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Abstract  25 

 26 

The haematological malignancy multiple myeloma is associated with skewed T-cell activation 27 

and function. T-cell alterations are detectable in asymptomatic myeloma precursor 28 

conditions and have the potential to identify precursor patients at imminent risk of 29 

progression. However, what myeloma-associated T-cells alterations represent 30 

mechanistically, how they relate to tumour burden and gene expression, and what influences 31 

high inter-patient variability in immune composition remains unknown. Here, we assembled 32 

the largest ever dataset of published and newly-generated single-cell RNA and TCR 33 

sequencing of the marrow and blood from patients with myeloma, precursor conditions, and 34 

age-matched non-cancer controls. We show myeloma is not associated with T-cell 35 

exhaustion and instead defined by a pattern of T-cell differentiation resembling antigen-36 

driven terminal memory differentiation. Myeloma-associated T-cell differentiation was 37 

dependent on tumour-intrinsic features including tumour burden and tumour expression of 38 

antigen-presentation genes. Expanded TCR clones accumulating in myeloma were not 39 

enriched for viral specificity and were detected in effector states in highly infiltrated marrows. 40 

Together, these results suggest anti-tumour immunity drives a novel form of cancer-41 

associated T-cell memory differentiation in myeloma. 42 

43 
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Introduction  44 

 45 

T-cells are polyfunctional immune cells and fundamental players in anti-tumour immunity1. In 46 

solid cancers, evidence suggests early in carcinogenesis tumour growth can be curtailed by 47 

tumour-reactive T-cells1,2. However, persistent activation drives these cells away from 48 

functional memory states towards a hypo-responsive state of terminal differentiation termed 49 

exhaustion3,4, characterised by the expression of immune checkpoint molecules like 50 

programmed cell death protein 1 (PD1)5, contributing to cancer progression in solid cancers. 51 

This complex interaction is believed to shape tumours from the early precursor stages to 52 

relapsed and refractory disease1. Understanding these insights have refined the treatment of 53 

solid tumours through the development of immunotherapies targeting exhausted T-cells6.  54 

 55 

Multiple myeloma (MM) is a haematological malignancy of bone marrow (BM) plasma cells 56 

that is largely incurable7,8. Two precursor conditions of increasing severity precede MM: 57 

Monoclonal Gammopathy of Undetermined Significance (MGUS) and then Smouldering 58 

Multiple Myeloma (SMM). They differ in their risk of progression to overt myeloma with MGUS 59 

and SMM being associated with a 5-year progression rate of approximately 7% and 50% 60 

respectively9. While not every MGUS or SMM patient will progress, virtually every MM patient 61 

has transitioned through these stages10. Thus, there is a pressing clinical need to identify 62 

asymptomatic patients with precursor conditions at imminent risk of progression. Current risk 63 

factors rely largely on tumour bulk11, namely the levels of plasma cell infiltration in the bone 64 

marrow and serum concentrations of paraprotein (malignant cell-derived clonal 65 

immunoglobulin) and beta-2 microglobulin (B2m)9. However, the role of the BM tumour 66 

microenvironment, particularly T-cells, in progression remains poorly understood. 67 

Understanding how myeloma drives alterations in T cell state and function is complicated by 68 

the influence of patient advanced age and marrow homeostatic T-cell differentiation7,12,13. 69 
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This, together with high inter-individual immune heterogeneity, confounds identifying 70 

associations between T-cells and tumour biology or progression. 71 

 72 

To solve this, we combined over a million single cells from 295 samples from 237 donors 73 

using newly-generated single-cell RNA sequencing (scRNA-seq) and T-cell receptor (TCR) 74 

sequencing (scTCR-seq) data and 11 published studies14,15,24,16–23, allowing us to interrogate 75 

T-cell dynamics while controlling for natural and tumour-associated sources of inter-76 

individual variation. We show for the first time that the T-cell landscape associated with 77 

myeloma possess features of antigen-driven terminal memory differentiation and highlight 78 

the features of tumour biology driving this. These results suggest that anti-tumour immunity 79 

underpins a novel form of tumour-associated T-cell differentiation in myeloma. 80 

 81 

Results 82 

 83 

Effective integration of scRNA-seq datasets allows a detailed classification of immune cell 84 

populations 85 

 86 

To study immune differentiation through myeloma disease evolution we generated a large 87 

scRNA-seq map of BM and peripheral blood (PB) cells from untreated MGUS (n = 20, 9%), 88 

SMM (n = 58, 25%) and MM (n = 54, 23%) patients alongside non-cancer controls (n = 102, 89 

44%; Fig. 1a, Extended Data Fig. 1a, Supplemental Table 1). Patients were older than 90 

controls (controls median 55 range 21–87, MGUS median 62 range: 41–81, SMM median 62 91 

range: 29–81, MM median 62 range: 38–77; Fig. 1b). As expected, plasma cell infiltration of 92 

the bone marrow and serum paraprotein levels rose with from SMM to MM (infiltration P = 93 

0.001, paraprotein P < 0.05, Wilcoxon test; Fig. 1c).  94 

 95 
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Fig. 1 | Single cell phenotypes are harmonized in a large integrated scRNAseq dataset of patients with myeloma and precursor conditions 

and non-cancer controls. a, Schematic depicting the cohort, tissue types (BM, bone marrow; PB, peripheral blood), and singe-cell data types 

included in the study. b, Box plot showing the distribution of age (years) in non-cancer controls (n = 86), MGUS (n = 20), SMM (n = 58) and MM (n = 

53) patients. c, Box plots showing the distribution of aspirate % CD138+ (left) and paraprotein values (right) in SMM (n = 13) and MM (n = 19) 

patients. d, Visualisation of all cells in the dataset by uniform manifold approximation and projection (UMAP). The colour each point (cell) represents 

the indicated cell type cluster. The percentage of all cells occupied by each cluster is inset. e, Bar chart showing the proportion of each cluster for 

each individual donor (columns) for each cohort. f, UMAP as in (d) separated by cohort (columns) and tissue type (rows). The number of donors and 

cells for each separation is inset. g. Bar chart showing the proportion of plasma cells with clonal or non-clonal immunoglobulin usage. Plasma cells 

with clonal immunoglobulin usage were classified as tumour cells. h. Pie chart quantify the proportion of each pan-cancer transcriptional pathway 

which was the most highly expressed (dominant) in tumour cells across all patients. i, Dot plot showing FDR-adjusted P values and correlation 

coefficients between cell type cluster abundance (as a proportion of non-plasma cells) and pan-cancer transcriptional pathway expression in 

tumour cells (n = 45 patients). Box plots represent the first and third quartiles around the median with whiskers extending 1.5 times the interquartile 

range. P values shown on box plots were calculated by two-sided Wilcoxon test. 
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Following quality control and correcting for batch effects (see Methods), Extended Data Fig. 96 

1b), cells were clustered to 9 major cell types and phenotyped using RNA expression, protein 97 

expression via cellular indexing of transcriptomes and epitopes (CITE-seq), and de novo label 98 

prediction tools (Fig.1d, Extended Data Fig. 1c,d). T-cells (defined by co-expression of CD3D, 99 

CD3E, CD3G, CD8A and CD4 RNA and CD3 protein) comprised roughly half (50.2%) the cells 100 

in the dataset (Fig. 1e), with another quarter occupied by similar proportions of myeloid cells 101 

(FCN1+FCER1G+CD14+; 15%) and haematogenic progenitors (CD34+MPO+TYMS+; 11%). 102 

The remainder of the dataset was comprised of equivalent numbers of NK cells 103 

(KLRD1+FCG3RA+CD56+; 8%), B cells (CD79A+CD19+; 7.5%), and plasma cells 104 

(MZB1+SDC1+; 6.6%), alongside small (<1% total counts) clusters of neutrophils 105 

(NEAT1+NAMPT+), non-haemopoietic cells (CXCL12+COL3A+), and platelets (PPBP+PF4+).  106 

 107 

Despite the heterologous sorting strategies employed by different studies (Extended Data 108 

Fig. 1b), we identified major determinants of cellular composition in our dataset (Fig. 1f). 109 

Plasma cells and progenitors were enriched in the BM relative to PB (P < 0.001 and P < 0.001, 110 

respectively, Wilcoxon test), suggesting a relative lack of haemodilution in BM aspirates. As 111 

expected, plasma cells were most highly enriched in the BM of patients relative to controls 112 

(P < 0.001, Wilcoxon test). However, the global distribution of cell types was otherwise similar 113 

in diseased and controls marrows, suggesting progression to myeloma may be associated 114 

with more granular alterations to immune composition. 115 

 116 

Overall, we analysed 1,009,317 cells from 234 individuals with RNA and clinical data, 109 117 

with TCR and 1 with CITE-seq data, including 224 BM and 71 PB samples. This resource 118 

represents a large cross-sectional analysis of controls and myeloma disease stages and 119 

reliably discriminate key immune phenotypes of non-cancer controls and myeloma patients 120 

through disease evolution. 121 
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 122 

Recurrent transcriptional pathways in malignant plasma cells underpin progression and 123 

outcome 124 

 125 

Next, we sought to characterise more granular features associated with disease evolution 126 

that may reveal tumour-immune cross-talk by conducting an analysis of tumour cells. 127 

Malignant clones, identified by clonal immunoglobulin usage (see Methods; Extended Data 128 

Fig. 2a-c), composed the majority of plasma cells in all patients but were most abundant in 129 

MM (Fig. 1g and Extended Data Fig. 2f). To overcome inter-patient tumour transcriptional 130 

heterogeneity we scored 67,656 plasma cells from 46 patients with a recently published set 131 

of pan-cancer transcriptional pathways25 (Extended Data Fig.2e, Supplemental Table 2). The 132 

pathway most highly expressed by tumour cells corresponded to the unfolded protein 133 

response (67% tumour cells, Fig. 1h), with the remaining cells defined by pathways reflecting 134 

cellular stress, respiration, or other biological processes.  135 

 136 

To explore the significance of these pathways in disease evolution, we compared their 137 

expression in SMM (n = 17) and MM (n = 29; Extended Data Fig. 2f-g), analysed associations 138 

with local marrow infiltration (Extended Data Fig. 2h), and overall survival in MM patients from 139 

the CoMMpass study26 (Extended Data Fig. 2i). We identified 18 pathways significantly 140 

associated with progression or marrow infiltration, of which 6 were associated with outcome. 141 

Broadly, pathways reflecting proteostasis such as the unfolded protein response were 142 

characteristic of SMM (P < 0.001, Wilcoxon test), whereas more functionally diverse set of 143 

pathways were enriched at progression (Extended Data Fig. 2f-g). Proliferation pathways 144 

were enriched at progression (P = 0.07, Wilcoxon test), in highly infiltrated marrows (R = 0.42, 145 

P = 0.03, Pearson correlation), and associated with significantly shorter overall survival (P < 146 

0.001, log-rank test; Extended Data Fig. 2i). Conversely, a SMM-enriched pathway 147 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.06.22.24309250doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.22.24309250
http://creativecommons.org/licenses/by-nc/4.0/


Foster et al. 
 

  

 

7 
  

characterised by immunoglobulin genes was more frequently highly-expressed in less-148 

infiltrated marrows and association with more favourable outcome (P < 0.001, log-rank test). 149 

This suggests plasma cells retaining normal functions, such as proteostasis27, were more 150 

common in low risk-and low burden disease, whereas more proliferative states are 151 

associated with worse outcome.  152 

 153 

Cellular stress was among the pathways more frequently expressed in MM (P = 0.007, 154 

Wilcoxon test; Extended Data Fig. 2e). We extricated this pathway from in vitro stressors 155 

such as those introduced by sample processing (Extended Data Fig. 2j). Closer inspection of 156 

tumour cells highly expressing the stress pathway revealed an enrichment of genes also 157 

associated with cell death (P = 0.02, GSEA of programmed cell death pathway; Extended 158 

Data Fig. 2k). Death pathways were enriched at progression and positively correlated with 159 

tumour burden (Extended Data Fig. 2k, Supplemental Table 2), suggesting this stress 160 

pathway may reflect death-associated processes. Despite an enrichment at progression, 161 

high expression of the stress pathway was associated with superior outcome (P = 0.014, log-162 

rank test; Extended Data Fig. 2i), suggesting a more complex relationship for this pathway 163 

through disease evolution possibly related to immune correlates. 164 

 165 

Finally, we compared tumour pathways with immune composition. Tumour cell pathway 166 

expression was not associated with the abundance (as a fraction of non-plasma cells) of cell 167 

types in the BM (all individual cell type–tumour pathway correlations adjusted P > 0.05, 168 

Pearson correlation; Fig. 1i). 169 

 170 

Together, this data show how the transcriptional activity of tumour cells is influenced related 171 

to progression, infiltration, and outcome. However, connecting these pathways to tumour–172 

immune interactions may require a more granular overview of immune cells.  173 
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 174 

In-depth T-cell phenotyping reveals myeloma is not enriched in exhausted cells and T-cell 175 

composition is similar in health and disease 176 

 177 

To more deeply probe immune perturbations and tumour-immune cross-talk in disease 178 

evolution, T-cells were isolated, re-integrated and re-clustered to 19 discrete phenotypes and 179 

transcriptional states based on expression of canonical RNA and protein markers (Fig. 2a-b, 180 

Extended Data Fig.3a-c, Supplemental Tables 2-3)4,28–30. CD4+ cells were predominantly 181 

naïve (Tn, 49% of CD4+T-cells) and central memory (Tcm, 21%) cells, and the remainder in 182 

regulatory (Treg, 8.4%), helper (Th17 7.2%; T effector memory, Tem 6.1%) or cytotoxic 183 

(cytotoxic T lymphocyte, CTL, 8.7%) states. CD8+ cells were classified into a more linear 184 

trajectory spanning earlier Tn (20% of CD8+T-cells), Tcm (4.6%) and IL7R-expressing 185 

effector memory (Tem.IL7R, 12%) through PDCD1+ activated Tem (TemActive, 22%) to more 186 

later differentiated GZMB+ terminal Tem (TemTerm, 18%) and Tem re-expressing CD45RA 187 

(TEMRA, 15.1%) subsets, alongside tissue resident (Trm, 5.1%) and exhausted (Tex, 0.7%) 188 

clusters. Invariant subsets, comprising γδ T-cells (gdT) and mucosal-associated invariant T-189 

cells (MAIT), proliferating and interferon-induced clusters were also identified. This included 190 

an interferon-induced cluster resembling effector T-cells characterised by expression of IFN-191 

induced protein with tetratricopeptide repeats 2 (IFIT2) alongside effector molecules TNF and 192 

IFNG (Teff.IFIT2). This functional annotation was consistent with patterns of TCR expansion 193 

(Fig. 2c, Extended Data Fig. 3d-e), with the most clonally expanded clusters expressing the 194 

highest level of late differentiation markers. Our phenotypes showed high concordance with 195 

published and predicted cluster labels (Extended Data Fig. 3f), arguing for a faithful 196 

representation of T-cell phenotypes in our integrated dataset. 197 

 198 
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We validated our proposed BM T-cell landscape by employing CyTOF on an independent 199 

cohort of 9 SMM and 11 MM donors, assaying 940,000 cells with 46 markers (Supplemental 200 

Table 4). De novo clustering and a comparison of T-cell clusters across technologies (see 201 

Methods) revealed a range of phenotypes closely matched and enhanced those seen in our 202 

scRNA-seq dataset (Extended Data Fig. 4). For example, expression of the CD57 203 

glycoepitope on GZMB+ CD28– CD8+Tem (CD8.Tem-Term) suggested a phenotype of 204 

terminal effector memory cells31,32. 205 

 206 

We identified exhausted CD8.Tex by the expression of high levels of PDCD1 and TIGIT, 207 

alongside other RNA markers of exhaustion like CXCL13 and LAYN29. Importantly, we 208 

distinguish CD8.Tex from GZMK-expressing CD8.TemActive. CD8.TemActive expressed 209 

higher PDCD1 and TOX than non-exhausted bone marrow T-cells (P < 0.001 and P < 0.001, 210 

Wilcoxon test) but less than CD8.Tex (P < 0.001 and P < 0.001, Wilcoxon test) and lacked 211 

other markers of exhaustion like LAYN (P < 0.001, Wilcoxon test; Fig. 2d, Extended Data Fig. 212 

3b) and expressed early differentiation markers like CD28. In our CyTOF dataset, expression 213 

of PD1 and the exhausted-associated transcription factor TOX33 were similarly restricted to 214 

early CD8+Tem (CD45RO+KLRG1+CD28+; Extended Data Fig. 4c). Interestingly, the 215 

CD8.Tex cluster was almost entirely composed of cells from a single myeloma patient (1181 216 

of 1222 cells, 97%; Fig. 2e) who contributed the majority of exhaustion marker-expressing 217 

cells (Extended Data Fig. 2g), suggesting CD8.Tex were a donor-specific phenomenon. 218 

Similar observations were made for the CD8.Trm cluster, being mostly composed of 2 219 

samples from the same study as the donors-specific CD8.Tex (27.4% and 26.1% of cells; 220 

Extended Data Fig. 5a). These data lead us to suggest that exhausted T-cells are rarely seen 221 

in myeloma and the more frequent PD1-expressing activated CD8+Tem are distinct from 222 

exhausted cells. 223 

 224 
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Similar T-cell phenotypes were observed in the BM and PB (Fig. 2f), but the proportion of T-225 

cell clusters differed between tissues (Extended Data Fig. 3h). Notably, CD8.TemActive were 226 

enriched in the BM of both patients and controls (P < 0.001 and P < 0.001, Fig. 2g), 227 

suggesting intrinsic marrow biology regulates the abundance of this subsets in health and 228 

myeloma. 229 

 230 

T-cell differentiation skewing occurs in disease independent of age and presents similarly in 231 

pre-malignant SMM and overt MM 232 

 233 

We next asked how the relative abundance of T-cell subsets in the BM was altered across 234 

disease stages. BM T-cell composition was strikingly similar in patients and controls (Fig. 3a, 235 

Extended Data Fig. 5a), with the exception of donor-specific CD8.Tex clusters. We next 236 

compared the T-cell composition of controls with each myeloma disease stage in turn, 237 

statistically controlling for age. The most prominent difference in BM T-cell composition 238 

between health and disease was the loss of naïve, CD4.Th17 and MAIT cells and an 239 

enrichment of GZMB-expressing memory T-cell clusters (FDR-adjusted P < 0.1 for all, linear 240 

models; Fig. 3b, Extended Data Fig. 5b). When removing the one patient who contributed the 241 

majority of CD8.Tex cells (97% cells; Fig. 2e), this cluster was not enriched in MM relative to 242 

controls (P = 0.54, linear models). As non-cancer controls included hip replacement and 243 

deceased donors, we repeated our analysis with only healthy donors and obtained the same 244 

results (Extended Data Fig. 5c). Low-risk MGUS possessed a T-cell composition with the 245 

fewest differences to control marrows. Conversely, T-cell composition was similar between 246 

the higher-risk but pre-cancerous SMM and symptomatic MM (Extended Data Fig. 5d). While 247 

the normalised abundance of CD8.Tex was lower in SMM than MM independent of age (P < 248 

0.001, linear model), in terms of unnormalized counts this only represented 8 MM patients 249 

with a median of 1 CD8.Tex cells each suggesting this did not represent a meaningful 250 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.06.22.24309250doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.22.24309250
http://creativecommons.org/licenses/by-nc/4.0/


0.058

0.22
0.21

−0.1

0.0

0.1

0.2

0.3

MGUS
SMM MM

Ex
ag

ge
ra

te
d 

T 
ce

ll 
ag

in
g

R = 0.69
p = 0.00011

−2

0

2

4

−1 0 1 2 3
CD8.TemTerm (BM)

C
D

8.
Te

m
Te

rm
 (P

B)

R = 0.59
p = 0.0017

−8

−6

−4

−2

0

−0.1 0.0 0.1
T cell skewing (BM)

T 
ce

ll 
sk

ew
in

g 
(P

B)

Lo
w

H
ig

h

CD4.Th17
CD4.Tcm
CD4.Tn
CD8.Tn
Treg
Prolif.
CD8.Tem.KLRG1
CD8.TEMRA
CD4.CTL
CD8.TemTerm

Min Max

Contribution
(PC1 loading)

CD4.Th17
CD4.Tcm
CD4.Tn
CD8.Tn
CD4.Treg
Prolif.
CD8.Tem.KLRG1
CD8.TEMRA
CD4.CTL
CD8.TemTerm

Min Max

0.11

2.8e−05
0.0056

−0.2

0.0

0.2

0.4

Non
MGUS

SMM MM

T 
ce

ll 
sk

ew
in

g

PC1 (24.27%)

0

20

40

60

CD4.T
n

CD8.T
n

CD8.T
em

Te
rm

%
 T

 c
el

ls

a

Liu et al. 
patient 58408

SMM MM 

4 years

Fig.3 | Step-wise alterations to bone marrow T cell composition occur through myeloma disease evolution.  a, Visualisation of BM T cells 

clusters (top) and cell density (bottom) by minimum-distortion embedding (MDE) in non-cancer controls (Non), MGUS, SMM and MM patients. For 

the four groups a random sample of 20,000 cells is shown. b, Box plots showing the normalised abundance (see Methods) of CD8.Tn (left) and 

CD8.TemTerm (right) in the BM as a percentage of T cells in non-cancer controls (n = 71), MGUS (n = 16), SMM (n = 48) and MM (n = 41) patients. 

c, Left, Box plot showing the value of the T cell skewing (the first principal component (PC1), 24.27% variance, calculated on BM samples only) in 

Non (n = 68), MGUS (n = 16), SMM (n = 45) and MM (n = 39) patients. Right, representation of the clusters with the highest and lowest contribution 

(loading) to PC1. For example, a high PC1 value corresponds to a high number of CD8.TemTerm. d, Forest plot showing the relationship between 

T cell skewing and disease stage (MGUS (n = 16), SMM (n = 44) and MM (n = 37) relative to controls (n = 53)) and age (binarized to ≥ median age 

(60 years)). Coefficients with 90% confident interval (CI) and  P values from linear model (see Methods) are inset. e, Dot plot showing the 

correlation between T cell skewing and age in non-cancer controls and MM patients. P value from linear model is inset. f, Box plot showing 

exaggerated T cell aging (the residuals between a patient’s PC1 values and a model of PC1 and age in controls only, see Methods) in MGUS, SMM 

and MM patients. Residuals of zero (T cell skewing expected for patient’s age) is indicated with dashed line. g, Dot plots showing the correlation 

between the abundance of CD8.TemTerm (left) and T cell skewing (right) in the PB and BM for patients with samples from both tissues. h, Upper, 

Schematic depicting longitudinal sampling of patient 58408 from Liu et al. Lower, Bar plot showing the abundance of indicated T cell cluster in 

SMM and MM for patient 58408. Box plots represent the first and third quartiles around the median with whiskers extending 1.5 times the 

interquartile range. P values shown on box plots were calculated by two-sided Wilcoxon test. R and P values for correlations were calculated by 

Pearson correlation. Correlation shaded regions represent the 95% confidence interval of linear regression slopes.

MDE1

M
D

E2

0.044

8.9e−05
0.01

0.24

−3

0

3

6

Non
MGUS

SMM MM

N
or

m
al

is
ed

ab
un

da
nc

e 
(%

 T
 c

el
ls

)

CD8.Tn

0.54

0.0025
0.0036

0.63

−2.5

0.0

2.5

5.0

7.5

Non
MGUS

SMM MM

N
or

m
al

is
ed

ab
un

da
nc

e 
(%

 T
 c

el
ls

)

CD8.TemTermb

N
or

m
al

is
ed

 %
 T

 c
el

ls

g

f

c

d
0.013

0.236
0.004

< 0.001

Age
(versus < 60)

Disease stage
(versus controls)

0 0.05 0.1

Age ≥ 60 years

MM (n = 37)

SMM (n = 44)

MGUS (n = 16)

Coefficient (90% CI)

T cell skewing ~ disease stage + age

h

−0.2

−0.1

0.0

0.1

0.2

40 60 80
Age

T 
ce

ll 
sk

ew
in

g

R = 0.19, p = 0.27
R = 0.27, p = 0.048

−0.2

−0.1

0.0

0.1

0.2

40 60 80
Age

T 
ce

ll 
sk

ew
in

g

diagnosis
MM

Non

R = 0.19, p = 0.27
R = 0.27, p = 0.048

−0.2

−0.1

0.0

0.1

0.2

40 60 80
Age

T 
ce

ll 
sk

ew
in

g

diagnosis
MM

Non

P < 0.001

e

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.06.22.24309250doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.22.24309250
http://creativecommons.org/licenses/by-nc/4.0/


Foster et al. 
 

  

 

11 
  

enrichment. For patients with available risk data, we saw no significant differences in T-cell 251 

composition between international staging system (ISS) and SMM Mayo risk groups9,34 252 

(Extended Data Fig. 5e). In our smaller CyTOF cohort we noted a trend for the enrichment of 253 

CD57+ CD8.Tem-Term in MM relative to SMM (Extended Data Fig. 5f). These results suggest 254 

that smouldering and overt myeloma are associated with similar T-cell alterations 255 

independent of age. 256 

 257 

To interrogate changes to BM T-cells in a less supervised manner we ran principal 258 

component analysis (PCA) on patient’s T-cell composition. The first principal component 259 

explaining the highest fraction of variance in T-cell composition (PC1, 24.27%; Extended 260 

Data Fig. 5g) described a compositional shift across clusters from more naïve and early 261 

subsets to terminal memory clusters (Fig. 3c). As this composition alteration represented a 262 

shift from phenotypes at either end of the T-cell differentiation spectrum4, we termed PC1 263 

“T-cell skewing”. T-cell skewing was highest (indicating an enrichment of terminal memory 264 

clusters) in SMM and MM relative to controls independent of age (P < 0.004 and P < 0.001, 265 

respectively, linear model; Fig. 3c-d), demonstrating this metric captured the major 266 

alterations to T-cells in myeloma. We noted T-cell skewing was associated with age 267 

independent of patient group (P = 0.013, linear model, R = 0.28, Pearson correlation; Fig. 3d, 268 

Extended Data Fig. 5h) and correlated with age in controls (P < 0.05, R = 0.25; Fig. 3e). As T-269 

cell skewing was independently associated with both myeloma and age (Fig. 3d), this 270 

component of myeloma-associated T-cell differentiation resembled T-cell alterations seen 271 

during aging.  Therefore, patients possessed an exaggerated form of the T-cell compositional 272 

skewing seen with aging. The degree of exaggerated T-cell aging (see Methods) trended to 273 

rise with disease severity (MGUS versus MM, P = 0.06, Wilcoxon test; Fig. 3f) and the highest 274 

fraction of patients with exaggerated skewing was seen in myeloma (86%) versus MGUS 275 

(68%) and SMM (72%).  276 
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 277 

PC1 values and the abundance of terminal memory subsets in the BM strongly correlated in 278 

the PB of the same patients (Fig. 3g), further indicating a similarity of these changes to 279 

systemic T-cell alterations seen with aging12. 280 

 281 

Finally, in a single patient sampled longitudinally at SMM and at progression to MM we 282 

observed the same compositional alternations seen cross-sectionally (Fig. 3h), suggesting 283 

these differentiated T-cell phenotypes accumulate longitudinal within patients through 284 

disease evolution. 285 

 286 

Features of antigen-specific responses underpin myeloma-associated T-cell differentiation 287 

 288 

Next, we analysed features of the TCR repertoire. Repertoire clonality was associated with 289 

T-cell skewing in patients independent of age (P < 0.001, linear model, R = 0.71; Fig. 4a). We 290 

observed similar results when restricting analysis to CD8-expressing memory clones (P < 291 

0.01, linear model, R = 0.55; Fig. 4a, Extended Data Fig. 6a), with both the clonality and the 292 

abundance of expanded clones of this subset was trending for enrichment in MM relative to 293 

controls (Fig. 4b). T-cell skewing and CD8+ memory diversity did not correlate in controls (P 294 

= 0.66, linear model; Extended Data Fig. 6b), suggesting enhanced clonal expansion may be 295 

a unique feature T-cell differentiation in myeloma. 296 

 297 

The accumulation of TCRs possessing similar CDR3 sequences can indicate responses 298 

against shared antigens35. Using tcrdist336 we grouped all expanded TCRs in the dataset 299 

(11,545 clones) into 279 clusters (composed of 1,014 clones, 8.8% of input; Extended Data 300 

Fig. 6c-d, Fig. 4c). This analysis revealed an increasingly large fraction of the TCR repertoire 301 

was occupied by clustered clones in MM (median 8.7% range 3-35) relative to SMM (median 302 
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Fig.4 | Features of antigen-experienced T cell receptor repertoires underpin myeloma-associated T cell differentiation. a, Dot plots 

showing the correlation between T cell skewing (PC1 values) and TCR clonality (log10 1/Simpson’s diversity) among all T cell clones (left) and CD8+ 

memory clones (CD8+ clones, CD8+ clusters excluding CD8.Tn and CD8.Tcm) in MGUS, SMM and MM patients (all T cell clones n = 42, CD8+ 

memory clones n = 29). b, Box plots showing the clonality (left) and abundance of expanded clones (right) of CD8+ memory clones in non-cancer 

controls (n = 15), SMM (n = 19) and MM (n = 12). c, Network plots showing the extent of clustering among expanded (>1) TCRs from two 

representative patients with low (left) and high (right) percentages of total repertoire clustering. Each node represents a TCR clone and each edge 

that two TCR clones had a co-clustered alpha or beta sequence. An asterisk indicates a cluster analysed in e. d, Left, Box plot showing the 

percentage of clustered expanded TCRs in SMM (n = 19) and MM (n = 15). Right, dot plot showing the correlation between PC1 values and the the 

percentage of clustered expanded TCRs in MGUS, SMM and MM patients (n = 35). e, Left, Dot plot showing the correlation of T cell skewing and 

the percentage of CD8+Tem (CD8.TemTerm, CD8,TEMRA) among cells from clustered TCR clones. f, Results from a differential expression 

analysis of T cells possessing TCR clones annotated as viral-reactive (see Methods) versus all other clones. Expression testing was performed in 

19 patients with a median of 20 viral-reactive and 966 unannotated clones per-patient. The 10 most highly non-viral enriched genes were used to 

define a non-viral specificity signature and are labelled. g, Visualisation of 1,016,900 T cells by minimum-distortion embedding (MDE). The colour 

each point (cell) represents the non-viral specificity signature score expressed by that T cell. h, Dot plots showing the correlation between the 

mean non-viral specificity signature score per-patient and T cell skewing, the percentage of clustered TCRs among expanded TCRs, and TCR 

clonality in MGUS, SMM and MM patients. i, Box plot showing the mean non-viral specificity signature score in MGUS (n = 16), SMM (n = 45) and 

MM (n = 40) patients. Box plots represent the first and third quartiles around the median with whiskers extending 1.5 times the interquartile range. 

P values shown on box plots were calculated by two-sided Wilcoxon test. R and P values for correlations were calculated by Pearson correlation. 

Correlation shaded regions represent the 95% confidence interval of linear regression slopes.
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3.1% range 0-11.3) and this fraction correlated with T-cell skewing (R = 0.4, P = 0.02, Pearson 303 

correlation; Fig. 4d). T-cell skewing was specifically associated with the clustering of GZMB-304 

expressing CD8+ memory cells (R = 0.47, P = < 0.01; Fig. 4e), suggesting conserved antigen-305 

specific responses drive T-cell differentiation in myeloma, specifically among GZMB-306 

expressing subsets. 307 

 308 

We next explored the T-cell antigen specificity. TCR specificity databases are mostly 309 

composed of viral antigens37–39, allowing us to ask if viral antigen specificities were involved 310 

in T-cell differentiation and clonality in myeloma (see Methods). In 19 patients we identified 311 

putative HLA-matched specificities for a median of 7 (range 2-88) paired clone per-patient 312 

against viral antigens (Extended Data Fig. 6e). Comparing gene expression between clones 313 

with and without putative viral-specificity annotations, we observed clones predicted to be 314 

non-viral specific expressed genes characteristic of terminal memory such as GZMB, 315 

perforin/PRF1 and Hobit/ZNF683 (Fig. 4f, Supplemental Table 5). We summarised the 316 

expression of these genes into a non-viral specificity gene signature (Extended Data Fig. 6f). 317 

Non-viral specificity mapped to GZMB+ terminal memory clusters (Fig. 4g, Extended Data 318 

Fig. 6g), correlated with T-cell skewing, clonality and repertoire clustering (Fig. 4h), and was 319 

enriched in MM relative to precursor conditions (Fig. 4i). Together, these data show myeloma-320 

associated T-cell differentiation occurs alongside alterations to the TCR repertoire 321 

resembling antigen-direct T-cell immunity which may not reflect the activity of viral-specific 322 

TCR clones. 323 

 324 

Tumour-intrinsic features drive two clonally-related patterns of T-cell differentiation  325 

 326 

We next asked if features of tumour biology may drive T-cell skewing. We examined serum 327 

paraprotein and B2m concentrations, plasma cell marrow infiltration, and tumour cell 328 
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transcriptional state (Extended Data Fig. 2). As T-cell skewing overlapped in precursor 329 

patients and overt MM (Fig. 3c), we looked for associations among all patients independent 330 

of disease stage. 331 

 332 

We did not find an association between T-cell skewing and tumour transcriptional state, 333 

marrow infiltration, or B2m levels (Fig. 5a, Extended Data Fig. 7a-b). However, we observed 334 

a positive correlation between high T-cell skewing and an enrichment of terminal memory 335 

cells with paraprotein levels (R = 0.45, P = 0.02, Pearson correlation; Fig. 5a-b, Extend Data 336 

Fig. 7c). This association was seen across different disease stage and centres (Extended 337 

Data Fig. 7d) and was recapitulated in our CyTOF cohort (Extended Data Fig. 7e). The same 338 

paraprotein correlation was also seen with TCR repertoire clonality (R = 0.53, P < 0.001, 339 

Pearson correlation; Fig. 5a, Extended Data. 7f). We found the degree of exaggerated T-cell 340 

aging was significantly higher in SMM and MM patients with high paraprotein levels 341 

independent of disease stage (P = 0.01, linear model; Extended Data Fig. 7g), suggesting 342 

paraprotein was the main driver of T-cell skewing in patients. 343 

 344 

We speculated tumour-intrinsic features were associated with individual T-cells clusters 345 

independent of overall T-cell skewing. Analysis of T-cell cluster abundance with marrow 346 

infiltration and transcriptional pathway scores in tumour cells revealed effector-like Teff.IFIT2 347 

cells were enriched in highly-infiltrated marrows populated by stressed tumour cells (marrow 348 

infiltration: R = 0.55, tumour stress: R = 0.6; Fig. 5a-b, Extended Data Fig. 7h-i). Several other 349 

clusters possessed a significant correlation with tumour stress, including positive and 350 

negative associations with CD8.Trm and CD4.Tem, respectively (Extended Data Fig. 7i). 351 

Teff.IFIT2 cells were not uniquely defined by stress-associated genes (P = 0.12, GSEA of 352 

stress pathway among Teff.IFIT2 marker genes), arguing against this association 353 

representing exposure to similar stressors across T and tumour cells. Additionally, the 354 
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Fig. 5 | Tumour-intrinsic drivers of T cell differentiation indicate anti-tumour immunity contributes to myeloma-associated T cell 

differentiation. a, Heatmap showing the correlation between tumour-intrinsic features (rows) and T cell features (columns) in all patients. Cell 

colour represents strength of association (correlation) and asterisk degree of significance (Pearson correlation). b, Dot plot showing the correlation 

between T cell skewing (PC1) and paraprotein values (left) and the normalised abundance (see Methods) of Teff.IFIT2 and the aspirate % CD138+ 

(right). c, Left, correlation between the average expression the twenty most significant CD8.TEMRA marker genes among Teff.IFIT2 cells and the 

the abundance of cancer cells highly expressing stress pathway genes. Right, Box plot showing the median expression of the CD8.TEMRA marker 

gene score per-clone among cells in the Teff.IFIT2 cluster. Each clone was grouped based on the T cell cluster composition of the remaining cells 

that composed that clone, specifically the abundance of GZMB-expressing Tem clusters (CD8.TEMRA, CD8.TemTerm and CD4.CTL), classifying 

those which were >50% composed of GZMB-expressing clusters as Shared and that those which were not as Unshared.  d, Bar plot showing the 

T cell cluster composition of the largest CD8+ clones expanded in the Teff.IFIT2 cluster in three representative myeloma patients. Expanded 

Teff.IFIT2 clones are predominantly in GZMB+Tem (CD8.TEMRA, CD8.TemTerm and CD4.CTL) clusters. e, Left, Visualisation of T cells by 

minimum-distortion embedding (MDE). The coloured points (cell) represents cells derived from TCR clones predicted as reactive against cancer 

cell-expressing neoantigens (pNeoAg-reactive, see Methods). Point colour reflects individual clones. Right, Box plot showing the median 

expression of the non-viral specificity signature in expanded clones annotated as either pNeoAg-reactive or with no annotation. f, Heatmap 

showing the expression of genes significantly up- and down-regulated on cancer cells relative to non-cancer plasma cells across patients. Patients 

were classified as “MHC high” if their tumour cells had significantly upregulated the antigen processing and presentation pathway relative to non-

tumour cells and as ”MHC low” if not. g, Box plot showing the expression of the non-viral specificity signature in patients with high and low 

expression of MHC genes (f). h, Kaplan–Meier curve showing the impact of high (red) and low (blue) scoring of the MHC pathway (f) on overall 

survival in 598 newly-diagnosed untreated multiple myeloma patients enrolled in the ComMMpass trial. P value calculated using log-rank test. i, 

schematic representing a summary of findings. Box plots represent the first and third quartiles around the median with whiskers extending 1.5 

times the interquartile range. P values shown on box plots were calculated by two-sided Wilcoxon test. R and P values for correlations were 

calculated by Pearson correlation. Correlation shaded regions represent the 95% confidence interval of linear regression slopes.
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expression of a smaller set of T-cell effector genes (CD69, TNF, IFNG) followed the same 355 

correlations (marrow infiltration: R = 0.43, tumour stress: R = 0.79, Pearson correlation; 356 

Fig.5a, Extended Data Fig. 7j), suggesting a T-cell effector program specifically was 357 

associated with infiltration and tumour stress. 358 

 359 

Concurrent tumour-associated T-cell memory and effector differentiation suggests a 360 

differentiation process between these two states. Clonally expanded Teff.IFIT2 cells enriched 361 

in highly-infiltrated marrows populated by stressed tumours expressed markers 362 

characteristic of GZMB-expressing CD8.TEMRA (Fig. 5c, Extended Data Fig. 7k). This 363 

expression was attributable to cells derived from GZMB-expressing CD8+ terminal memory 364 

clones (Fig. 5c) and clonally expanded Teff.IFIT2 clones predominantly in these GZMB+ 365 

phenotypes (Fig. 5d, Extended Data Fig. 7k). Therefore, terminally differentiated memory 366 

clones accumulating in myeloma are continuous with effector-like T-cells in infiltrated 367 

marrows, suggesting these states are linked by a T-cell differentiation pathway. 368 

 369 

Myeloma-associated T-cell differentiation possesses features of anti-tumour immunity 370 

 371 

The enrichment of clonal memory T-cells independent of age and viral specificity in myeloma 372 

suggests tumour-directed T-cell responses. To investigate this, we identified TCR predicted 373 

to bind autologous tumour neoantigens in two patients (see Methods). Expanded TCRs 374 

predicted to bind neoantigens mapped to terminal memory and effector-like cells 375 

(CD8.TemTerm: odds ratio = 3.2, P < 0.001, ISG.IFIT2: odds ratio = 2.5, P < 0.001, Fischer’s 376 

exact test; Fig. 5h, Extended Data Fig. 8a) and possessed significantly higher expression of 377 

the non-viral specificity signature (P = 0.027, Wilcoxon test) , suggesting tumour antigen-378 

specific may be involved in MM-associated T-cell differentiation.   379 

 380 
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Tumour antigen-driven T-cell differentiation suggests a degree of tumour immunogenicity. 381 

Therefore, we examined the expression of antigen-expression genes in tumour cells. T-cell 382 

skewing and non-viral specificity signature expression did not correlate with tumour MHC-383 

associated pathways (Extended Data Fig. 7a, 8b), possibly as these pathways reflect MHC 384 

in the context of interferon signalling25. We identified de novo pathways enriched among each 385 

individual patient’s tumour cells (see Methods), revealing MHC and antigen processing and 386 

presentation genes were frequently upregulated by individual tumours (Antigen processing 387 

and presentation pathway, GSEA adjusted P < 0.1 in 6 of 16 (37.5%) of tumours tested; Fig. 388 

5f, Extended Data Fig. 8c, Supplemental Table 2). Non-viral specificity signature expression 389 

was highest in patient’s whose tumour cells significantly upregulated MHC pathways (P = 390 

0.021, Wilcoxon test; Fig. 5g), suggesting the reactivity component of MM-association T-cell 391 

differentiation was connected to tumour MHC class I expression and potentially antigen 392 

presentation. Finally, in CoMMpass, patients whose tumours highly expressed MHC pathway 393 

genes had superior outcome (P = 0.031, log-rank test; Fig. 5h), suggesting that T-cell 394 

differentiation dynamics associated with high tumour MHC class I expression may influence 395 

clinical outcomes. 396 

 397 

Discussion 398 

Recent insights into anti-tumour T-cell immunity have largely derived from studies of solid 399 

tumours but a similar understanding in haematological malignancies is lacking. Myeloma has 400 

a clinically-defined precursor disease phase lends itself to the study of how T-cell 401 

differentiation is altered with disease evolution.  402 

 403 

In this study, we curated a large cohort of single-cell data across 11 studies and 234 donors 404 

to identify myeloma-specific alterations to T-cells, which we enhanced through the analysis 405 
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of the TCR repertoire, the BM and PB, and tumour cell transcriptional state. This allowed us 406 

to identify the specific features of tumour biology associated with T-cell differentiation in 407 

myeloma, independent of natural heterogeneity attributable to tissue localisation and age. 408 

We describe two patterns of myeloma-associated T-cell differentiation (Fig. 5i): (1) terminal 409 

memory T-cells with features of antigen-specific differentiation and lacking viral-specificity 410 

accumulate dependent on serum paraprotein and tumour MHC expression; and (2) effector 411 

T-cells are enriched in highly-infiltrated marrows populated by stressed tumour cells. As 412 

these two myeloma-associated T-cell subsets are clonally related (Fig. 5c-d), we suggest 413 

they represent the differentiation of tumour-reactive clones accumulating alongside anti-414 

tumour immunity through disease evolution (Extended Data Fig. 9).  415 

 416 

It will be important to see if other immune subsets possess similar associations. In pursuit of 417 

this goal, we make our integrated data available for other researchers. 418 

 419 

Our results resolve conflicting reports on the presence of exhausted T-cells in myeloma and 420 

a poor history of checkpoint inhibition in this setting24,40,41. We show exhausted T-cells are 421 

not pervasively enriched in myeloma and are distinct from the more abundant activated 422 

CD8+Tem cells which match previous descriptions of PD1-expressing CD8+ T-cells in 423 

healthy donors42,43. The presence of these “pseudo-exhausted” cells may have led to 424 

misidentification of exhausted cells in myeloma patients40,44, especially given their enrichment 425 

in the bone marrow (Fig. 2g). Additionally, we did not connect an exhaustion phenotype to 426 

tumour-specificity (Fig. 4f, 5e), suggesting exhaustion-associated loss of tumour-reactive T-427 

cells may not drive progression as is thought in solid tumours1. However, activated CD8+Tem 428 

may still be involved in bone marrow pathology, with cells resembling this phenotype 429 

possessing negative and positive associations with the response to T-cell engager (TCE) 430 

therapy in advanced MM and combination therapy in SMM, respectively23,45.  431 
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 432 

We show myeloma is associated with an enrichment of terminally differentiated clonal 433 

memory T-cells. This analysis extends previous reports14,21,46 by demonstrating an 434 

independence from age and showing concurrent changes to the TCR repertoire and systemic 435 

T-cell compartment. These alterations are similar to T-cell immunosenescence changes seen 436 

during aging12, meaning SMM and MM patients have prematurely aged T-cell compartments 437 

(Fig. 3d). Exaggerated T cell aging in precursor conditions may explain the increased risk of 438 

infections in these patients47, and impede the ability to control tumour growth, facilitating 439 

progression. Prior immunosenescence may also predispose individuals to cancer 440 

development hence present more frequently in patients48. Additionally, this pattern of T-cell 441 

differentiation could mechanistically represent anti-tumour T-cell responses. Patient-derived 442 

T-cells show evidence of tumour-reactivity in myeloma49,50, specifically terminal memory 443 

CD8+ phenotypes51. This supports our in silico evidence that tumour-reactivity may 444 

contribute to myeloma-associated T-cell differentiation (Fig. 4g,h, 5e). This suggests that 445 

effector T-cells enriched in infiltrated marrows may represent direct tumoricidal T-cell 446 

responses. Repeated waves of tumour growth and T-cell control over time may give rise to 447 

memory skewing (Extended Data Fig. 9), akin to successive infections giving rise to terminal 448 

memory cells through aging12. This could explain the lack of exhausted T-cells in myeloma, 449 

as T-cell stimulation would be intermittent (dependent on tumour growth) versus chronic, 450 

suggesting factors besides T-cell-intrinsic loss of functionality drives progression. However, 451 

alternative processes may drive T-cell differentiation in myeloma: inflammation, pervasive in 452 

the myeloma marrow52, can drive non-canonical memory T-cell differentiation53. In vitro 453 

validation of tumour-specific TCR clones and mapping their phenotype through disease 454 

evolution will elucidate the role of T-cell specificity in myeloma.  455 

 456 
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As T-cell skewing tracked with disease advancement, it may identify donors at risk of early 457 

progression. The ability to track this skewing in the PB makes it attractive for immune 458 

prognostication (Fig. 3e). However, T-cell skewing was similar in asymptomatic SMM and 459 

overt MM (Fig. 3). While this suggests functional anti-tumour responses occur in high-risk 460 

precursor conditions, arguing for early intervention with T-cell-dependent immunotherapeutic 461 

interventions such as T-cell engager therapy45, it may preclude the use of T-cell skewing to 462 

identify SMM patients at imminent risk of progression. Additionally, T-cell skewing was more 463 

closely associated with serum paraprotein than clinical diagnosis (Extended Data Fig.7g). 464 

This may have the potential to enhance existing paraprotein-based prognostication 465 

particularly in the rare subset of patients with non-secretory disease54. Further work is needed 466 

to explain the T-cell skewing-paraprotein association, but we note in addition to paraprotein 467 

being an indicator of tumour bulk (thus, total tumour antigen burden or tumour-associated 468 

inflammation) that malignant immunoglobulin-derived peptides can serve as immunogenic T-469 

cell epitopes7,55. The additional associations we identify between effector T-cells with marrow 470 

infiltration and putative tumour-specificity with tumour antigen presentation-associated gene 471 

expression may provide additional combinatorial opportunities for integrating immune and 472 

clinical metrics into predictive measures of disease risk. 473 

 474 

While we were unable to compare T-cells features and tumour genomic classification in our 475 

dataset, T-cell skewing  was previously shown to be enhanced in hyperdiploid patients46. 476 

Additionally, further work is needing to directly connect beneficial survival outcomes 477 

associated with tumour MHC and stress (possibly death-related) gene expression (Fig. 5h, 478 

Extended Data Fig. 2i) with T-cell differentiation and function. Finally, to understand how 479 

tumour genomics relates to T-cell differentiation, it will also be important to longitudinally 480 

profile neoantigen-reactive responses alongside tumour evolution. 481 

 482 
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Our results provide a conceptual framework for how T-cells are altered during myeloma 483 

disease evolution and highlight the importance of contextualising immune heterogeneity with 484 

tumour biology when using immune biomarkers in myeloma. 485 
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Methods 502 

 503 

Primary clinical samples 504 

Bone marrow aspirates from individuals with myeloma or precursor conditions were obtained 505 

from patients included in one of four ongoing clinical trials: (1) Defining risk in smouldering 506 

myeloma (SMM) for early detection of multiple myeloma (COSMOS), a multicentre, 507 

observational UK study in smouldering myeloma (NCT05047107); (2) Risk-Adapted therapy 508 

Directed According to Response (RADAR), a randomised phrase II/III trial in newly diagnosed 509 

patients with multiple myeloma eligible for transplant (UK-MRA Myeloma XV)56; (3) 510 

Carfilzomib/Cyclophosphamide/Dexamethasone with Maintenance Carfilzomib in Untreated 511 

Transplant-eligible Patients with Symptomatic MM to Evaluate the Benefit of Upfront ASCT 512 

(CARDAMON), a phase II trial57; (4) Biology of Myeloma, an observational study open to all 513 

plasma cell disorder patients treated at University College London Hospitals (Research ethics 514 

committee reference: 07/Q0502/17). Bone marrow aspirates from non-cancer controls were 515 

collected as a by-product of routine elective orthopaedic surgery (hip or knee replacements) 516 

via the UCL/ UCLH Biobank for Studying Health and Disease (Research ethics committee 517 

reference: 20/YH/0088). All material was obtained after written informed consent in 518 

accordance with the Declaration of Helsinki.  519 

For scRNA-seq experiments, bone marrow aspirates were collected in 520 

ethylenediamine-tetraacetic acid (EDTA) and processed within 24 hours of collection. 521 

Mononuclear cells (MNCs) were isolated by Ficoll Paque density gradient centrifugation, 522 

using SepMate tubes (StemCell Technologies). Freshly isolated BM MNCs were analysed for 523 

tumour infiltration by flow cytometry (LSRFortessa, 4 laser 16 color). Cells were stained with 524 

the fluorochrome-conjugated antibody CD138 (PE, clone MI15, BioLegend), CD38 (PE-CY7, 525 

Clone HB7, biolegend), and a fixable viability dye (eFluor 780, eBioscience). Tumour cell 526 

marrow infiltration was determined as the frequency of live BM MNCs cells co-expressing 527 
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CD38 and CD138 as determined via manual gating (FlowJo v10, BD Biosciences) (Extended 528 

Data Fig. 1f).  529 

For CyTOF experiments, MNCs were isolated by Ficoll Paque density gradient 530 

centrifugation, using SepMate tubes (StemCell Technologies) and cryopreserved in 90% FBS 531 

and 10% DMSO for long-term storage in liquid nitrogen. 532 

 533 

scRNA-seq and scTCRseq sample and library preparation  534 

For newly-generated “T cell−enriched/depleted” samples T-cells were enriched from freshly 535 

isolated BM MNCs by magnetic separation using a Pan T-cell Isolation Kit and CD15 536 

MicroBeads (Miltenyi Biotec). After sorting, the T-cell depleted and enriched compartments 537 

were pelleted and resuspended in 0.04% BSA in PBS at 106 cells/mL and loaded onto the 538 

Chromium Controller (10X Genomics). For newly-generated “CD8-enriched” samples T-cells 539 

were enriched using the same protocol with the addition of CD4 MicroBeads (Miltenyi Biotec) 540 

and only CD8-enriched samples were loaded. This generated a total of 47 libraries. All 541 

samples were processed using the Chromium Next GEM Single Cell 5’ Dual Index Kit (10X 542 

Genomics, v2) following manufacturers protocol. T-cell and CD8-enriched samples were 543 

additionally processes using the VDJ kit (10x Genomics). The libraries were sequenced by 544 

Illumina NovoSeq 6000. Sequencing data was processed with CellRanger GEX and VDJ 545 

(v6.0.0) using the GRCh38-2020-A and vdj_GRCh38_alts_ensembl-5.0.0 human reference 546 

genomes, respectively. Across samples Cellranger GEX called a median of 6367 cells and 547 

Cellranger VDJ a median proportion of 0.76 cells with product V J spanning TRA and TRB 548 

pairs. 549 

 550 

Filtering, integration, clustering, and dimensionality reduction of scRNA-seq data 551 

scRNA-seq data were analysed and integrated using the python packages scanpy (1.8.2) and 552 

scvi-tools (0.15.2)58,59. Gene-barcode matrices for all newly-generated and re-analysed 553 
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samples were assigned unique sample-specific barcodes, merged, and subset to high-554 

quality cells for integration (minimum unique genes > 200, minimum total counts > 500, total 555 

percentage mitochondrial chromosome-encoding transcripts < 10%, total percentage 556 

transcripts encoding haemoglobin genes HBB, HBA1 and HBA2 < 20%). Cells called as 557 

doublets by the python package scrublet60 (0.2.3) were removed. Samples with < 100 high-558 

quality cells were removed prior to integration.  559 

For integration, we utilised single-cell variation inference (scvi)59. A subset of 7000 560 

highly variable genes across batches was calculated on log(x+1) normalised gene expression 561 

with the function scanpy.pp.highly_variable_genes(adata, batch_key=”batch”) to identify 562 

genes with consistently high inter-cellular variation across different batches. Specific gene 563 

groups which can vary between cells for technical (mitochondrial, representing cell stress) or 564 

irrelevant biological (immunoglobin and TCR genes, representing lymphocyte clonality) 565 

reasons were excluded from highly variable genes to prioritise clustering on phenotype-566 

defining genes. The un-normalised expression of these 7000 variable genes was prepared 567 

for scvi using the function scvi.model.SCVI.setup_anndata() with sample batch  as the batch 568 

key and sample identifier and 10x chemistry as categorical covariate keys. A scvi model was 569 

then initialised with the following non-default parameters: scvi.model.SCVI(n_latent=30, 570 

n_layers=2, dropout_rate=0.2, gene_likelihood=”nb”). These parameters (number of HVGs, 571 

number of latent dimensions and hidden layers, dropout rate) were selected through a 572 

parameter sweep focused on minimising batch influence on integrated latent representation 573 

and retaining biological identify (data not shown).  Minimisation of batch influence was 574 

assessed by linear regression of latent dimensions against batch covariates as implemented 575 

by scib (https://github.com/theislab/scib). The retention of biological identity was assessed 576 

by analysing the separation of CD4+ and CD8+ T-cells (the median log ratio of CD4-577 

expressing and CD8A-expressing cells closest to zero across clusters). This model was 578 

trained for a maximum of 400*(20,000*x) epochs where x was the number of input cells. 579 
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Integration was first performed on all cells then repeated for just T-cell clusters using 5000 580 

highly variable genes and gene_likelihood=”nb” but otherwise identical parameters. 581 

The latent representation of the trained scvi model was used to create a 582 

neighbourhood graph using scanpy.pp.neighbors(adata, n_neighbors=10) for subsequent 583 

graph-based clustering using the leiden algorithm. The size of the local neighbourhood 584 

(n_neighbors=10) and Leiden clustering resolutions were selected for optimum granularity of 585 

biological clusters. Analysis of the latent representation was used as input for creation of a 586 

uniform manifold approximation and projection (UMAP, scanpy default parameters) or 587 

Minimum-Distortion Embedding using the Python package pymde61 (0.1.15). For visualisation 588 

of a large number of cells on either UMAP or MDE, the R package scattermore (1.0) was used 589 

to created rasterized dot plots.  590 

 591 

Differential expression and pathway analysis of scRNA-seq data 592 

Differential expression between specified conditions was performed using the R package 593 

scran (1.26.2) function pairwiseTTests() between specified contrasts with batch as the 594 

blocking level for each cell to model for batch effects. Genes were identified as significantly 595 

differentially expressed with a false discovery rate (FDR, Benjamini and Hochberg-adjusted 596 

P value) of < 0.1. Pathway analysis of differentially expressed genes was performed using the 597 

R package fgsea (1.24.0) with gene set enrichment analysis of gene sets from BIOCARTA, 598 

KEGG and REACTOME databases accessed via the R package msigdbr (7.5.1; Supplemental 599 

Table 2). 600 

 601 

Phenotyping gene expression clusters from scRNA-seq data 602 

Cluster markers genes were calculated using log-normalised expression of all genes in a 603 

study-aware fashion using the findMarkers function from the R package scran specifying 604 

test.type=”wilcox” and batch as the blocking level for each cell. This restricts differential 605 
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expression comparisons within individual sources and pools the downstream result, meaning 606 

no inter-batch comparisons were performed. Marker genes were combined with supervised 607 

analysis of the expression of known RNA and protein markers to phenotype clusters. Clusters 608 

characterised by expression of known stress-associated genes (for example, JUN, FOS)62 or 609 

by co-expression of marker genes for independent phenotypes (for example, T and B cells) 610 

were removed. For T-cell cluster phenotyping, clusters lacking expression of CD3D, CD3E 611 

and CD3G or both CD4 and CD8A were removed. De novo label prediction tools were run 612 

with default parameters: Azimuth (https://azimuth.hubmapconsortium.org/) and Celltypst 613 

(https://www.celltypist.org/). Manually curated T-cell naïve and cytotoxicity gene signatures 614 

were taken from Chu et al.63. Gene sets were applied to cells using the R package UCell 615 

(2.2.0)76. 616 

 617 

Differential abundance analysis of scRNA-seq data 618 

We normalised cell type abundance following a compositional data framework64. For each 619 

sample, cluster counts were derived and zero values replaced by a Bayesian-multiplicative 620 

replacement strategy which preserves the ratios between non-zero clusters, implemented 621 

using the R package zCompositions (1.4.0-1) function cmultRepl()65, generating zero-imputed 622 

pseudo-counts. The centered log-ratio (CLR) transformation was then used to transform 623 

pseudo-counts relative to the geometric mean of all clusters in a given sample, implemented 624 

using the R package compositions (2.0-6) function clr(). The CLR transformation thus reports 625 

cell type abundance relative to the per-sample average seeking to reduce the mutual 626 

dependency of proportional data66.  627 

For samples from Stephenson et al.16, the median age of each age range was used 628 

(for example, for the 50-55 group 52.5 was used). Several donors in the dataset were sampled 629 

longitudinally, including Oetjen et al.67 and Liu et al.15. In these cases, only the first longitudinal 630 

timepoint was analysed unless otherwise specified. 631 
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Normalised cluster abundances were used as input for a combination of intercept-632 

only and additive regression models exploring the relationship between cluster abundance 633 

and different conditions (for example, patient group, or patient group and age) as described. 634 

Selected comparisons were also performed using a mixed-effect model with an additional 635 

random effect term (for sample, study of origin), implemented using the R package lmerTest 636 

(3.1-3) function lmer().  637 

 638 

Unsupervised ordination of T cell composition and calculation of exaggerated T-cell aging 639 

Normalised T cell cluster abundance was used as input for PCA using the R function 640 

prcomp. Exaggerated T cell aging was calculated by first constructing a linear model 641 

examining the relationship between PC1 and age for non-cancer controls only. Next, the age 642 

of cancer patients was used to predict PC1 values for each patient in this model. The 643 

difference between predicted and real PC1 values (residuals) for each patient was interpreted 644 

as the difference between the T cell skewing expected for each patient’s versus their 645 

observed T cell skewing, respectively. These residuals-derived values were termed 646 

“exaggerated T cell aging”. A patient was considered to have exaggerated T cell aging if their 647 

values were greater than zero (or, skewing was greater than expected for their age). 648 

 649 

scTCRseq pre-processing, clonal expansion calculation, T cell subset identification and 650 

clustering 651 

TCR paired alpha and beta clones (also termed clonotypes) were defined by CellRanger VDJ 652 

(raw_clonotype_id, clonotype_id) by matching shared V and J gene and CDR3 sequences for 653 

alpha and beta TCR chains were appended to single cells by matching barcode. For scTCR-654 

seq derived from published data, we used published clone identifiers. Clonal expansion was 655 

calculated as the abundance cells labelled with each clone identified in each sample. CD8+ 656 

and CD4+ clones were identified by aggregating expression of CD8A, CD8B and CD8B2 or 657 
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CD4, respectively, across all cells for each clone. Clone subset was defined as CD4 (N cells 658 

CD4 detected ≥ N cells CD8 detected), CD8 (CD8 < CD4), or double negative (DN, CD4 and 659 

CD8 both zero; Extended Data Fig. 6a). Repertoire clonality was calculated among each 660 

specific subset of cells (such as all T cells or CD8+ memory cells) with a minimum of 100 661 

cells using Simpson’s diversity index68. Clusters of TCRs with similar sequence features were 662 

identified within a single patient’s alpha or beta chain repertoire using tcrdist3 (0.2.2)36 using 663 

default parameters. TCR clustering networks were constructed and visualised using the R 664 

package igraph (1.4.2). 665 

 666 

Annotation of HLA-matched viral reactivity-annotated TCR clones 667 

HLA genotypes for 19 patients were derived using arcasHLA69 ran on Cellranger output bam 668 

files (possessorted_genome_bam). All 19 patients were newly-sequenced for this study and 669 

therefore a combination of T cell-enriched/depleted and CD8-enriched (Extended Data 670 

Fig.1a). arcasHLA was ran on every sample for each patient. HLA genotype for class I and 671 

class II HLA was almost entirely identical across samples for an individual. In the rare cases 672 

of two different samples possessing different HLA, both predicted genotypes were ignored. 673 

Each donor’s repertoire was then compared against the annotated TCR reactivity 674 

database VDJdb, IEDB and CEDAR37–39 subset to TCRs with annotated reactivity against an 675 

epitope from a single human virus: cytomegalovirus (CMV), Epstein Bar virus (EBV), Influenza 676 

A, or severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). TCRs annotated as 677 

reactive against more than one human virus were also removed. The viral dataset set was 678 

further subset to HLA-matched sequences for each patient’s HLA genotype. A query TCR 679 

clone was annotated as putatively viral-reactive if at least one alpha or one beta chain CDR3 680 

sequence perfectly matched a CDR3 annotated against the same virus in the database, and 681 

this clone’s paired chain also perfected matched or possessed a highly similar CDR3 682 

sequence to the same virus in the same HLA background. CDR3 similarity was performed as 683 
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described previously70. Briefly, each TCR chain’s CDR3 amino acid sequence was 684 

deconstructed into a series of overlapping triplets. Pairwise similarity between two CDR3 was 685 

defined as the number of shared triplets normalized to the number of triplets per comparison. 686 

 687 

Identification of predicted neoantigen-reactive TCR clones 688 

Paired whole exome sequencing was performed for two samples as previously described71. 689 

Nonsynonymous mutations were selected and translated to peptides using a custom script 690 

in R.  We considered peptides of length 8, 9 or 10 amino acids which contained the altered 691 

peptide as potential neoantigens. The immunoglobulin domain as excluded. Intronic 692 

mutations or splice variants were not considered. Binding of these to the patient’s HLA class 693 

1 alleles was performed using NetMHCpan (4.1)72. Neoantigen binding was deemed 694 

significant if the mutant peptide bound the HLA allele with an IC50 of less than 500nm and 695 

the wild type had an IC50 of >500nm. 696 

All cases where the peptide-HLA (pHLA) binding criteria were satisfied were 697 

considered as potential binding partners for each TCR identified in the sample. TCR–pHLA 698 

binding was predicted using TEINet with the authors pretrained models and default settings 699 

73. The highest scoring pHLA-TCR was considered the most likely binding partner. Among all 700 

pHLA–TCR pairs, the phenotype of TCR clones with the highest prediction scores (>0.7) was 701 

analysis. 702 

 703 

Identification of malignant plasma cell clones in scRNA-seq 704 

Patient plasma cells were isolated from the clustering of all cells (Fig.1) and patients with < 705 

50 plasma cells were removed. This generated 67,656 plasma cells from 46 patients with a 706 

median of 467 plasma cells each (range: 76–13,638).  To identify tumour cells among plasma 707 

cells, we leveraged the clonal plasma cell origin of myeloma. First, we attached the 708 

expression of all available immunoglobin genes to each cell, after removing any gene filtered 709 
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performed earlier. Then, for each plasma cell, we identified the most highly expressed light 710 

variable (kappa or lambda), heavy variable, and heavy constant chains. We next quantified 711 

and ranked the abundance of every gene for each chain among an individual’s plasma cells 712 

(Extended Data Fig. 2a). Most individuals possessed a single gene for each chain which was 713 

expressed by the majority of plasma cells (light variable median 95% range: 31-100%, heavy 714 

constant median 96% range: 35-100%, heavy variable median 91% range: 24-100%). The 715 

frequency of different light and heavy variable genes among tumour cells matched previously 716 

reported frequencies in myeloma74, including IGHV3-30 in 3 (6.5%) and IGKV1-39 in 2 (4.3%) 717 

patients. We inferred that clonal immunoglobulin expression corresponded to clonal plasma 718 

cells and labelled any plasma cell expressing the most highly abundant gene for each chain 719 

in that donor as a tumour cell. This method yielded 67,048 predicted tumour cells. Predicted 720 

tumour cells uniquely co-expressed clonal immunoglobulin genes (Extended Data Fig. 2b) 721 

and expressed genes characteristic of their translocation subgroups (Extended Data Fig. 722 

2c)75, suggesting they did represent malignant cells. 723 

 724 

Transcriptional pathway analysis of tumour cells in scRNA-seq data 725 

To analysis tumour cell transcriptomes, we scored tumour cells by a set of pan-cancer 726 

transcriptional pathways25 using UCell. To compare the expression of individual pathways 727 

between patients, we calculated the abundance of cancer cells highly expressing a given 728 

pathway as the percentage of cells with expression greater than one standard deviation 729 

above the median for each patient’s tumour cells.  730 

 731 

De novo pathway enrichment in malignant cells 732 

To identify novel sets of genes enriched in malignant relative to normal plasma cells, we first 733 

isolated each the tumour cells from each patient in turn. Next, we performed differential 734 

expression between each patient’s tumour cells only and all other plasma cells not classified 735 
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as malignant. Differential expression was only performed between cells from the same 736 

sequencing batch. This yielded a set of malignant-enriched genes for each patient. Pathway 737 

analysis was then performed as described. The pathways significantly enriched among 738 

malignant-associated genes in four or more patients were identified (Extended Data Fig.8b). 739 

 740 

Transcriptional pathway survival analysis in CoMMpass 741 

We analysed an association of transcriptional pathways with overall survival in bulk RNA 742 

sequencing samples from the CoMMpass cohort of newly-diagnosed MM patients26, with 743 

RNA sequencing data processed and normalised as described in Bauer et al.77. We calculated 744 

the expression of each gene pathway by taking of each constituent gene in that pathway, 745 

scaling expression between 0 and 1, and taking the average. We assessed the predictive 746 

power of each pathway for overall and progression-free survival in patients using the 747 

maximally selected rank statistic of the by R package maxstat (0.7-25), and analysed an 748 

association between overall and progression-free survival and pathway expression above the 749 

maxstat estimated cutpoint using a proportional hazards regression model using the R 750 

package survival (3.5-5) with default parameters. 751 

 752 

CyTOF antibody staining, data acquisition and data pre-processing 753 

Details on antibodies are listed in Table S4. Conjugation of the purified antibodies with metal 754 

reporters was performed with the MaxPar X8 and MaxPar MCP9 antibody labelling kits 755 

(Fluidigm Sciences) according to the manufacturer's instructions. Frozen bone marrow MNCs 756 

or the CD138-negative populations were thawed rapidly at 37°C and resuspended into pre 757 

warmed thawing media of RPMI (Sigma-Aldrich) containing 20% FBS, 2mM EDTA 758 

(pluriSelect) and 5mg DNase (Sigma-Aldrich). Cell suspensions were washes and filtered to 759 

form a single cell suspension. Cells were incubated with 5µM Cell-ID Cisplatin (Fluidigm 760 

Sciences) in serum free RPMI for 3 minutes at room temperature (rT) to identify dead cells. 761 
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Cells were then washes and incubated with human Fc block (BioLegend) for 10 minutes at 762 

rT before being barcoded using a 6-choose-3 Cadmium CD45 Live Barcoding (Fluidigm 763 

Sciences). All samples were stained in the same batch. After live cell barcoding, the combined 764 

samples were then stained with metal-conjugated antibodies for surface antigens for 30 765 

minutes at rT. After staining, cells were washed with MaxPar Cell Staining Buffer and 766 

permeabilised with MaxPar nuclear antigen staining buffer before staining with metal-767 

conjugated antibodies for intracellular antigens. Cells were again washed and fixed using 768 

1.6% paraformaldehyde. Cells were then incubated with Cell-ID intercalator-Ir (Fluidigm 769 

Sciences) to stain all cells in MaxPar Fix and Perm Buffer (Fluidigm Sciences) and aliquoted 770 

and frozen in cryovials. Stained samples were thawed and washed on the day of acquisition.   771 

Cells were acquired on the Helios mass cytometer (Fluidigm Sciences). Data from 772 

different days were normalized by using EQ Four Element Calibration Beads (Fluidigm 773 

Sciences). Data was debarcoded using the Fluidigm CyTOF software and patient sample fcs 774 

files run from different days were concatenated. Before downstream analysis, initial data 775 

clean up was carried out using FlowJo. Live CD3+ cells were exported by manual gating on 776 

Event_length, Residual, Offset, DNA (191Ir and 193Ir), live cells (195Ir) and CD3 expression (89Y). 777 

 778 

Downstream analysis of CyTOF data 779 

CyTOF data were analysed using a custom R pipeline modified from Nowicka et al.78. 780 

Protein expression data was normalised using the flowCore (2.10.0) logicleTransform() 781 

function. Cells were clustered using T-cell markers (all unique proteins shown in Extended 782 

Data Fig. 4) using FlowSOM (2.6.0) on a 12 x 12 node self-organising map. This generated 783 

50 putative T-cell clusters. Only clusters expressing CD3 and either CD4 or CD8 were taken 784 

retained. One cluster strongly co-expressing all markers was removed as a likely artifact. The 785 

remaining clusters were merged to 17 final clusters based on homogeneous co-expression 786 

of known T-cell marker genes (for example, CD8+CD45RA+CD45RO-IL7R+TCF7+ were 787 
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classified as naïve CD8+ T-cells). The expression of T-cell marker proteins for 1000 cells per-788 

sample was used to calculate a UMAP using the R package uwot (0.1.14) with the following 789 

parameters umap(expression, n_neighbors=25, metric=”cosine”, spread=2, min_dist=0.1, 790 

fast_sgd=TRUE) based on visual separation of clusters. 791 

 792 

Comparison of T-cell clusters across scRNA-seq and CyTOF 793 

First, T cell markers shared between the scRNA-seq and CyTOF datasets were identified. 794 

These included (protein/RNA) TBET/TBX21, FOXP3/FOXP3, "TOX/TOX, LAG3/LAG3, 795 

CTLA4/CTLA4, KLRG1/KLRG1, PD1/PDCD1, EOMES/EOMES, CD28/CD28, TCF1/TCF7, 796 

CD69/CD69, CD4/CD4, CD8/CD8A, ICOS/ICOS, IL7R/IL7R, TIGIT/TIGIT, CD25/IL2RA, 797 

KI67/MKI67, GZMB/GZMB, HLA-DR/HLA-DRA. We also restricted our analysis to scRNA-798 

seq clusters likely to be profiled using our existing CyTOF panel. Therefore, we removed the 799 

interferon-expressing ISG.ISG15 and Teff.IFIT2 and invariant MAIT_gdT scRNA-seq clusters. 800 

Additionally, we removed the proliferating T cell (Prolif.) scRNA-seq cluster, to avoid a 801 

confusion when comparing to the CyTOF CD4.Tm-Prolif. and CD8.Tem-Prolif. clusters, which 802 

were also removed. The average expression of each shared marker was scaled within 803 

scRNA-seq or CyTOF clusters. The correlation between each cluster’s shared markers was 804 

calculated using Pearson correlation (Extended Data Fig.4d-e), with highly correlated clusters 805 

inferred to represent the same underlying T cell phenotype. 806 

 807 

Statistical analyses 808 

For comparison of means in box plots, P values were calculated by two-sided Wilcoxon test 809 

using the R package ggpubr (0.6.0). R and P values for correlations were calculated by 810 

Pearson correlation. For hierarchal clustering on heatmaps, Euclidean distance was used as 811 

the default distance measure.  812 

 813 
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Data availability 814 

Published datasets were acquired following the instructions in each original publication. 815 

Specifically, data shared through the gene expression omnibus (GEO) can be accessed for 816 

Maura et al. under accession GSE161195, Bailur et al. under accession GSE163278, Oetjen 817 

et al. under accession GSE120221, Granja et al. under accession GSE139369, Zavidij et al. 818 

under accession GSE124310, Kfoury et al. under accession GSE143791, and Zheng et al. 819 

under accession GSE156728. Data shared via dbGaP for Sklavenitis-Pistofidis et al. can be 820 

accessed under accession phs002476.v1.p1. Data shared online can be accessed for 821 

Stephenson et al. (via https://covid19cellatlas.org/), Conde et al. (via 822 

https://www.tissueimmunecellatlas.org/), and Liu et al. (via 823 

https://explore.data.humancellatlas.org/projects/2ad191cd-bd7a-409b-9bd1-824 

e72b5e4cce81). The integrated single-cell RNA and TCR datasets and cohort information are 825 

available online (https://zenodo.org/doi/10.5281/zenodo.11047959). CoMMpass data were 826 

downloaded from the MMRF researcher gateway (https://research.themmrf.org). Newly-827 

generated raw sequencing data will be made publicly available and uploaded to the GEO 828 

upon peer-reviewed publication. Code to reproduce figures will be made available upon peer-829 

reviewed publication or upon reasonable request. 830 

  831 
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Supplemental tables 832 

Supplemental Table 1. Overview of donors included in single-cell RNA sequencing cohort. 833 

Supplemental Table 2. Constituent genes for gene sets and pathways used throughout this 834 

study. 835 

Supplemental Table 3. Significantly differential expressed marker genes for T-cell clusters. 836 

Supplemental Table 4. Information regarding CyTOF panel. 837 
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