (zt) = e⊤zt + f (5)

where c, d, e, f are parameters of the linear layers. Then, we use them to

generate a new action at with

at = µt + σ2
t · εt, (6)

where εt ∼ N (0, 1). The action at is exactly what our new actor network

outputs.

To make the critic network’s action estimate as close as possible to the

reward-based action estimate, the loss function of original critic network

Q (s, a|Φ) is

L (Φ) = E
[
(Q (st, at|Φ)− yt)2

]
, (7)

where

yt = rt + γ ·Q′(st+1, m′(st+1|Θ′)|Φ′) (8)

is TD (Temporal Difference) target [12], γ is a discount parameter, m′(s|Θ′)

14
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and Q′ (s, a|Φ′) are two target networks, which are copies of the learned

networks m (s|Θ) and Q (s, a|Φ). We update the target networks in a soft

way, that is, θ′ ← δθ+(1− δ) θ′ with δ ≪ 1, where θ and θ′ are the parameters

corresponding to the learned network and the target network respectively.

Based on the preceding statement, we hope to make the optimization

of the action a more precise, so it is necessary to control the magnitude of

its variance σ2
t . Therefore, we have added a penalty term for the variance to

regularize the loss function as following,

L (Φ) ∆= E
[
(Q (st, at|Φ)− yt)2

]
+ σ2

t . (9)

2.4 Model Training

The DVH st(u) is a curve that can be represented by coordinates. In this

work, we record the DVH using 100 2-D points. Therefore, the curve st(u)

can be expressed as a 200-dimensional vector st(u) = (st1, st2, · · · , st200),

where the first 100 dimensions correspond to the horizontal coordinates, and

the subsequent 100 components represent the corresponding vertical ordi-

nates.

At iteration step t, the functional embedding layer firstly accepts the st

(DVH of a structure at time t) as input and outputs its functional embedding

xt (section 2.2). Next, we feed the functional embedding of DVH xt for the

15
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actor network m (s|Θ) to predict the mean µt and the logarithmic variance

log σ2
t of the dose adjustment action at. Then, we sample a random action

at using eq. (6).

Then the agent interacts with the environment by updating the opti-

mization problem with at (as shown in eq. (15)). Upon solving the new

optimization problem, we can calculate the corresponding reward rt and ob-

tain the updated state st+1. The sequence of transitions (st, at, rt, st+1) is

stored in a replay buffer R. During model training, a batch of transitions is

randomly selected from R to calculate Q(st, at|Φ) using the critic network.

Then the temporal difference (TD) target is computed as in eq. (8). With

yt, the loss can be calculated using eq. (9). That is, we can update param-

eters of the critic network Q (s, a|Φ) with the TD algorithm [12]. For the

actor network m (s|Θ),we calculate the gradient of objective function J (Θ)

as follows,

∇J (Θ) = E [∇ΘQ (s, a|Φ) |s=st,a=at ]

= E
[
∇aQ (s, a|Φ) |s=st,a=m(st)∇Θm (s|Θ) |s=st

]
,

(10)

the parameters of the actor network can then be updated using policy gra-

dient ascent. Finally, soft target updates are used to update the parameters

of the two target network. We set training stop conditions based on clini-

cal expertise. For example, the algorithm stops updating when the D95 in

the target area exceeds its prescribed dose, and when the V50 of the OAR
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exceeds its prescribed dose.

2.5 Environment

The interactive environment for reinforcement learning, as depicted in

Figure 1, receives adjustment actions at derived from the agent (virtual treat-

ment planner network) as input. These actions are utilized to create a new

optimization problem by modifying its original constraints. The new op-

timization problem is then solved by the TPS, resulting in a new DVH.

Rewards are determined by comparing the new DVH with the previous one.

Further details regarding the reward computation can be available in sec-

tion 2.6.

2.5.1 Optimization Formulating

Suppose there are M structures that need to be planned, including the

PTV and OARs. For our case, which involves cervical cancer, M = 12,

and the OARs include the bladder, rectum, small intestine, bilateral femoral

heads, and five ring structures.

Let the m-th organ be partitioned into Nm cubic volume elements or vox-

els of equal size [13](Typically greater than 2 mm in side length). Hence the

dose for the m-th organ is represented by a vector dm = [dm
1 , dm

2 , · · · , dm
Nm

]⊤ ∈

RNm , and ∑
m Nm = N , for m = 1, · · · , M , where N is the total number of

17
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voxels of the patient. Then the dose distribution for the M organs can be

represented as d = [d1; d2; · · · ; dM ] ∈ RN .

In order to achieve the required dose depicted by d, we will employ L

beamlets at various angles to deliver radiation therapy to the M structures.

Let Ωij ≥ 0 represent the dose deposition, which depicts the i-th voxel el-

ement by the j-th beamlet at unit beam intensity [13]. Ω ∈ RN×L can be

calculated by TPS, such as matRad [14]. It depends on the patient’s personal

structure parameters.

Then the goal of IMRT is to find, for each beamlet and according to the

optimization goals of the respective model, a suitable nonnegative beamlet

weight defining its radiation intensity. Specifically, the dose di of voxel i can

be computed as follows,

di =
L∑
j

Ωi,jwj (11)

where wj is the weight of beamlet j. The parameter wj is the variable to

be optimized. However, in this study, the optimization of wj is indirectly

achieved through the matRad optimization engine. In other words, we opti-

mizes the dose vector d instead of w.

In the context of IMRT, the planning process involves solving a series

of optimization problems that consist of well-defined objective functions and

constraints. In our work, we adopt an overall optimization objective ex-
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pressed as a weighted sum of various individual components as shown in

eq. (12),

min
d∈RN

βP T V fP T V (d1) +
M∑

m=2
βm

OARfOAR(dm)

subject to cP T V (d1) > 95%,

cOAR(dm) < 30%, m = 2, · · · , M

d ≻ 0

(12)

where fP T V (d1) is the objective function of PTV with a relative weight-

ing (penalty) denoted as βP T V , and fOAR(dm) denotes the objective func-

tion of m-th OAR with relative weighting βOAR
m . The corresponding con-

straint cP T V (d1) > 95%ě indicates that 95% of the PTV voxels are re-

quired to receive a dose no lower than the prescription dose. The constraint

cOAR(dm) < 30%ě indicates that no more than 30% OAR voxels are required

to receive the prescription dose. The positivity constraint d ≻ 0 ensures that

only positive radiation fluences are considered. In the implementation, we

set βP T V = 80 and βOAR
m = 40.

In this work, fP T V (d1), fOAR(dm), and the corresponding constraints
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are chosen as follows [14],

fP T V (d1) = 1
N1

N1∑
i=1

(d1
i − d1

p)2I(d1
i − d1

p)I(d1
i − d̃1)

fOAR(dm) = 1
Nm

Nm∑
i=1

(dm
p − dm

i )2I(dm
p − dm

i )I(d̃m − dm
i )

cP T V (d1) = 1
N1

N1∑
i=1

I(d1
i − d1

p)

cOAR(dm) = 1
Nm

Nm∑
i=1

I(dm
p − dm

i ),

(13)

where N1 is the number of PTV voxels, Nm is the number of voxels of m-

th OAR, dm
i represents the dose in voxel i of the m-th structure, d̃m is

prescribed volume, and dm
p is the prescribed dose of m-th organ. I(x) is

Heaviside function defined as,

I (x) =


0, x < 0,

1, x ≥ 0

(14)

and d̃m, dm
p , m = 1, · · · , M are prescribed volume and prescribed dose for

m-th structure [14]. Typically, d̃m and dm
p are parameters determined by the

doctor. Different values for d̃m and dm
p correspond to distinct constraints for

the optimization problems in eq. (12). In our study, we fix d̃m and adjust

dp = [d1
p, d2

p, · · · , dM
p ]T ∈ RM using the proposed method as follows,

(dp)t+1 = (dp)t ⊙ at (15)

where⊙ denotes the element-wise product. It suggests that action at updates

dp and consequently gives rise to a new optimization problem as we stated in
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section 2.3. The updated objective function and constraint equations initiate

a new round of optimization to obtain the results of this iteration as shown

in Figure 1.

DVH is a criterion for evaluating the performance of the treatment plan.

To drive the deep reinforcement learning process, we input an initial DVH

into the ATPAN as a start. Instead of using the original DVH (an image that

plotting the original DVH curves), we proposed to use its functional embed-

ding as introduced in section 2.2. The input DVHs involve multiple organs.

Suppose there are N organs require to adjust. A linear basis expansion is

used with i basis functions defining each of these N DVHs. The embedding

vectors of these DVHs are as defined follows,

2.6 Reward function

Based on the updated DVHs, we can compute the reward for the current

iteration in the proposed model. The learning objective of our model is to

maximize the dose delivered to the target while minimizing the dose received

by the OARs. Consequently, we consider the change in the area between the

DVH curves of the target AT arget and OARs AOARs as a component of the

reward. Additionally, the change in the D95 metric, which represents the

dose received by 95% of the target volume, is also considered an important
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indicator that captures the attention of clinicians. Therefore, we incorporate

the change in D95 as another source of reward. The final reward can be

expressed as follows,

r = ∆D95 + ∆(AT arget − AOARs). (16)

2.7 Cohort

In this study, a cohort of cervical cancer patients who underwent treat-

ment with IMRT at our institution was selected. The treatment planning

process involved defining the PTV as well as the organs at risk (OARs). The

prescription dose for all patients was set at 50.40 Gy, delivered in fractions

of 1.8 Gy each. The treatment plans for IMRT were optimized using the

matRad software. Specifically, a configuration of equally spaced 5 coplanar

photon beams was employed for all patients. These beam arrangements were

then optimized using the IPOPT optimization algorithm within the matRad

framework. The goal of the optimization process was to achieve an optimal

dose distribution that effectively targeted the PTV while minimizing the dose

to the surrounding OARs.
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3 Results

3.1 Visualizations of Planning

Figure 5(a) and Figure 5(b) visualize the process of parameter adjust-

ment. In these representations, the dash line corresponds to the Planning

Target Volume (PTV), while the solid line represents the five Organs at Risk

(OARs): Bladder, Femoral Head R/L, Rectum, and Small Intestine. As

shown in Figure 5(a), during the initial five steps, FatPIN trys to reduce the

dose levels of the five OARs while concurrently increasing the PTV dose to

50.4 Gy. We observe that the Small Intestine registers the lowest dose level,

while the Bladder exhibits the highest dose level among the five OARs. The

initial dose of the Small Intestine is approximately 45 Gy, decreasing to 20.42

Gy by the end of the iteration, aligning with the prescribed dose for OARs.

Commencing from the initial adjustment, FatPIN initiates the process

of adjusting the PTV dose level, gradually increasing it while simultaneously

reducing the dose level of the OARs until convergence is achieved around

step 50. It is noteworthy that FatPIN employs an alternating approach in

which the dose levels of both the PTV and OARs are adjusted. Figure 5(b)

illustrates the changes in the area under the DVH curves (DVH AUC) for

both the target and the five OARs. The decreasing solid lines represent

the area change of the five OARs. We observe that the DVH AUC of the
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target continually increases, while the DVH AUC of the OARs decreases

accordingly, which demonstrates the efficiency of the proposed model.

Figure 6 depicts the treatment planning process. The heat maps in the

top panel represent the changes in dose distribution, while the corresponding

DVH curves are depicted in the bottom panel at three stages: the initial step

(left), step 50 (middle), and step 100 (right). The quality of the plans can

be assessed based on the dose distributions of each structure, including the

PTV and the five OARs. The bottom panel demonstrates the corresponding

DVHs of each structure. For instance, the bottom left panel visualizes the

initial DVHs in solid lines, while the top left represents the corresponding

initial dose distribution, with segmentation curves delineated by the clinician.

Changes in dose distribution in these areas help understand the dynamic

planning process. The bottom middle and bottom right panels show the

results of steps 50 and 100, respectively. At step 50, the DVH changes are

compared by plotting both the initial step results (solid lines) and step 50

results (dashed lines). It is observed that the PTV and OAR curves shift at

step 50, indicating a change in the dose distribution. At step 100, the dose

level gap between PTV and OARs becomes more pronounced. The overall

dose distribution in the top right panel maintains the expected distribution

as labeled by the clinician. The result indicates that 95% volume of PTV

would receive the prescription dose at stage three.
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3.2 Clinical Results

Our experiment covers 12 structures, including both targets and OARs.

We have omitted the results of the 6 PTV rings and reported only the results

of the other 6 most important structures. Table 1 illustrates the key DVH

parameters (with standard deviation) that clinicians most interested in dur-

ing planning process of the 6 structures including one PTV and five OARs.

For PTV, we evaluate D98/ D95 (the minimum absorbed dose that covers

98%/95% of the volume of the region of interest) and mean dose (Dmean).

The D98 of the Planning Target Volume (PTV) increased from the initial

44.91 Gy to 51.12 Gy, and the D95 increased from the initial 45.24 Gy to

51.68 Gy. It is noteworthy that the final D95 already meets the clinician

standard 50.40 Gy.

For the Organs at Risk (OARs), most DVH parameters, other than V50

at step 50, are significantly lower than the initial values. After 100 steps

of adjustment, some DVH parameters still showed a certain improvement.

Although the V50 of most organs has slightly increased, it remains within

clinical requirements. For example, compared with the results at step 50,

the initial V30 and V40 of the bladder, rectum, small intestine, and the right

and left femoral heads decreased by 43.71% and 64.54%, 40.45% and 63.77%,

54.91% and 68.05%, 38.63% and 85.92%, 31.52% and 79.67%, respectively.
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Compared with the results of step 100, V30 and V40 in step 50 of the bladder

and small intestine decreased by 21.23% and 17.91%, 13.81% and 90.25%,

respectively.The V30 of rectum decreased by 5.51% during the adjustment

from step 50 to step 100.

In comparison with the results at initial step, the V30 and V40, and mean

dose of all OARs at step 50 were reduced. More specifically, in comparison

with the initial mean dose, the single mean dose of the bladder, rectum, small

intestine, and the right and left femoral heads at step 50 were reduced by 9.65

Gy (-22.50%), 11.61 Gy (-26.91%), 5.29 Gy (-24.96%), 9.86 Gy (-24.96%),

and 8.66 Gy (-21.75%), respectively.

4 Discussion

The proposed automatic treatment planning framework was developed

to mimic the behavior of human planners. It addresses two key challenges

in automatic treatment planning. The first one is we broke through the

restriction that the number of organs to be planned must be the same for

different patients. In radiotherapy planning, even for patients with the same

type of cancer, the structures (organs) of radiotherapy to be considered will

be different. However, traditional DRL-based models design an exclusive

sub-network for each organ to be planned, which implies the model to be
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consistent with the training patient in the test patient, severely reducing the

scalability of the model [15, 10, 7]. To improve the scalability, we only use

one network that is shared by all structures in FatPIN. During training, the

functional features of DVH curves of different structures are fed into the net-

work sequentially, and the output rewards of each organ are accumulated in

one round of iterations before the gradient is passed back. In this way, the

proposed model can be applied to real clinical scenarios where the number

of organs planned for radiotherapy need not be the same for different pa-

tients. That is, personal planning protocols can be implemented for different

patients.

Secondly, to enhance the efficiency of model learning, we introduced

modifications to the input and output of FatPIN. On the input side, we

devised a functional data embedding layer to extract features from the DVH

curves. The existing models choose to process DVH curves directly with

convolution [7, 10, 16], which ignore the functional data characteristics of

DVH itself, making the signal-to-noise ratio of the processed features low and

leading to low model learning efficiency. Hence,the proposed functional data

embedding layer enables FatPIN to provide efficient computation for complex

tumor patients. Regarding the treatment planning parameters to be output,

we posited that they follows a normal distribution, rather then the traditional

treatment of considering it as discrete classification problems. Consequently,
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we link the final output features with the mean and variance of a normal

distribution. Continuous parameter adjustment was then obtained through

sampling techniques. It is noteworthy that we can obtain the adjustment

values with high confidence by constraining the variance.

Currently, automated radiotherapy planning algorithms proposed in the

existing literature are far from clinical needs and are generally considered

to be solved under a simplified framework only. For example, some of the

existing methods require additional human intervention to narrow the state-

action space [10]. And in [10], the authors only evaluate the case of one

PTV and two OARs. This is because as the number of organs to be con-

sidered increases, the process of solving the optimization problem becomes

more complex or even infeasible. In contrast, our algorithm makes the com-

putational process efficient due to the two aforementioned strategies, thus

simplifying the solution process. For example, the results demonstrate in

Figure 5, Figure 6 and Table 1 are the treatment planning for cervical carci-

noma patients which involve 12 areas. In the example of Figure 6, the results

of 12 organs are actually processed, and only the results of the most critical 6

of them are kept in order to facilitate the presentation of the DVH curves. In

Table 1, we give the results of a patient with 12 structures to be considered

during treatment planning.

There are several limitations of our work. First, we know that radiother-
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apy planners are able to make planning across tumor categories. Although we

have designed the organ-sharing TPPs network for patients from a same kind

of cancer but with different number of structures, it is poorly trained in cases

with different tumors. Second, the computational speed of our system is not

fully satisfactory, as it takes 3 to 4 hours for a single test, which is compara-

ble to the time taken by a human planner. This undermines the advantage

of employing machine automation. The most time-consuming computational

module is the interaction with the environment matRad [14], a MatLab-based

TPS. During this interaction, a new optimization problem based on the ac-

tion selection results predicted by DRL, needs to be addressed. Our model

then transmits the constraint parameters of this new optimization problem

to matRad to perform the next step of the optimization solution.

5 Conclusion

We present FatPIN, an organ-sharing network specifically devised for

automatic radiotherapy treatment planning. FatPIN integrates a functional

embedding layer to extract features from DVH curves and introduces a novel

methodology for learning dose adjustment distribution, eschewing the re-

liance on predefined discrete adjustment steps. Experimental assessments

carried out on cervical cancer cases showcase notable enhancements in pa-
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tient metrics facilitated by the proposed network, thereby validating its direct

utility in clinical contexts.
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Figure Caption

Figure 1: The overall framework of the proposed FatPIN.
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Figure 2: Example of DVH curves for an OAR and a target. The DVH

observations st(u) ∈ [0, 1] correspond to a functional relationship between the

dose level u [Gy] (or relative dose level) of the horizontal axis and the fraction

of volume st(u) receiving that dose level of the vertical axis. This functional

relationship provides a comprehensive representation of the radiation dose

distribution within the target and the OARs.
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Figure 3: The 5 Fourier basis ϕ(u).

Figure 4: The 35 B-spline basis φ(u).
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Table 1: Summary of Interested DVH Parameters Changes (with standard

deviation) to the PTV, and OARs.

ROI Parameters Init Step50 Step100

PTV D98(Gy) 44.91±0.65 51.12±0.31 50.42±0.43

D95(Gy) 45.24±0.98 51.68±0.18 51.35±0.21

D2(Gy) 53.48±0.32 59.12±0.30 61.32±0.43

Dmean(Gy) 46.08±0.37 56.34±0.62 57.71±0.15

Bladder V30(%) 99.73±0.11 56.14±2.32 44.22±2.32

V40(%) 60.44±3.91 21.43±7.51 17.59±9.93

V50(%) 0 11.23±1.39 11.32±2.57

Dmean(Gy) 42.89±1.23 33.24±1.42 30.80±1.72

Rectum V30(%) 99.90±0.10 59.49±3.26 56.21±0.35

V40(%) 78.23±8.14 28.34±3.71 29.74±0.82

V50(%) 0 9.01±8.42 10.12±7.60

Dmean(Gy) 43.14±1.26 31.53±1.37 33.48±0.84

Small intestine V30(%) 45.91±7.38 20.70±2.14 17.84±6.68

V40(%) 17.34±6.01 5.54±2.90 0.54±0.11

V50(%) 0 2.66±0.70 2.32±0.41

Dmean(Gy) 21.19±0.87 15.90±1.27 15.32±1.03

Femoral Head R V30(%) 97.10±0.41 59.59±2.32 60.62±0.31

V40(%) 40.69±7.54 5.73±2.43 19.96±0.23

V50(%) 0 0 0.43±0.09

Dmean(Gy) 39.51±0.71 29.65±0.73 30.57±0.73

Femoral Head L V30(%) 90.57±5.42 62.02±0.88 63.31±7.60

V40(%) 46.34±6.35 9.42±8.50 25.65±6.31

V50(%) 0 0 0.21±0.13

Dmean(Gy) 39.82±1.39 31.16±1.33 32.67±1.43
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(a) dose adjustment (b) DVH AUC of target and OARs

Figure 5: The process of parameter adjustment of FatPIN.
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Figure 6: Variations of DVHs and dose distributions.
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