medRxiv preprint doi: https://doi.org/10.1101/2024.06.21.24309315; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

UniTox: Leveraging LLMs to Curate a Unified Dataset
of Drug-Induced Toxicity from FDA Labels

Jake Silberg Kyle Swanson Elana Simon
Stanford University Stanford University Stanford University
jsilberg@stanford.edu swansonk@stanford.edu epsimon@stanford.edu

Angela Zhang Zaniar Ghazizadeh Scott Ogden
Stanford University Stanford University Genmab
angelaz@stanford.edu zaniar@stanford.edu scog@genmab.com
Hisham Hamadeh James Zou
Genmab Stanford University
hha@genmab.com jamesz@stanford.edu
Abstract

Drug-induced toxicity is one of the leading reasons new drugs fail clinical trials.
Machine learning models that predict drug toxicity from molecular structure could
help researchers prioritize less toxic drug candidates. However, current toxicity
datasets are typically small and limited to a single organ system (e.g., cardio, renal,
or liver). Creating these datasets often involved time-intensive expert curation
by parsing drug label documents that can exceed 100 pages per drug. Here, we
introduce UniTox[]_l a unified dataset of 2,418 FDA-approved drugs with drug-
induced toxicity summaries and ratings created by using GPT-4o0 to process FDA
drug labels. UniTox spans eight types of toxicity: cardiotoxicity, liver toxicity,
renal toxicity, pulmonary toxicity, hematological toxicity, dermatological toxicity,
ototoxicity, and infertility. This is, to the best of our knowledge, the largest such
systematic human in vivo database by number of drugs and toxicities, and the first
covering nearly all FDA-approved medications for several of these toxicities. We
recruited clinicians to validate a random sample of our GPT-40 annotated toxicities,
and UniTox’s toxicity ratings concord with clinician labelers 87-96% of the time.
Finally, we benchmark a graph neural network trained on UniTox to demonstrate
the utility of this dataset for building molecular toxicity prediction models.

1 Introduction

An estimated 90% of drugs fail in clinical trials [1]. While the most common cause of failure is
efficacy, one study found that the second largest cause (24% of failures) was drug safety [2]]. Further,
every year, previously approved drugs are taken off the market as unanticipated toxicities become
apparent in post-marketing data that can be difficult to screen pre-clinically [3]]. These different
drug-induced toxicities span many different organ systems, including the heart, liver, kidneys, blood,
and lungs. As a result, there is a strong need for predictive models that can anticipate a broad range
of human in vivo toxicities so that researchers can screen for molecules with the highest chance of
clinical trial and post-market safety and success.

"UniTox data is available at https://zou-group.github.io/UniTox-website. Code available at:
https://github.com/jsilbergDS/UniTox
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A major source of both data and expertise in evaluating drug-induced toxicity is the FDA. FDA
researchers have published analyses of FDA-approved drug labels on drug-induced cardiotoxicity
(DICTrank [4]]), drug-induced liver injury (DILIrank [5]), and drug-induced renal toxicity (DIRIL
[6]). Each analysis has involved one or more trained professionals who carefully comb through
each label to make a toxicity determination. More recently, the FDA has explored the use of large
language models (LLMs) to process drug labels more quickly [7]. They developed askFDALabel,
a retrieval-augmented generation (RAG) [8] system that finds the most similar label fragments to a
user query, then utilizes a fine-tuned LLM to generate a response based on those fragments. They
showcase askFDALabel for assessing drug-induced cardiotoxicity (DICT) and find that, where labels
were available, askFDALabel agrees with the human-labeled dataset 78% of the time.

In addition to that work, several other toxicity databases have been developed. For example, Cavasotto
and Scardino [9] compiled a set of toxicity databases. These existing datasets have several limitations.
First, these datasets are often small due to time-consuming labeling efforts [6]. Second, these datasets
use different methodologies to evaluate toxicities. For example, the FDA’s DIRIL (renal toxicity) work
draws on two existing datasets that disagreed more than 30% of the time on the same drugs 10} [11].
Many of these, such as SIDER [[12]], ECHA’s C&L system [[13]], PubChem’s Hazardous Substances
Data Bank [14]], and the Comparative Toxicogenomics Database [[15]], cannot be used to search by
toxicity status and do not include all toxicity keywords in their side effects or phenotype data. While
Tox21 and ToxCast [16] cover a large number of chemicals, not limited to FDA-approved medications,
they are based on in vitro assays that may not accurately reflect in vivo drug effects. These chemical
databases also typically exclude biologics. Other very comprehensive toxicity databases, such as
PNEUMOTOX [17] for pulmonary toxicity and LiverTox [18] for liver toxicity, cover only a single
organ system and may differ in methodologies. Machine learning models for toxicity that are trained
on these datasets [19} 20} 21} 22} 23], while useful, suffer from the same limitations as the underlying
datasets.

Our contributions. In this work, we develop a framework for using LLMs to rapidly categorize
the toxicity of drugs from FDA labels. We apply this methodology to build UniTox, the largest
human in vivo cross-toxicity dataset of 2,418 FDA-approved drugs. We evaluate the accuracy of
these predictions, achieving up to 93% accuracy on pre-existing datasets compared to 78% for
askFDALabel, and as well as up to 87-96% concordance on a clinician-reviewed sample. Finally, we
benchmark the performance of a graph neural network trained on small molecule drugs from UniTox
to illustrate the benefit of building a uniform toxicity dataset.

2 Methods
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Figure 1: UniTox was built by applying a large language model (GPT-40) to a curated set of 2,418
FDA drug labels to produce ternary (No/Less/Most) and binary (No/Yes) toxicity ratings, which were
evaluated based on external databases and clinican review.

2.1 Building UniTox

To build UniTox, we first needed to curate a set of drugs and associated drug labels to analyze.
Drawing inspiration from askFDALabel, we started with the universe of all human prescription drugs
from the FDALabel database [24]]. One important difference from askFDALabel is that we included
biologic drugs, as those were included in DICTrank. We then grouped drugs by unique generic
drug names and removed labels where the route of administration included topical, irrigational,
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or intradermal. For each unique generic drug name where we had an exact label match with
askFDALabel, we used the same label. Where we did not have an exact match, we used the most
recent New Drug Application (NDA) label for that generic drug name. Where we did not have an
NDA label, we used the most recent Abbreviated New Drug Application (ANDA) label, which is
used for generic versions of brand-name drugs.

This process, outlined in Figure[I] gave us a set of 2,418 drugs and drug labels for UniTox. Then, we
applied our LLM framework to the UniTox drugs for each of eight types of toxicity: cardiotoxicity,
liver toxicity, renal toxicity, pulmonary toxicity, hematological toxicity, dermatological toxicity,
ototoxicity, and infertility.

2.2 Generating toxicity ratings with LLMs

To generate toxicity ratings from a drug label, we utilized an LLM and chain-of-thought [25] reasoning
with a two-tiered prompt system. The first prompt—the “summary prompt”—asks the LLM to read
the drug label and summarize the drug’s toxicity for a given type of toxicity (e.g., cardiotoxicity). The
second prompt—the “rating prompt”—asks the LLM to use only this toxicity summary to produce a
toxicity rating, which is either a ternary rating (No, Less, or Most toxicity) or a binary rating (No or
Yes toxicity). We anticipated that the “Less” category of the ternary rating system can function as a
proxy of the model’s confidence, with “No” and “Most” as more confident predictions, so we focus
on the ternary rating system in our results. The specific prompts provided to the model are below,
where <toxicity type> is replaced with the toxicity type.

Summary Prompt

Provide a summary of all the parts of the drug label that discuss <toxicity type> risks
and <toxicity type> reactions for this drug. In your summary of each sentence, clearly
state whether the drug itself was associated with or caused the <toxicity type> risk.

Rating Prompt — Ternary

Given the above information about a drug, answer “was this drug associated with No
<toxicity type>, Less <toxicity type>, or Most <toxicity type>?” Now, answer
with just one word: No, Less or Most.

Rating Prompt — Binary

Given the above information about a drug, answer “was this drug associated with <toxicity
type>?" Now, answer with just one word: Yes or No.

2.3 Validation on DICTrank, DILIrank, and DIRIL

We first validated the toxicity ratings in UniTox by measuring the concordance of these ratings
with human-labeled toxicity ratings from three FDA-designed datasets: DICTrank, DILIrank, and
DIRIL. This required matching the drugs in UniTox to those in the FDA datasets using the drug data
available in these datasets. For DICTrank, we matched by generic drug name. For DILIrank, we
used the RxNorm [26] database to pull Structured Product Labeling (SPL) Set IDs for each drug,
then matched to the SPL IDs we used. For DIRIL, we matched to our toxicity generations on moiety
UNII codes. Then, for each of these three datasets, we evaluated UniTox and human toxicity rating
concordance among the matched drugs. Furthermore, to better understand what drives the LLM’s
performance, we performed ablations on DICTrank in Section [3.2.1] including a longer prompt with
the specific cardiotoxic keywords from DICTrank, using GPT-3.5 instead of GPT-40, and removing
the chain-of-thought step.

2.4 Clinician validation on other toxicities

For the five remaining toxicity types without pre-existing validation data, we worked with clinicians
to manually validate a subset of the UniTox toxicity ratings. Specifically, we asked clinicians to
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Table 1: Example UniTox Entries

Generic Name | ABALOPARATIDE ABEMACICLIB

Toxicity Pulmonary Pulmonary

Ternary No Most

Rating

Binary Rating | No Yes

Summary ... The sections of the label that ... associated with significant

(Trimmed) detail adverse reactions, warnings, | pulmonary toxicity risks, including
and precautions do not mention any | severe, life-threatening, or fatal
pulmonary-related issues directly interstitial lung disease (ILD) or
associated... pneumonitis... observed in clinical

trials, postmarketing settings...

read the toxicity summary and use both the summary and their knowledge of the drug to validate the
toxicity ratings for 100 randomly sampled drugs for each of the five toxicity types (two clinicians,
50 drugs per clinician per toxicity type). For each drug and toxicity type, the clinicians separately
evaluated both the ternary and binary toxicity ratings on a scale of 1 to 3, where 1 means “The
model’s score is factually correct and I agree with it”, 2 means“The model’s score is reasonable but I
don’t necessarily agree with it completely”, and 3 means “The model’s score is factually incorrect
and I disagree with it”. We also asked clinicians to flag if the LLM-generated toxicity summary did
not concord with their understanding of a drug and its use.

3 Results

Here, we present details about the UniTox dataset (Section @ Then, we discuss our validations on
external datasets and the effect of ablations on performance (Section . Next, we show results of
our clinician review of the five toxicities without pre-existing validation data (Section [3.3). Finally,
we illustrate the benefit of a unified toxicity dataset by training a GNN on UniTox (Section [3.4).

3.1 UniTox

UniTox contains 2,418 drugs with eight types of toxicities. For each drug and toxicity type, UniTox
includes (1) a GPT-40 generated summary of the drug label’s discussion of that toxicity, (2) a ternary
classification into No Toxicity, Less Toxicity, or Most Toxicity, (3) a binary classification into No
Toxicity and Yes Toxicity, and (4) the Stuctured Product Labeling (SPL) ID for the document used to
generate all data. Properties 1-3 are listed for two examples in Table[I] A key value of UniTox lies in
its summaries, which capture the nuance of each drug’s toxicity in a fraction of the length of the full
text labels (297 words on average in the summary compared to 8,254 words on average in the full
label). The value also lies in the toxicity ratings, which can be used as labels for training downstream
toxicity predictors. Where users wish to modify our LLM-generated ratings, they can utilize the short
summaries and avoid the need to read full-text drug labels.

UniTox is, to the best of our knowledge, the largest human in vivo drug-induced toxicity database by
number of drugs and number of toxicities. It covers a diverse range of drugs and clinical toxicities
that can often be difficult to identify in pre-clinical studies, containing both positive and negative
examples of drug toxicities. Figure [2| shows the number of drugs in UniTox with each ternary toxicity
rating for each toxicity type. While most toxicity types have a balance of toxic and non-toxic drugs
(30-65% classified as Most Toxic), it is worth noting that dermatological toxicity and ototoxicity are
outliers with 85% and 8% of the drugs predicted as Most Toxic, respectively.

3.1.1 Cross-toxicity analysis

One of the advantages of a unified toxicity dataset is the ability to determine whether drugs exhibit
multiple toxicities. This is, to the best of our knowledge, the largest systematic analysis across drug
classes of how different drug toxicities are related. Interestingly, we find that the number of toxicities
per drug approximates a normal distribution, centered at four of the eight toxicities.
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Figure 2: Distribution of ternary toxicity ratings  Figure 3: Heatmap of correlations between dif-
in UniTox across 2,418 drugs. ferent toxicity types in UniTox.

We then calculated pairwise correlations across the toxicities, using our binary ratings (Figure [3).
We find that liver toxicity and hematological toxicity are the most highly correlated, at 0.45, with
pulmonary and cardiotoxicity the second most correlated at 0.30, and liver toxicity and renal toxicity
third most correlated at 0.29. We did not find any negative correlations. We believe these results
can help future researchers better understand drug toxicity by examining potential causes of these
correlations and specific drugs that exhibit unusual patterns of toxicity across systems.

3.2 Validation on external datasets
3.2.1 DICTrank

UniTox has 1,181 label matches with the DICTrank dataset of 1,318 drugs. Usually, a lack of a
match indicates the drug has been withdrawn or discontinued and so a label is no longer available. To
binarize our results, we consider “Ambiguous-DICT-Concern”, “Less-DICT-Concern”, and “Most-
DICT-Concern” to be toxic, and “No-DICT-Concern” to be non-toxic. We similarly binarized our
ternary ratings by combining “Less” and “Most” into a single toxic category. This is the Ternary
column in Table 2] We also show results from dropping the “Less” category to focus on high
confidence predictions, in the Ternary w/o Less column. Finally, to match askFDALabel, we show
the results of binary ratings on only the ground truth “No-DICT-Concern” and “Most-DICT-Concern”
subset (Binary on GT No/Most column). Here, we obtain a significantly improved 93.0% accuracy
compared to askFDALabel’s 77.7% accuracy with a fine-tuned LLM and 71.5% with GPT-3.5.
We also present negative and positive predictive values as we want to maximize the share of each
predicted class that, if used as training labels, would have the correct labels.

3.2.2 DICTrank ablations and sensitivity analysis

To better understand our performance on the DICTrank dataset, we consider a series of ablations
(Table [2). First, we used a keyword summary prompt that contained the full list of DICTrank
keywords (e.g., myocardial infarction and Torsade de Pointes). We did not alter the ratings prompts.
Performance increases or decreases slightly on our different cuts of the data, likely demonstrating
that the GPT-40 model has a strong and accurate internal definition of cardiotoxicity.

Second, we ablated the chain-of-thought step (i.e., the summary prompt), instead providing the
full text of the drug label to the model when using the ternary and binary ratings prompts. We
note a consistent decrease in performance. Considering that our base ratings had access to only the
summaries, this shows the benefit of providing focused and thoughtful information about toxicity.

Third, we switched to GPT-3.5, which required truncating a small number of labels to fit into context.
askFDALabel achieved a DICTrank accuracy of 71.5% using GPT-3.5 while our use of GPT-3.5,
which applies our prompting strategy, achieved 88.4% accuracy. In particular, our prompt specifically
asked about “cardiotoxicity” while askFDALabel asked about “cardio-related adverse events or risks”,
which likely boosted performance. GPT-3.5 consistently performs worse than GPT-4o.
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Table 2: DICTrank, DILIrank, and DIRIL validation results

DICTrank Ternary  Ternary w/o Less (n=761) Binary on GT No/Most
Accuracy (%) 84.6 92.5 93.0
NPV (%) 79.6 79.7 96.2
PPV (%) 85.7 97.1 90.0
DICT ablation accuracies Ternary Ternary w/o Less (n) Binary on GT No/Most
Keyword summary prompt (%) 88.1 90.4 (924) 93.7
No CoT (%) 77.8 67.4 (629) 92.5
GPT-3.5 (%) 77.6 77.8 (855) 88.4
RAG fragment context (%) 94.2
askFDALabel (previous SOTA) 77.7
DILIrank Ternary Ternary w/o Less (n=525) Binary on GT No/Most
Accuracy (%) 81.1 85.0 86.2
NPV (%) 72.4 72.4 97.5
PPV (%) 83.8 92.4 71.9
DIRIL Ternary Ternary w/o Less (n=171) Binary on GT No/Most
Accuracy (%) 71.3 76.8 72.9
NPV (%) 75.9 75.9 66.4
PPV (%) 69.4 77.7 80.2

Finally, to better understand the role of using the full drug label, we applied our ratings prompts on the
RAG-retrieved label fragments from askFDALabel. Both performed similarly. However, generating
GPT-40 summaries only involved designing a short prompt, compared to building a custom RAG
system, and should cover all relevant information in the drug label. The RAG system returns only
the top-k fragments, so it may miss vital details. For example, our summary of the full label of
voclosporin (below) discussed the risk of QT prolongation in several sections of the label that were
not returned by the RAG system. As a result, only the prediction based on full context was correct.

Voclosporin: GPT-4o cardiotoxicity summary | DICTrank: Toxic | GPT-40: Toxic

4. Medication Guide, What are the possible side effects of LUPKYNIS? (Section 17):
Summary: LUPKYNIS may cause serious side effects, including a serious heart rhythm
problem (QT prolongation).

Association: The drug itself is associated with the risk of a serious heart rhythm problem
(QT prolongation).

In summary, LUPKYNIS is associated with cardiotoxicity risks, specifically QT prolongation,
which is dose-dependent and can be clinically significant when combined with other QT-
prolonging drugs. This risk is highlighted in multiple sections of the drug label, indicating
that the drug itself can cause these cardiotoxic effects.

Most interestingly, our GPT-40-generated summaries can reason through difficult edge cases. For
example, linagliptin is rated as Most-DICT-Concern for cardiotoxicity in DICTrank as the label
discusses heart failure. However, the label notes that “Heart failure has been observed with two other
members of the DPP-4 inhibitor class.” GPT-4o0, looking only at the three results returned by the
RAG system, predicts Yes for cardiotoxicity. However, GPT-40 provided with the full drug label
notes lingagliptin itself has not been associated with heart failure and discusses two large-scale trials
showing linagliptin did not increase major adverse cardiovascular events (see box below). As a result,
it predicts linagliptin has No Toxicity in the binary case. While this differs from the ground truth in
DICTrank, it is a reasonable response that comprehensively reasons across the drug label.
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Linagliptin: GPT-40 cardiotoxicity summary | DICTrank: Toxic | GPT-40: Non-Toxic

Observation: Heart failure has been observed with two other members of the DPP-4 inhibitor
class.

Association It is not explicitly stated that TRADJENTA itself causes heart failure, but the
risk is considered due to the class effect.

CARMELINA Trial: Primary Endpoint: The primary endpoint was the time to first
occurrence of major adverse cardiovascular events (MACE), including cardiovascular death,
non-fatal myocardial infarction, or non-fatal stroke. Results: The estimated hazard ratio for
MACE associated with TRADJENTA relative to placebo was 1.02, indicating no significant
increase in risk. Conclusion: TRADJENTA did not show an increased risk of major adverse
cardiovascular events compared to placebo.

Conclusion: Heart Failure: While heart failure has been observed with other DPP-4
inhibitors, TRADJENTA itself is not explicitly stated to cause heart failure but should be
used with caution in patients with risk factors. Cardiovascular Events: Clinical trials
(CARMELINA and CAROLINA) indicate that TRADJENTA does not increase the risk of
major adverse cardiovascular events compared to placebo or glimepiride.

3.2.3 DILIrank and DIRIL

We performed similar validations of DILIrank (liver toxicity) and DIRIL (renal toxicity), as seen in
Table 2| For DILIrank, we achieve similar performance as DICTrank on the 819 drugs where we
had a match. Our DIRIL results are less impressive, which may be due to the fact that DIRIL was
constructed using a different methodology compared to DICTrank and DILIrank, in which they took
labels from previous papers as given instead of primarily using FDA labels. For example, we note
that for 9 of our 25 false positives and for 8 of our 48 false negatives, at least one of the previous
papers agreed with GPT-40’s rating rather than the FDA paper’s determination.

However, it is also likely that GPT-40’s internal definition of renal toxicity is less calibrated to the
FDA’s definition than for other toxicities. Given that false negatives were more frequent in this
case than false positives, we analyzed the false negative cases and found that the GPT-40-generated
summary often noted that the use of the drug is cautioned in renally impaired patients. When
binarizing this summary, GPT-40 generated No Toxicity in these cases when the FDA reviewers
likely viewed this as a sign of toxicity. This shows that, even when the binary rating of the model
may differ from human labels, GPT-40 condenses valuable information for human reviewers.

3.3 Clinician evaluation of toxicity ratings

Figure [4| shows the distribution of clinician-derived scores of the LLM-generated UniTox labels
(ternary rating). Depending on the toxicity, 87-96% of the drugs were considered accurately labeled,
3-12% were ambiguous, and 1-12% were labeled incorrect.

While at least 87% of the clinician scores agreed with the UniTox labels, the disagreements reveal
some edge cases. For many of the drugs where the clinicians gave a rating of 2, the explanation was
a lack of direct data or evidence in humans for the specific toxicity. For example, trilaciclib got a
UniTox rating of Most Toxicity due to evidence that it may impair fertility in animals; however, the
clinician scored this rating with a 2 due to the lack of human evidence. On the other hand, trientine
hydrochloride capsules got a UniTox rating of No Toxicity as the label provided zero evidence that
this drug is associated with fertility risks; this also received a clinician score of 2 as the label simply
did not provide any data about fertility risks and the model was conflating a lack of evidence about
toxicity with evidence for a lack of toxicity. Indeed, based on this feedback, we added a new prompt
for infertility to clarify the level of available evidence (added as an additional column in UniTox).

A few of the validation set examples where clinicians disagreed with the model highlight genuine
errors in the model’s assessment. For example, ganciclovir injection got a UniTox rating of Less
Toxicity for ototoxicity. However, the label explicitly lists "tinnitus, ear pain, deafness" as observed
adverse effects, which should clearly be considered Most Toxicity.
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3.4 GNN toxicity prediction

Next, we demonstrate the utility of UniTox by using it to train machine learning models to predict
toxicity from molecular structure, which is an important aspect of drug discovery. We trained a
widely-used Chemprop-RDKit model, which is a Chemprop [19] graph neural network augmented
with 200 molecular features computed by the cheminformatics package RDKit [27]. We performed
ten-fold cross-validation using a challenging scaffold split, which means that molecules were clustered
by their core molecular scaffold and clusters were placed either entirely in the train set or entirely in
the test set. This ensures that similar drugs do not leak between train and test. The Chemprop-RDKit
model is trained in a multi-task setting with one model predicting all eight toxicities.

Since Chemprop-RDK:it is only designed to work with small molecules, we restricted UniTox to the
set of small molecule drugs (e.g., excluding biologics). We then used the PubChem [28]] API to match
generic drug names to SMILES. We deduplicated drugs by SMILES and removed any SMILES
where at least one of the toxicity ratings across the eight toxicities differ between different drugs with
the same SMILES (e.g., different formulations of the same drug). This resulted in a deduplicated
set of 1,349 drugs with unique SMILES and concordant toxicity ratings, which we refer to as the
UniTox-GNN subset. We trained our models in two binary classification settings: (1) binary, where
the GNN simply predicts the binary rating, and (2) confident ternary, where the GNN predicts No
Toxicity or Most Toxicity and ignores Less Toxicity from the ternary ratings.

As shown in Figure 3] the Chemprop-RDKit model performs reasonably well, with mean ROC-AUCs
exceeding 0.7 on five of the eight datasets in the confident ternary setting. Given the dataset size and
the inherent biological complexity of human in vivo toxicity, this performance is reasonable and is
within the range of other molecular property prediction models in the literature (e.g., ADMET-AI
[20]). While the model has poor performance on dermatological toxicity and ototoxicity, this is likely
due to the extreme class imbalance present in both datasets (87% with dermatological toxicity and 5%
with ototoxicity in the UniTox-GNN ternary ratings). Overall, these results illustrate the benefit of
building comprehensive toxicity datasets as it enables training molecular property prediction models
that can generalize to new molecules and could potentially be used as an in silico toxicity screening
tool prior to clinical validation.
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4 Discussion

In this work, we demonstrated the ability of GPT-4o to rapidly generate useful and accurate summaries
of complex drug labels. When binarized, these summaries had high concordance with the external
DICTrank (cardiotoxicity) and DILIrank (liver toxicity) datasets, and to a lesser extent, to the DIRIL
(renal toxicity) dataset. UniTox also had a high concordance with clinical reviewers, even for toxicities
without pre-existing comparable quantitative validation data. We demonstrate the value of these
summaries, and their binarized values, by training molecular classifiers with predictive value in most
cases. These labels, even where occasionally noisy, can serve as a benchmark for future classifiers
that seek to demonstrate consistent performance across toxicities. Such consistent evaluation of
downstream classifiers was not previously possible. Finally, we provide insight into the co-occurrence
of multiple toxicities from drugs in a unified format not previously available.

The clearest limitation of our work is the challenge of going from a nuanced summary of the drug
label to a binary or ternary rating. We note that common challenges are how to binarize toxicity
in cases where (1) toxicity occurred only in specific or pre-disposed populations (e.g., children or
impaired patients), (2) toxicity occurred only in other drugs of the same class, only in animals, or
only at high doses that may exceed clinical relevance, (3) common but mild reactions (e.g., rashes for
dermatological toxicity), and (4) rare reactions not easily observed except when specifically studied
(e.g., infertility), in which case a lack of evidence may not be sufficient to conclude a lack of toxicity.
These circumstances were often discussed in detail in GPT-40’s generated summaries but were lost
in the binary or ternary ratings. While we preferred consistent and simple prompts, perhaps more
complicated, guided ratings prompts could better handle these. For example, future work could set a
higher bar for dermatological toxicity.

Additionally, we note the ethical importance of accuracy in this case. We have taken steps to validate
our predictions, and we provide the nuanced GPT-40 summaries based on drug labels. Still, we note
here that these are LLM-generated predictions intended for drug research; they are not medical advice
and are not meant to inform healthcare decisions.

As LLMs become more frequently used in information extraction tasks, it is important to understand
their strengths and limitations. We demonstrate their value by creating an accurate and useful dataset
in a fraction of the time it would take humans to process this massive amount of text. In particular, we
show their ability to summarize text while maintaining its key information and nuance, and we create
useful labels for downstream classifiers. We also highlight particular reasons why further condensing
that information content into a single word remains challenging, for both models and humans.
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