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Heart disease is the leading cause of death worldwide, and cardiac function as measured by ejection 
fraction (EF) is an important determinant of outcomes, making accurate measurement a critical 
parameter in PT evaluation. Echocardiograms are commonly used for measuring EF, but human 
interpretation has limitations in terms of intra- and inter-observer (or reader) variance. Deep learning 
(DL) has driven a resurgence in machine learning, leading to advancements in medical applications. 
We introduce the ViViEchoformer DL approach, which uses a video vision transformer to directly 
regress the left ventricular function (LVEF) from echocardiogram videos. The study used a dataset of 
10,030 apical-4-chamber echocardiography videos from patients at Stanford University Hospital. The 
model accurately captures spatial information and preserves inter-frame relationships by extracting 
spatiotemporal tokens from video input, allowing for accurate, fully automatic EF predictions that aid 
human assessment and analysis. The ViViEchoformer's prediction of ejection fraction has a mean 
absolute error of 6.14%, a root mean squared error of 8.4%, a mean squared log error of 0.04, and an 

𝑅2 of 0.55. ViViEchoformer predicted heart failure with reduced ejection fraction (HFrEF) with an area 
under the curve of 0.83 and a classification accuracy of 87 using a standard threshold of less than 50% 
ejection fraction. Our video-based method provides precise left ventricular function quantification, 
offering a reliable alternative to human evaluation and establishing a fundamental basis for 
echocardiogram interpretation. 
 

INTRODUCTION 13 

Cardiovascular diseases (CVDs) encompass a range of conditions that can negatively impact the health 14 

of the cardiovascular system, which consists of the heart and blood vessels. CVDs are consistently 15 

ranked as one of the top causes of death worldwide 
1
. Heart failure (HF) is a rapidly growing 16 

cardiovascular condition, with an estimated prevalence of 37.7 million individuals worldwide. HF is a 17 

chronic phase of cardiac functional impairment, causing symptoms such as dyspnea, fatigue, poor 18 

exercise tolerance, and fluid retention, which impact patients' quality of life and contribute to the global 19 

health crisis 
2
. It also carries a high mortality rate. Diagnosing heart failure requires an accurate 20 

assessment of cardiac function, which can be done using various methodologies to quantify and 21 

characterize. Left ventricular EF is one of the most important metrics for assessing cardiac function, which 22 

measures how well the left ventricle can eject blood 
3,4

. 23 

Standard methods for estimating left ventricular ejection fraction include echocardiograms, cardiac MRI, 24 

cardiac computed tomography (CT), and Equilibrium Radionuclide Angiocardiography (ERNA). 25 

Echocardiography uses ultrasound to create real-time images of the heart's chambers, valves, and blood 26 

flow, assessing the volume of blood pumped out of the left ventricle with each contraction. MRI provides 27 

detailed images of the heart's structure and function but has limitations such as cost, availability, and 28 

potential contraindications. CT uses X-rays to produce detailed heart images but has limitations such as 29 

radiation exposure, allergic reactions to contrast media, and limited dynamic heart function assessment. 30 
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Equilibrium radionuclide angiography is a method used in nuclear medicine studies. Still, it has some 31 

drawbacks, like taking a long time to process, injecting radiopharmaceutical agents, and yielding low 32 

resolution for regional ventricular function in heart disease patients 
3,5

. Clinically echocardiography is the 33 

preferred most common method for estimating LVEF because it is widely available, provides real-time 34 

imaging, is non-invasive, and is more cost-effective than other options. This makes it particularly useful 35 

for quick and detailed assessments in various clinical situations. 36 

Traditional echocardiography typically includes a visual interpretation to estimate LVEF, providing a 37 

qualitative assessment without precise numerical values. This approach is well-suited for managing acute 38 

patients but falls short when it comes to serial evaluations, particularly in patients with valvular lesions 39 

causing regurgitation. There are also quantitative capabilities for echocardiography using the Simpson”s 40 

method and fractional shortening to calculate EF.  The human calculation of ejection fraction is subject to 41 

variability due to irregular heart rate and the nature of the calculation, which necessitates manual ventricle 42 

size tracing for every beat 
4
. The variability in estimating LVEF among different observers can often result 43 

in requests for additional testing, review of the study, and reinterpretation, which can impact the timing of 44 

therapeutic interventions 
5–7

. 45 

Conventional Machine learning (ML) has recently led to substantial advancements in diverse fields, 46 

including medical applications. Conventional ML has been utilized in echocardiography to determine the 47 

ejection fraction, with significant interest in their potential to provide improvement in disease diagnoses, 48 

aid decision-making, and serve as a confirmatory assessment 
8,9

. However, conventional ML has a 49 

potential disadvantage in its reliance on feature engineering, which is a manual and time-consuming 50 

process. Moreover, despite obtaining images in various positions and orientations, these conventional 51 

echocardiographic systems lack 3D localization and spatial relation measurements for volume 52 

computation. 53 

Deep learning has driven a significant resurgence in machine learning due to availability of large data 54 

sets, and advances in computing power 
10–15

. This field has revolutionized machine learning by 55 

understanding and manipulating data, including images 
16,17

, and incorporation of natural language 56 

processing (NLP) 
18

. Moreover, deep learning differs from conventional methods as it avoids manual 57 

feature engineering. Also, using deep learning techniques in medical diagnostics improves the accuracy 58 

of diagnoses 
19,20

. It plays a crucial role in predictive analytics, allowing for detecting possible health risks 59 

or outcomes 
21

. These techniques provide healthcare professionals with valuable predictive insights 60 

through the assimilation and analysis of various datasets, including patient information, genetic profiles, 61 

imaging studies, and clinical records, and enables early detection of diseases or health deterioration 
22

.  62 

Deep learning techniques can be used to determine ejection fraction, estimate end-diastole and end-63 

systole volumes, and calculate the percentage difference between them, rather than relying on actual 64 

echocardiogram videos 
23–27

. A recently proposed method, EchoNet-Dynamic 
4
, directly regresses LVEF 65 

from video inputs using spatiotemporal models, which avoids the need to estimate EDV and ESV 66 

separately. EchoNet-Dynamic, a video-based deep learning model, has been proposed for 67 

echocardiograms, demonstrating its ability to assess ejection fraction accurately across the entire video. It 68 

is a CNN model that uses atrous convolution 
28

 for semantic segmentation of the left ventricle, a CNN 69 

model 
29

 with residual connections and spatiotemporal convolutions for predicting the ejection fraction, 70 

and video-level predictions for beat-to-beat estimations of cardiac function. Moreover, another video-71 

based method performs LV segmentation using echocardiogram sequences and then converts the 72 

predicted context into an end-to-end video regression model 
30

. However, segmentation, a sensitive 73 

process involving categorizing entire regions, may increase computational requirements and processing 74 

times. Inaccuracies in segmentation can impact subsequent classification or regression tasks, making the 75 

overall process more sensitive to segmentation quality. Recent advances in deep learning have shown 76 

that it can accurately and reproducibly identify human-identifiable phenotypes and characteristics not 77 

recognized by human experts, overcoming limitations in human interpretation 
31–33

. 78 
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Herein, we propose an end-to-end deep learning approach, ViViEchoformer, which leverages a video 79 

vision transformer (ViViT) 
34

 to regress LVEF from echocardiogram videos directly. We converted ViViT 80 

from classification to regression to predict LVEF. The model captures spatial information and preserves 81 

inter-frame relationships by extracting spatiotemporal tokens from the input video. While utilizing the 82 

video vision transformer to capture spatiotemporal patterns in the video accurately, this method performs 83 

precise, fully automatic EF predictions that facilitate human assessment and subsequent analysis.  84 

RESULTS 85 

Our neural network architecture was implemented in Python using the TensorFlow and Keras libraries. A 86 

workstation equipped with 62 GB of RAM and an NVIDIA GeForce GTX 4080 GPU was used for all 87 

experiments. We trained our transformer model (Fig 1) on a data set with 10,030 echocardiogram videos 88 

provided by Stanford University Hospital 
35

. We converted the classification model ViViT, into a regression 89 

model and trained it to estimate the left ventricular ejection fraction from echocardiogram videos using a 90 

training and validation set of over 30700 and 1200 videos, respectively, and a test set of over 1200 91 

videos. The analysis focused on the 32 frames of videos that were resized to 52x52 dimensions.  92 

Table 1. Details of model variants 

Parameter name Values 

Hyperparameters of ViViT  

Optimizer SGD 

Batch size 128 

Epoch 100 

Input Shape (52, 52, 32, 1) 

Layer norm 1e-6 

Learning rate 1e-4 

Number of heads 12 

Number of Layers 10 

Patch size (32, 8, 8) 

Projection dim 512 

  

 

Fig 1. The model pipeline for video regression. The Tubelet embedding technique extracts and linearly embeds nonoverlapping 
tubelets across the spatio-temporal input volume. Using spatial-temporal attention, the transformer encoder forwards all spatio-
temporal tokens extracted from the video. 
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We employed the SGD optimizer for training, and the training process was conducted over 100 epochs 93 

with a batch size of 128 and a learning rate of 1e-4. Table 1 provides a summary of the configuration of 94 

the training parameters. The model checkpoint is configured to save only the optimal solution discovered 95 

during training based on the loss function evaluation during validation. The model checkpoint is saved 96 

when a metric improves on a validation set during training. As depicted in Fig 2, the model demonstrates 97 

a significant reduction in loss in the initial epochs, which indicates the model's capacity to learn quickly 98 

from the training data. 99 

We have employed the evaluation metrics for evaluating the performance of ViViEchoformer on the 100 

EchoNet test dataset, which were not previously used during model training. The estimation of EF has 101 

been associated with interobserver variability of up to 14% 
36

. The ViViEchoformer's prediction of ejection 102 

fraction had a mean absolute error of 6.14%, root mean squared error of 8.4%, mean squared log error of 103 

0.04, and an 𝑅2 of 0.55. 104 

The visual assessment has been carried out using six plots (Fig 3). These plots are used to evaluate the 105 

performance of a predictive model, providing information about the accuracy, distribution of errors, and 106 

independence of errors, which are crucial for validating the robustness of the model. The scatter plot Fig 107 

3a shows the model's predictions against the actual values, with points scattered around the line of 108 

perfect agreement. This indicates that the model captures the trend in the data, but the spread of points 109 

away from the line indicates variances in prediction accuracy. The violin plot and histogram of error 110 

distribution Fig 3b, c provide insight into the distribution of prediction errors, with a long tail of errors 111 

indicating a right-skewed distribution. The line plot of errors in Fig 3d shows variability, with most falling 112 

within two standard deviations of the mean. However, occasional spikes beyond this range suggest more 113 

significant errors, possibly due to outliers or less valid assumptions. The autocorrelation and partial 114 

autocorrelation plots in Fig 3e, f show that the errors are mostly independent, indicating a positive 115 

predictive model performance. 116 

Table 2 reports the model's classification performance distinguishing between Heart Failure with Reduced 117 

Ejection Fraction (HFrEF) and Non-HFrEF cases. Precision, recall, f1-score, and support numbers are 118 

reported for both categories. The classification report shows ViViEchoformer's prediction of HFrEF with an 119 

area under the curve of 0.83 (Fig 4a), using a common threshold of an EF of less than 50%. The model 120 

achieves a precision of 0.77 for HFrEF cases, indicating 77% correctness, and a recall of 0.83, indicating 121 

83% correct identification. The f1-score balances these metrics, indicating the model's effectiveness in 122 

HFrEF cases. However, the model performs better for non-HFrEF cases, with a precision of 0.91 and 123 

recall of 0.92, resulting in a higher f1-score of 0.89. The overall accuracy across both classes is 0.87, 124 

indicating 87% correct classifications. The macro average f1-score is 0.83, considering the balance 125 

between classes without weighting for their representation in the dataset. The weighted average f1-score 126 

is also 0.87, indicating consistent high performance across classes when accounting for the number of 127 

samples in each. Fig 4b illustrates the confusion matrix for our model's classification performance where 128 

 
Fig 2.  The graph illustrates the model's loss over epochs for training (blue) and validation (orange) datasets. 
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HFrEF is labeled 0, and Non-HFrEF is labeled 1. The matrix visually represents the model's predictions 129 

compared to the actual labels. 130 

a b 

 
 

c d 
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DISCUSSION 131 

The most prominent architecture of choice in sequence modeling is the transformer, which uses a multi-132 

headed self-attention mechanism instead of convolution. ViViEchoformer is a video transformer-based 133 

deep learning model for echocardiogram video understanding tasks, allowing for accurate, fully automatic 134 

EF predictions that aid human assessment and analysis. To our knowledge, ViViEchoformer is the first 135 

deep-learning model that uses transformers to estimate the ejection fraction from echocardiogram videos. 136 

Previous attempts to use deep learning techniques are primarily used to determine EFs, end-diastole and 137 

end-systole volumes, and percentage differences in echocardiogram videos rather than actual data. 138 

These methods typically do not account for inter-frame relationships or temporal dependencies within the 139 

video sequences during their analysis. To process video sequences, ViViEchoformer splits them up into 140 

smaller temporal and spatial units known as tokens. The model can then comprehend temporal 141 

dependencies throughout the sequence and spatial relationships within individual frames thanks to 142 

extracting and processing information from these tokens across frames. 143 

Some video-based methods perform LV segmentation using echocardiogram sequences, but 144 

segmentation may increase computational requirements and processing times due to its sensitive nature. 145 

However, when analyzing massive datasets, DL techniques can reveal hidden patterns that were 146 

previously not apparent. Recent advancements in DL techniques have demonstrated their ability to "see 147 

the unseen" in images and videos. Consequentially, determining EFs without end-diastole and end-148 

systole volumes could be possible for DL techniques. Without infusing knowledge awareness and using 149 

any pre-processing, such as segmentation, our method directly regresses EF among the video frames. 150 

ViViEchoformer's predictions have a variance comparable to or less than human experts' measurements 151 

of cardiac function 
37

. ViViEchoformer achieved high prediction accuracy for estimating ejection fraction 152 

performed by human interpreters. Its prediction of ejection fraction had a mean absolute error of 6.14%, 153 

which is within the typical inter-observer variation of 14%. 154 

  
e f 

  
Fig 3. Model Evaluation. a Comparison of ViViEchoformer predicted, and EchoNet dataset reported ejection fractions (𝑛 = 1288). b 
the violin plot showcasing the model error distribution. c errors distribution histogram. d error values across samples. e 
Autocorrelation plot of residuals. f partial autocorrelation of the residuals. 

Table 2.  Classification performance for HFrEF and Non-HFrEF cases 

 precision     recall   f1-score support 

HFrEF        0.77 0.74       0.75        285 
Non-HFrEF 0.91 0.92 0.71 794 

accuracy   0.87 1079 
macro avg 0.84 0.83 0.83 1079 
weighted avg 0.87 0.87 0.87 1079 
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In the study by Ouyang et al. 
4
, five expert sonographers and cardiologists conducted a blinded review of 155 

echocardiogram videos that exhibited the largest absolute differences between the initial human labels 156 

and the predictions made by EchoNet-Dynamic. These experts independently assessed the relevant 157 

videos and two blinded measurements of ejection fraction.  The findings revealed that 38% (15 out of 40) 158 

of the videos had significant issues related to video quality or the acquisition process. In comparison, 13% 159 

(5 out of 40) were characterized by marked arrhythmias, which constrained the experts' capacity to 160 

assess ejection fraction accurately. A critical limitation of the EchoNet-Dynamic dataset stems from the 161 

inaccuracy in the initial human labeling of echocardiogram videos, compounded by issues related to poor 162 

image quality, arrhythmias, and variations in heart rate. These factors significantly impact on the training 163 

and evaluation performance of our model. 164 

In developing a model to regress the left ventricular ejection fraction (LVEF) from echocardiogram videos, 165 

we encountered a nuanced issue at the intersection of statistical significance and clinical utility, 166 

particularly when classifying LVEF based on the 50% cutoff. Our model is capable of closely 167 

approximating actual LVEF values. Yet, we observe instances where minor discrepancies—such as a 168 

predicted LVEF of 49.9% versus an actual measurement of 50.01%—raise important considerations. 169 

While these small differences may be statistically significant, they highlight the clinical uncertainty of near-170 

threshold predictions in model evaluation. This distinction is important because, in clinical practice, the 171 

marginal difference may not change treatment or patient outcome, calling statistically significant but 172 

clinically marginal model predictions into question. This is a limitation for most methodologies and should 173 

be acknowledged. 174 

Fig 5 presents a scatter plot evaluating the performance of a regression model that predicts left 175 

ventricular ejection fraction (LVEF). The true LVEF values are on the X-axis, while the Y-axis displays the 176 

model's predicted LVEF values. The overlay of a green zone and an orange area indicates the boundary 177 

of correct and incorrect classifications by the model relative to the critical threshold of 50%. The green 178 

zone indicates regions where the model's predictions align correctly with the true classifications—179 

predictions of LVEF less than 50% that are indeed below 50% (lower left) and predictions above 50% that 180 

are actually above 50% (upper right). Conversely, the orange zone indicates regions of misclassification—181 

predictions above 50% for true values below 50% (lower right) and vice versa (upper left). Central to the 182 

plot is a highlighted square around the 50% line, visually representing the area of uncertainty where the 183 

model's predictions are close to the threshold, encapsulating the challenge of near-threshold predictions. 184 

This zone of uncertainty underscores the difficulty in achieving precise classifications around the 50% 185 

cutoff point, which is critical for clinical decision-making based on LVEF values. 186 

a b 

  
Fig 4.  Classification accuracy of 85 and AUC of 0.83 using a standard threshold of less than 50% EF. a ROC curve, b Confusion 
matrix where HFrEF, labeled as 0 and non-HFrEF labeled 1. 
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The study suggests that future research could focus on developing advanced classification models to 187 

identify videos with poor image quality, arrhythmias, and heart rate variations. This would improve the 188 

reliability of automated assessments by reducing the impact of the issues mentioned earlier on model 189 

predictions, thereby enhancing the accuracy of ejection fraction prediction. 190 

METHOD 191 

Data management 192 

The study used a dataset of 10,030 apical-4-chamber echocardiography videos from patients at Stanford 193 

University Hospital between 2016 and 2018 
38

. The data was meticulously preprocessed to ensure 194 

integrity and uniformity, including cropping and masking operations. The videos were then down-sampled 195 

to a uniform resolution of 112x112 pixels using cubic interpolation, ensuring the quality of the visual data 196 

and compatibility with the analytical framework. This dataset is crucial for understanding cardiac function 197 

representations in full resting echocardiogram studies. The dataset was divided into test, validation, and 198 

training sets, with 1,277, 1,288, and 7,462 videos in each set. The histogram in Fig 6a visually represents 199 

the EF values in the training set, showcasing the range from 6.90 to 96.96. The histogram shows a 200 

dataset's imbalanced distribution of ejection fraction values, with a significant concentration in the 55% to 201 

70% range. Consequently, the pattern and spread of EFs around the line indicate how the points in the 202 

55% and 70% ranges are closely scattered around a diagonal line (Fig 3a). This imbalance can affect the 203 

performance of predictive models trained on this data, potentially leading to bias toward predicting values 204 

in the most common range. Additionally, a scatter plot was included to illustrate the spread of ejection 205 

fraction values within the training dataset (Fig 6c, d). 206 

 
Fig 5. Scatter plot of true vs. predicted LVEF values by the regression model, illustrating classification accuracy relative to the 
50% threshold. The green area represents correct classifications, while the orange area signifies incorrect classifications. The 
highlighted square around the 50% line delineates the zone of uncertainty, emphasizing the model's challenge in making near-
threshold predictions. 

a b 
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In the initial examination of our training dataset, we identified a skewed distribution of EF values, which 207 

threatened to bias our predictive model towards the more common EF ranges, thereby impairing its 208 

generalizability. We first addressed the variability in frame counts to ensure uniformity in video clip length. 209 

Videos with fewer than 32 frames were lengthened by padding the last frame, whereas for videos with 210 

fewer than 64 frames, we employed 32 random samples to standardize their length. For videos containing 211 

64 frames or more, we generated 32-frame echocardiogram clips by sampling every second frame. This 212 

preprocessing protocol was applied to all videos to create a consistent structure for subsequent steps. 213 

Following this standardization, we specifically targeted the underrepresented EF values for augmentation. 214 

For videos with an excess of 64 frames, we generated two distinct clips with variable starting points by 215 

sampling every other frame, effectively doubling the representation of these EF ranges. This 216 

augmentation, performed prior to any down-sampling, was crucial in addressing the initial data imbalance. 217 

In the subsequent phase, we down-sampled the overrepresented EF values to balance the dataset. Later, 218 

the underrepresented values are applied to each frame through a series of image transformations, 219 

including rotation, zoom, shift, and shear. A random factor between 0.99 and 1.01 also changed the EF 220 

value for each augmented video. This was done to maintain physiological plausibility and add a realistic 221 

range. The histogram in Fig 6b visually represents the EF values in the training set after augmentation. 222 

Preprocessing 223 

Accurately assessing cardiac function using echocardiograms is crucial to minimize noise and ensure 224 

high-quality data for accurate interpretation. To address this, we developed a comprehensive 225 

preprocessing pipeline that enhances the interpretability of echocardiogram frames. 226 

The preprocessing method starts with 32 echocardiogram frames with a 52x52 pixel resolution. The 227 

median frame is calculated by determining the median value of each pixel location across all 32 frames 228 

(temporal dimension), resulting in a singular 52x52 matrix. Then, a frame-wise multiplication operation is 229 

performed on each original video frame, resulting in a transformed video with identical dimensions but 230 

  
c d 

  
Fig 6. Comparative distribution of EF values in the training dataset before and after data augmentation and down-sampling 
techniques. The initial dataset (a) consisted of 7462 samples, while the augmented dataset (b) expanded to 30787 samples, 
illustrating the effect of augmentation and balancing strategies on the EF value distribution. c and d represent the spread of EF 
before and after augmentation in the training dataset. 
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modified pixel values by multiplying the corresponding median pixel values. This meticulous operation is 231 

performed for all 32 frames in the sequence. Subsequently, histogram equalization was applied to each 232 

frame to adjust contrast and improve the visibility of cardiac structures, followed by a median blur filter 233 

with a 3x3 pixel mask to reduce noise while preserving essential anatomical details. Fig 7 compares the 234 

first 10 frames of the original video and their preprocessed counterparts, showing the significant 235 

improvements. 236 

 a b c d e f g h i j k 

ǀ 

           

ǁ 

           
Fig 7. Sequential visualization of echocardiogram frame preprocessing. The top row (a-k) displays the first 11 original frames 
from the echocardiogram video, demonstrating the raw imaging data. After applying our preprocessing steps, the bottom row (a-
k) illustrates the corresponding frames: median frame calculation, frame-wise multiplication, histogram equalization, and median 
blur filtering. The processed frames reveal a marked enhancement in the definition and contrast of cardiac structures, providing a 
clear visual distinction from the original frames and underscoring the efficacy of the preprocessing technique. 

Video-based transformer model and training 237 

The Vision Transformer (ViT) is a pure-transformer architecture that has outperformed convolutional 238 

neural networks in image classification, offering a competitive alternative to the widely used convolutional 239 

neural networks in computer vision 
34,39

. The ViViT architecture, inspired by the ViT, provides a new 240 

approach to video classification. It uses transformer-based models, leveraging attention-based 241 

mechanisms to model long-range contextual relationships in video content. This innovative approach 242 

offers a strategic alternative to conventional 3D CNNs 
40

 and RNNs
41

, allowing for more accurate and 243 

efficient video classification. 244 

Even though ViViT is an efficient video classification model, we trained the ViViT from scratch to directly 245 

regress the LVEF from echocardiogram videos. The model performed self-attention, computed on a 246 

sequence of spatio-temporal patches we extracted from the echocardiogram videos. We initially replaced 247 

the final layer of the classifier head, intended to output various classes, with a new layer designed to 248 

produce a single, continuous output. There is only one output unit in this new layer and no activation 249 

function. The tubelet embedding of the echocardiogram frames feeds the model with nonoverlapping 250 

spatiotemporal information. 251 

The model is structured around a sequence of ten transformer layers. Each layer consists of twelve 252 

heads. The token size (model dimension) was set to 𝑑 = 512. The hidden size of multi-layer perceptron 253 

 
Fig 8. The layered structure of a neural network model. The diagram showcases the arrangement of various layers, including multi-
head attention, encoder, and dense layers, illustrating the flow of information within the model. 
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(MLP) was 768. The output of the tokens is then transformed into a regression prediction via an MLP as 254 

non-linearity in the three hidden layers of 512, 128, and 64. Fig 8 illustrates the layered structure of our 255 

model. 256 

Data availability 257 

The EchoNet-Dynamic dataset was used in this project. It is a public dataset of de-identified 258 

echocardiogram videos found at https://echonet.github.io/dynamic/. 259 
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