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 1 

Abstract 2 

Background and Aims: Diagnosis of tricuspid regurgitation (TR) requires careful expert 3 

evaluation.  This study developed an automated deep learning pipeline for assessing TR from 4 

transthoracic echocardiography.  5 

Methods: An automated deep learning workflow was developed using 47,312 studies (2,079,898 6 

videos) from Cedars-Sinai Medical Center (CSMC) between 2011 and 2021. The pipeline was 7 

tested on a temporally distinct test set of 2,462 studies (108,138 videos) obtained in 2022 at 8 

CSMC and a geographically distinct cohort of 5,549 studies (278,377 videos) from Stanford 9 

Healthcare (SHC). 10 

Results: In the CSMC test dataset, the view classifier demonstrated an AUC of 1.000 (0.999 – 11 

1.000) and identified at least one A4C video with colour Doppler across the tricuspid valve in 12 

2,410 of 2,462 studies with a sensitivity of 0.975 (0.968-0.982) and a specificity of 1.000 (1.00-13 

1.000). In the CSMC test cohort, moderate-or-severe TR was detected with an AUC of 0.928 14 

(0.913 - 0.943) and severe TR was detected with an AUC of 0.956 (0.940 - 0.969). In the SHC 15 

cohort, the view classifier correctly identified at least one TR colour Doppler video in 5,268 of 16 

the 5,549 studies, resulting in an AUC of 0.999 (0.998 – 0.999), a sensitivity of 0.949 (0.944 - 17 

0.955) and specificity of 0.999 (0.999 – 0.999). The AI model detected moderate-or-severe TR 18 

with an AUC of 0.951 (0.938 - 0.962) and severe TR with an AUC of 0.980 (0.966 - 0.988). 19 

Conclusions: We developed an automated pipeline to identify clinically significant TR with 20 

excellent performance. This approach carries potential for automated TR detection and 21 

stratification for surveillance and screening. 22 

 23 

 24 
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 3 

Structured Graphical Abstract 1 
 2 

 3 
 4 
 5 
Key Question 6 
 7 
Can an automated deep learning model assess tricuspid regurgitation severity from 8 

echocardiography? 9 

 10 
Key Finding 11 
 12 
We developed and validated an automated tricuspid regurgitation detection algorithm pipeline 13 

across two healthcare systems with high volume echocardiography labs. The algorithm correctly 14 

identifies apical-4-chamber view videos with colour Doppler across the tricuspid valve and 15 

grades clinically significant TR with strong agreement to expert clinical readers.  16 

 17 

Take Home message 18 
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 4 

A deep learning pipeline could automate TR screening, facilitating reproducible accurate 1 

assessment of TR severity, allowing rapid triage or re-review and expand access in low-resource 2 

or primary care settings. 3 

  4 
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 1 
Introduction 2 

Accurate and reliable assessment of tricuspid regurgitation (TR) severity remains an 3 

ongoing challenge. Once considered a benign consequence of co-existing heart disease, tricuspid 4 

regurgitation has received more recent recognition as an independent risk factor for morbidity and 5 

mortality1–3. While recent findings highlight the need for earlier diagnosis and monitoring, early 6 

TR rarely presents with symptoms in the absence of co-existing cardiac disease. With high 7 

temporal resolution, transthoracic echocardiography is the most common test of choice for 8 

characterizing TR, however accurate diagnosis requires expert assessment as there is significant 9 

intra-observer variability4,5. As new therapeutic options for treating TR like percutaneous repair 10 

emerge, early and accurate diagnosis of tricuspid regurgitation continues to become more 11 

important. 12 

Recent advances in computer vision and artificial intelligence (AI) have enabled precision 13 

phenotyping of structure and function in cardiac ultrasound6. AI applied to echocardiography can 14 

precisely estimate wall thickness7, assess mitral regurgitation severity8, and left ventricular 15 

ejection fraction (LVEF)9,10, as well as detect cardiac amyloidosis7,11, HCM12, and diastolic 16 

dysfunction13. Application of deep learning for tricuspid regurgitation has lagged behind, with 17 

most machine learning approaches using structured tabular data to characterize and prognosticate 18 

TR rather than evaluating the underlying images themselves14,15,16,17.  AI guidance has been 19 

developed for both image acquisition and interpretation9,18, and given the increasing prevalence of 20 

TR in an aging population with co-morbid heart failure, AI could aid in TR screening and 21 

surveillance19–23. 22 

In the present study, we developed and evaluated a deep learning pipeline to detect and 23 

assess TR severity from transthoracic echocardiogram studies. Automating the entire process of 24 

view selection, identification of tricuspid regurgitation by colour Doppler, and assessment of 25 

severity, we hypothesized that a deep learning approach could assess TR severity with high-26 

throughput automation. This pipeline was evaluated with data from two geographically distinct 27 

sites, including temporally distinct test cohort distinct from the training and validation cohorts 28 

(Figure 1). Combined with other echocardiography AI algorithms, like those enabling novices to 29 

obtain point of care echocardiographic images18, such an approach could be used for serial 30 

surveillance and screening of tricuspid regurgitation. 31 
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 1 

Methods 2 

Study Population and Data Source 3 

Cedars-Sinai Medical Center (CSMC) Cohort: Transthoracic echocardiography (TTE) 4 

studies at Cedars-Sinai Medical Center (CSMC) between October 04, 2011 and December 31, 5 

2021 were used to train our deep learning pipeline (‘EchoNet-TR’) for high-throughput TR 6 

identification and grading. Studies were initially sourced from Digital Imaging and 7 

Communications in Medicine (DICOM) files and underwent de-identification, view classification, 8 

and pre-processing into AVI files as previously described8, yielding 2,079,898 videos from 47,312 9 

studies from 31,708 patients. From these videos, 57,701 A4C videos with colour Doppler across 10 

the tricuspid valve were manually curated and used to train a deep learning pipeline for TR 11 

phenotyping.  12 

Studies were randomly split on a patient level into train (95%) and internal validation (5%) 13 

cohorts to train deep neural networks for TR phenotyping.24 Identical patient-level splits were 14 

maintained training both the TR severity and view classification models. The trained models were 15 

evaluated serially as a single pipeline on a held-out temporal test set of 2,462 TTE studies (101,455 16 

videos) from 2,170 patients receiving care at CSMC between January 01, 2022 and June 04, 2022. 17 

Patients in the training and validation sets were excluded from the training set.  18 

 Stanford Healthcare (SHC) Cohort: The pipeline was evaluated on 5,549 studies 19 

(containing a total of 278,377 videos) from SHC’s high-volume echocardiography lab. The 20 

automated view classification pipeline was compared with manual curation of videos within those 21 

studies to evaluate specificity. All videos identified by the view classifier were used for 22 

downstream TR severity model validation. Model output was compared with TR severity 23 

determined by expert cardiologists from the clinical reports. This study was approved by the 24 

Institutional Review Boards at Cedars-Sinai Medical Center and Stanford Healthcare. Informed 25 

consent was waived as the study involved secondary analysis of existing data without patient 26 

contact. 27 

 28 

AI Model Training 29 

The model pipeline consisted of a view classifier capable of detecting A4C videos with 30 

colour Doppler across the tricuspid valve from full echocardiographic studies and a TR severity 31 
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 7 

classification model. The PyTorch Lightning deep learning framework was used to train deep 1 

learning models. Video-based convolutional neural networks of the R2+1D architecture were used 2 

for view classification and TR severity assessment.25 The view classification model was initialized 3 

with random weights while the TR severity model was initialized with weights from Echo-Net 4 

Dynamic9. Both models were trained using a cross-entropy loss function for up to 100 epochs, an 5 

ADAM optimizer, an initial learning rate of 1e-2, and a batch size of 24 on an NVIDIA RTX 3090 6 

GPU. Early stopping was performed based on the validation loss. 7 

The view classifier was trained using the 57,701 manually curated A4C videos with colour 8 

Doppler across the tricuspid valve as cases and 421,679 controls from the same studies. Controls 9 

consisted of any videos that were not A4C videos with colour Doppler across the tricuspid valve 10 

and included videos of both A4C and other echocardiographic views (both with and without colour 11 

Doppler information). The TR severity model was trained using 57,701 manually curated videos, 12 

which consisted of 14,318 videos with no TR, 16,507 videos with mild TR, 19,820 videos with 13 

moderate TR, and 7,056 videos with severe TR. TR severity for each study was determined based 14 

on the clinical echocardiographic reports from CSMC’s high-volume echocardiography lab, where 15 

severity was assessed in accordance with ASE guidelines.26 When TR was characterized as an 16 

intermediate category (ie. “trace to mild” or “mild to moderate” or “moderate to severe”), videos 17 

were placed in the more severe category. Studies with concomitant tricuspid stenosis, prosthetic 18 

valves, and heart failure were also included in both training and validation datasets. 19 

  20 

Statistical Analysis 21 

The pipeline was then evaluated on two test sets not seen during model training: 2,462 22 

studies obtained at CSMC in 2022 (temporally distinct from the training and validation studies and 23 

with no patient overlap) and 5,549 studies obtained at SHC in 2018. This process is summarized 24 

in Figure 1. Confusion matrices and area under the receiver operating characteristic curve (AUC) 25 

were used to assess model performance, and statistics related to TR model performance were 26 

calculated on a study level. When a study had more than one A4C video with Doppler information 27 

across the tricuspid valve, the video that resulted in the greatest predicted TR severity was used 28 

for analysis. When multiple videos resulted in the same maximal predicted severity, the video with 29 

the highest prediction probability for the given level of TR severity was used. In both the internal 30 

and external test sets, AUC, F1-score, recall (sensitivity), positive predictive value (PPV), and 31 
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 8 

negative predictive value (NPV) were calculated for clinically significant TR, which was defined 1 

as greater than moderate TR and severe TR. AUC was also calculated for relevant subsets in the 2 

CSMC test cohort. Statistical analysis was performed in Python (version 3.8.0). Confidence 3 

intervals were computed via bootstrapping with 10,000 samples. Reporting of study results is 4 

consistent with guidelines put forth by CONSORT-AI.27,28  5 

Subgroup analysis was conducted to assess model performance in patients with different 6 

ranges of right and left ventricular ejection fraction, pulmonary artery pressure, associated co-7 

morbidities (≥ mild right atrial dilation, ≥ mild mitral regurgitation, ≥ moderate aortic stenosis, ≥ 8 

moderate aortic regurgitation), study characteristics, associated co-morbidities and other clinical 9 

characteristics. Echocardiogram study quality was determined by clinicians and extracted from the 10 

clinical report. Studies where clinicians commented on technical difficulty, poor study quality, or 11 

where one or more major cardiac structures (left ventricle, right ventricle, pulmonary artery, etc.) 12 

were not well visualized were classified as technically difficult. 13 

 14 

 15 

Model Explainability 16 

Features identified by the TR severity model were evaluated using saliency mapping, 17 

generated using the Integrated Gradients method.29 This method generated a heatmap for every 18 

frame of the video, summarized as a final 2-dimensional heatmap generated by using the maximum 19 

value along the temporal axis for each pixel location in the video. Pixels brighter in intensity and 20 

closer to yellow were more salient to model predictions, while those darker in colour were less 21 

important to the model’s final prediction. When assessing videos with no TR, heatmaps were 22 

obtained by taking the maximum of saliency maps for the moderate and severe class output 23 

neurons for each pixel location.  24 

 25 

Results:  26 

Study Population 27 

Patient characteristics are shown in Tables 1 & 2. In the CSMC training, validation, and test sets, 28 

patients had similar characteristics. Meanwhile, the CSMC and SHC test cohorts differed. The 29 

SHC test cohort contained lower numbers of studies from patients with moderate TR (5.0% vs. 30 

25.0%) and severe TR (4.4% vs. 10.0%). The SHC cohort also had a lower proportion of videos 31 
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 9 

from Black patients (4.5 % vs. 14.5%), and a higher proportion of videos from Asian patients 1 

(25.2% vs. 9.8%).  2 

 3 

View Classifier Performance Across Two Institutions 4 

On a test set of 2,462 TTEs (101,415 videos) from CSMC not seen during model training, 5 

the view classifier had an AUC of 1.000 (0.999-1.000) and at a threshold of 0.800, identified an 6 

A4C video with colour doppler across the tricuspid valve in 2,410 studies in the test set with a 7 

sensitivity of 0.979 (0.973-0.985) and a specificity of 1.000 (1.000 – 1.000). To evaluate 8 

generalization of the view classification model at a geographically distinct site, we evaluated its 9 

performance on 5,549 studies (278,377 videos) from SHC. In this external validation set, the view 10 

classifier picked up at least one A4C tricuspid Doppler video in 5,268 studies for a sensitivity of 11 

0.949 (0.944 - 0.955) and a specificity of 1.000 (0.999 – 1.000) 12 

 13 

Tricuspid Regurgitation Severity Performance Across Two Institutions  14 

The TR severity model showed strong performance in TR detection (Figure 2). In the 15 

temporally distinct CSMC test set, the model detected at least moderate TR with an AUC of 0.928 16 

(0.913 - 0.943) and detected severe TR with AUC of 0.956 (0.940 - 0.969). Severe TR was ruled 17 

out with an NPV of 0.966 (0.955 - 0.977) and at least moderate TR was excluded with an NPV of 18 

0.893 (0.871 - 0.914). Further information on TR model performance is presented in Table 3. 19 

Strong model performance was preserved across institutions. In the 2018 SHC cohort, the model 20 

identified severe TR with an AUC of 0.980 (0.966 – 0.989) and moderate/severe TR (defined as 21 

at least moderate TR) with an AUC of 0.951 (0.938 - 0.962). In this cohort, the model demonstrated 22 

an NPV of 0.987 (0.982 – 0.991) for severe TR and an NPV of 0.994 (0.990 – 0.997) for ≥ 23 

moderate TR. 24 

 25 

Subset Analysis 26 

The TR severity model showed strong performance across test set subgroups (Table 4). In 27 

studies with normal, mildly depressed, or moderately/severely depressed RV function, 28 

moderate/severe TR was detected with AUC of 0.923 (0.902-0.942), 0.904 (0.847 – 0.951), and 29 

0.861 (0.848 – 0.952) respectively. Meanwhile severe TR was identified with AUC of 0.962 (0.940 30 

– 0.979), 0.924 (0.872 – 0.966), and 0.882 (0.873 – 0.966). Performance was similar across 31 
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 10 

different LVEF ranges. The model also performed similarly well in studies from patients with a 1 

history of pre-existing atrial fibrillation, right atrial dilation, and co-existing left sided valvular 2 

heart disease, with moderate/severe TR detection ranging from 0.886 (0.804 – 0.954) to 0.918 3 

(0.848 – 0.973) and severe TR detection ranging from 0.917 (0.975 – 0.952) to 0.961 (0.908 – 4 

0.997). 5 

 6 

MRI Comparison 7 

Model predictions of TR severity were compared with assessments using cardiac magnetic 8 

resonance (CMR) imaging, another imaging modality capable of assessing valvular function. The 9 

MRI comparison cohort was composed of 748 studies from 572 patients. The cohort consisted of 10 

468 studies (62.6%) with no TR, 243 studies (32.5%) with mild TR, 25 studies (3.3%) with 11 

moderate TR, and 12 studies (1.6%) with severe TR (Supplemental Table 1). Model predicted 12 

TR severity showed strong concordance with CMR assessment of TR severity for moderate/severe 13 

TR (AUC: 0.896 (0.822 – 0.948)) and severe TR (AUC: 0.949 (0.845 – 0.999)) (Supplemental 14 

Table 2). Similarly, cardiologist-determined TR severity from echo also agreed with cardiologist-15 

determined severity using MRI for moderate/severe TR 0.820 (0.686 – 0.966) and severe TR 0.841 16 

(0.480 – 0.997) (Supplemental Table 3). Meanwhile, the difference in AUC between AI model 17 

predictions and cardiologist-based echo prediction vs. MRI were not significantly different for at 18 

least moderate TR (DeLong test, p = 0.11) or severe TR (DeLong test, p = 0.08) (Supplemental 19 

Table 4). Full results are shown in Supplemental Figure 1. 20 

 21 

 22 

Model Explainability 23 

The Integrated Gradients method was used to create saliency maps that identified regions of 24 

interest in each video contributing the most to detection of TR severity (Figure 3).29 Saliency maps 25 

for the TR severity model demonstrated that the clinically relevant imaging features of TR were 26 

important for model predictions, with activation signal localizing to pixels in the colour Doppler 27 

window and primarily highlighting the TR jet, indicating that the model used appropriate, 28 

physiologic features of TR to make predictions. Supplementary Videos S1-S4 contain frame-by-29 

frame visualizations of saliency maps.  30 
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Discussion 1 

The current work presents a comprehensive, automated pipeline capable of characterizing 2 

tricuspid regurgitation from echocardiogram studies. From full studies, the algorithm 3 

automatically selects A4C videos with colour Doppler across the tricuspid valve and assesses TR 4 

severity. In a temporally distinct test cohort, the pipeline demonstrated strong performance in 5 

severe and ≥ moderate TR screening, with AUC > 0.928 and NPV > 0.893. Moreover, this 6 

automated workflow robustly generalized to thousands of studies from a large, geographically 7 

distinct cohort. Given these characteristics, our results suggest a deep learning model could aid in 8 

the preliminary assessment of TR, facilitate review of institutional databases, or expand access for 9 

screening in low-resource settings. 10 

In AI applied to echocardiography, the right heart is still under-represented. While prior 11 

work have shown AI model’s ability to characterize LVEF, LVH, and left sided valvular lesions, 12 
7,30,8  there has been little work on TR. The present work applies a state-of-the-art video-based 13 

architecture for TR detection on a large training dataset to show such an approach produces a 14 

generalizable assessment of regurgitant severity. Despite relying on a single view, the performance 15 

of EchoNet-TR reliably matches expert cardiologists’ assessments across entire studies. TR 16 

assessment is a complex task, reliant multiple echocardiographic views, however the current 17 

pipeline proposed here performs well even when using the A4C view alone, suggesting a richness 18 

of ancillary information (right atrial enlargement, right ventricular systolic function, etc.) possibly 19 

related to TR severity. This potential use of this information mimics clinical decision making, 20 

where cardiologists often integrate conflicting metrics from different views and ancillary 21 

information to arrive at a final TR severity.  22 

While the current work is promising, limitations should be considered. The regurgitant TR 23 

jet is 3-dimensional, and a combination of multiple echocardiographic views offers comprehensive 24 

visualization. Despite the strong performance, reliance on the A4C view alone could result in 25 

information loss that could still lead to incorrect predictions, especially if the TR is acute. Future 26 

work could focus on automatic quantification of valve leaflet thickness, orifice area, and other 27 

quantitative metrics of TR severity and risk stratification for tricuspid valve intervention. 28 

Similarly, with prior works using AI  to guide novices to obtain videos of standard view 29 

echocardiogram views, the current algorithm could potentially be used with existing models to 30 

guide imaging acquisition to increase access to TR screening.18,31 Future work could focus on 31 
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 12 

automatically quantifying parameters related to TR, high-throughput phenotyping aetiology based 1 

classification of TR, or precision medicine based stratification for intervention on the tricuspid 2 

valve. 3 

In summary, we introduce a model for TR screening from single-view TTE videos. In 4 

doing so, we provide a workflow for isolating tricuspid valve colour Doppler videos and assessing 5 

TR severity with strong AUC and in two distinct test cohorts. Given its excellent performance and 6 

generalizability, the deep learning pipeline could aid point-of-care TR screening or enable 7 

retrospective institutional database review. 8 

  9 
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Table 1 1 
 2 

 

Derivation Cohorts Test Cohorts 

Train Val 
CSMC Test 

Cohort SHC Test Cohort 

Patients 30,125 (88.92) 1,583 (4.67) 2,170 (6.41) 5,014 

Studies 44,908 2,404 2,462 5,549 

Videos 453,787 24,484 101,415 
 

278,377 

Male 23,552 (53.0) 1,282 (53.3) 1,286 (52.2) 1,057 (52.7) 

HTN 27,743 (61.8) 1,477 (61.4) 1,295 (52.6) 953 (47.6) 

CAD 18,983 (42.3) 999 (41.6) 903 (36.7) 721 (36.0) 

AF 14,612 (32.5) 856 (35.6) 515 (20.9) 550 (27.4) 

EF 56.9 (15.4) 57.0 (15.1) 57.2 (15.1) 57.4 (11.0)* 

LAVI 35.5 (15.7) 36.1 (16.0) 31.8 (15.5) N/A 

TR Severity 

Control 12297 (27.4) 627 (26.1) 829 (33.7) 3,223 (58.1) 

Mild 13286 (29.6) 710 (29.5) 770 (31.3) 1,808 (32.6) 

Moderate 14363 (32.0) 785 (32.7) 617 (25.1) 275 (5.0) 

Severe 4962 (11.0) 282 (11.7) 246 (10.0) 243 (4.4) 

Race 

White 31,117 (69.3) 1,698 (70.6) 1,559 (63.3) 
1,097 (54.8) 

Black 6,004 (13.4) 288 (12.0) 358 (14.5) 
90 (4.5) 

Asian 3,459 (7.7) 192 (8.0) 241 (9.8) 
504 (25.2) 

Other 4,328 (9.6) 226 (9.4) 304 (12.3) 
311 (15.5) 

2003 studies in the SHC test cohort had information on comorbidities, demographics, and EF. 3 
 4 
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Table 2 1 
 2 

 

Derivation Cohorts Test Cohorts 

Train Val 
CSMC Test 

Cohort 
SHC Test 

Cohort 
Patients 30125 (88.92) 1583 (4.67) 2,132 (6.41) 4,798 
Studies 44,908 2,404 2,412 5,280 
Videos 453,787 24,484 3,392 7,233 
Male 23,552 (53.0) 1,282 () 1263 () 1,057 (52.7) 
HTN 27,743 (61.8) 1,477 (61.4) 1271 (52.7) 898 (47.3) * 
CAD 18,983 (42.3) 999 (41.6) 884 (36.7) 674 (35.5) * 
AF 14,612 (32.5) 856 (35.6) 499 (20.7) 520 (27.4) * 
EF 56.9 (15.4) 57.0 (15.1) 57.2 (16.9) 57.5 (10.8)* 

EF ≥ 35 39,294 (89.5) 2,111 (90.0) 2105 (89.1) 1,796 (93.7) * 
EF < 35 4,616 (10.5) 236 (10.0) 255 (10.8) 120 (6.3) * 
EF ≥ 50 35,287 (80.4) 1,889 (80.5) 1924 (81.5) 1,585 (82.7) * 
EF < 50 8623 (19.6) 458 (19.5) 436 (18.5) 331 (17.2) * 

LAVI 35.5 (15.7) 36.1 (16.0) 31.8 (15.3) N/A 
TR Severity 

Control 12297 (27.4) 627 (26.1) 829 (33.7) 816 (33.8) 
Mild 13286 (29.6) 710 (29.5) 770 (31.3) 758 (31.4) 
Moderate 14363 (32.0) 785 (32.7) 617 (25.1) 605 (25.1) 
Severe 4962 (11.0) 282 (11.7) 246 (10.0) 233 (9.7) 

Race 
White 31,117 (69.3) 1,698 (70.6) 1,559 (63.3) 1,097 (54.8) 
Black 6,004 (13.4) 288 (12.0) 358 (14.5) 90 (4.5) 
Asian 3,459 (7.7) 192 (8.0) 241 (9.8) 504 (25.2) 
Other 4,328 (9.6) 226 (9.4) 304 (12.3) 311 (15.5) 

RV Dysfunction 
Mildly Depressed 7,433 (13.6) 374 (12.8) 415 (12.3) N/A 
Moderately/Severely 
Depressed 

6,027 (11.0) 301 (10.3) 409 (12.1) N/A 

Pulmonary Artery Pressure 
PA Pressure > 35 mm Hg 17,646 (44.6) 976 (46.1) 822 (39.7) N/A 
PA Pressure ≤ 35 mm Hg 21,866 (55.4) 1,140 (53.9) 1,245(60.2) N/A 
PA Pressure > 25 mm Hg 29,638 (75.0) 1,616 (76.4) 1,445 (70.0) N/A 
PA Pressure ≤ 25 mm Hg 9,895 (25.0) 500 (23.6) 622 (30.0) N/A 

Mitral Regurgitation 26,412 (48.6) 1,438 (49.6) 1028 (42.6) 76 (4.0) * 
Aortic Regurgitation 4,602 (8.5) 232 (8.0) 144 (6.0) 29 (1.5) * 
Aortic Stenosis 3,668 (6.8) 218 (7.5) 155 (6.4) 209 (11.0) * 
Difficult Study 7,566 (13.8) 446 (15.3) 179 (7.4) N/A 

*1916 studies in the SHC test cohort had information on Demographics and EF. 1897 studies in the SHC 3 
test cohort that had information on comorbidities. 4 
 5 
 6 
 7 
 8 
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 1 
 2 
Table 3 - Model Performance 3 

Site Class AUROC PPV NPV Recall F1-Score 

CSMC 

≥ Moderate 
TR 

0.928 

(0.913 - 0.943) 

0.836 

(0.799 - 0.871) 

0.893 

(0.871 - 0.914) 
0.794 

(0.753 - 0.831) 

0.814 

(0.784 - 0.843) 

Severe TR 
0.956 

(0.940 - 0.969) 

0.710 

(0.622 - 0.791) 

0.966 

(0.955 - 0.977) 
0.682 

(0.596 - 0.765) 

0.696 

(0.622 - 0.759) 

Stanford 

≥ Moderate 
TR 

0.951 

(0.938 - 0.962) 

0.427 

(0.383 – 0.466) 

0.994 

(0.990 – 0.997) 

0.945 

(0.914-0.971) 

0.586 

(0.544 – 0.626) 

Severe TR 
0.980 

(0.966 – 0.989) 

0.699 

(0.614 - 0.780) 

0.987 

(0.982 – 0.991) 

0.702 

(0.616 – 0.784) 

0.700 

(0.630 - 0.763) 

 4 
  5 
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Table 4 – TR Model Subset Analysis 1 
 2 

Subset Number of Studies TR Severity Model Performance 

RV Function 

Normal Function 1845 Moderate/Severe: 0.923 (0.902 - 0.942) 
Severe: 0.962 (0.940 - 0.979) 

Mildly Depressed 285 Moderate/Severe: 0.904 (0.847-0.951) 
Severe: 0.924 (0.872 - 0.966) 

Moderately/Severely Depressed 266 Moderate/Severe: 0.861 (0.848 - 0.952) 
Severe: 0.882 (0.873 - 0.966) 

LV Systolic Function 

LVEF ≥ 50 1924 Moderate/Severe: 0.930 (0.913 – 0.947) 
Severe: 0.962 (0.944 – 0.977) 

LVEF < 50 436 Moderate/Severe: 0.897 (0.851 – 0.937) 
Severe: 0.920 (0.876 – 0.957) 

LVEF ≥ 35 2105 Moderate/Severe: 0.932 (0.915 – 0.947) 
Severe: 0.960 (0.943 – 0.974) 

LVEF < 35 255 Moderate/Severe: 0.860 (0.787 – 0.923) 
Severe: 0.917 (0.857 – 0.964) 

Atrial fibrillation 499 Moderate/Severe: 0.908 (0.869 - 0.941) 
Severe: 0.917 (0.875 – 0.952) 

RA Dilation 505 Moderate/Severe: 0.892 (0.847 – 0.931) 
Severe: 0.920 (0.882 – 0.952) 

Pulmonary Artery Pressure 

PA Pressure > 25 mm Hg 1,445 Moderate/Severe: 0.892 (0.871 – 0.916) 
Severe: 0.929 (0.905 – 0.950) 

PA Pressure ≤ 25 mm Hg 622 Moderate/Severe: 0.920 (0.835 – 0.982) 
Severe: 0.998 (0.990 - 1.000) 

PA Pressure > 35 mm Hg 822 Moderate/Severe: 0.850 (0.806 – 0.890) 
Severe: 0.881 (0.841 – 0.916) 

PA Pressure ≤ 35 mm Hg 1,245 Moderate/Severe: 0.915 (0.880 – 0.945) 
Severe: 0.990 (0.975 - 0.999) 

Mitral Regurgitation 357 Moderate/Severe: 0.896 (0.869 - 0.922) 
Severe: 0.945 (0.920 – 0.966) 

Aortic Stenosis 155 Moderate/Severe: 0.918 (0.848 - 0.973) 
Severe: 0.959 (0.901 - 0.996) 

Aortic Regurgitation 144 Moderate/Severe: 0.886 (0.804 - 0.954) 
Severe: 0.961 (0.908-0.997) 

Study Quality 253 Moderate/Severe: 0.927 (0.826 - 0.989) 
Severe: 0.982 (0.932 – 1.000) 

 3 

 4 
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 1 

Figures 2 

 3 

Structured Graphical Abstract: Computer Vision Based Tricuspid Regurgitation (TR) 4 
Detection: An automated deep learning pipeline was trained to stratify tricuspid regurgitation 5 
severity using large-scale data in the form of A4C TTE videos with colour Doppler across the 6 
tricuspid valve. The pipeline generalized across two geographically distinct test sets from CSMC 7 
and SHC, demonstrating the pipeline’s ability to detect clinically significant TR using single-8 
view TTE videos with Doppler information. These results open the door to potential TR point-9 
of-care screening. 10 
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 1 

Figure 1: CSMC and Stanford Dataset Isolation - 57,701 A4C videos were manually curated 2 
from 47,312 studies with varying TR severity and used to train deep learning models for view 3 
classification and TR severity stratification. A pipeline consisting of these models was then 4 
benchmarked on a temporally distinct cohort of 2,462 studies from CSMC and a geographically 5 
distinct cohort of 5,549 studies from SHC. 6 
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 1 
 2 
 3 
Figure 2: Model Performance Across Severity and Institution - A. Receiver operating 4 
characteristic (ROC) curves for detection of Severe or ≥ Moderate TR at CSMC and Stanford. "> 5 
Moderate" included moderate, moderate to severe, and severe TR. 3B and 3C: TR Classification 6 
on test set videos from CSMC and Stanford, respectively. Confusion matrix colourmap values 7 
were scaled based on the proportion of actual disease cases in each class that were predicted in 8 
each possible disease category. This was done to allow for relative comparison of model 9 
performance across disease classes (None, Mild, Moderate, and Severe) given class imbalance. 10 
Statistics and confusion matrices are reported on a study level. When a study had multiple TR 11 
Doppler videos, the video with the max predicted TR severity was used. When multiple videos 12 
lead to the same maximum severity model prediction, the video with the highest prediction 13 
probability for that severity of TR was used. 14 
 15 
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 2 
Figure 3: Saliency Map Visualization for TR classification models - Videos with severe TR 3 
from CSMC (top left) and SHC (bottom left) and videos with no TR from CSMC (top right) and 4 
SHC (bottom right) are included. Saliency maps were computed using the Integrated Gradients 5 
method. The maximum value along the temporal axis for each pixel location was used to 6 
generate the final 2-dimensional heatmap. In the colourmap, pixels more salient to model 7 
predictions are brighter in colour and closer to yellow. Pixels darker in colour are less influential 8 
to the model’s final prediction. Severe TR videos were assessed by using the activation function 9 
for severe TR output neuron to generate a heatmap. When assessing controls (cases with no TR), 10 
heatmaps were generated by stacking heatmaps for severe and moderate TR output neurons and 11 
taking the maximum between the two at each pixel location. 12 
 13 
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