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Abstract  
 
Understanding the within-host evolutionary dynamics of SARS-CoV-2, particularly in 
relation to variant emergence, is crucial for public health. From a community 
surveillance study, we identified 576 persistent infections, more common among males 
and those over 60. Our findings show significant variation in evolutionary rates among 
individuals, driven by nonsynonymous mutations. Longer-lasting infections accumulated 
mutations faster, with no link to demographics, vaccination status, virus lineage, or prior 
infection. The nonsynonymous rate was particularly high within the N-terminal and 
receptor binding domains of Spike. ORF6 was under strong purifying selection, making 
it a potential therapeutic target. We also identified 379 recurring mutations, with half 
having a negative fitness effect and very low prevalence at the between-host level, 
indicating some mutations are favoured during infection but disadvantageous for 
transmission. Our study highlights the highly heterogenous nature of within-host 
evolution of SARS-CoV-2 which may in turn help inform future intervention strategies. 
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Introduction 1 
 2 
The evolutionary dynamics of SARS-CoV-2 has been marked by the emergence of 3 
highly divergent variants, including initial variants of concern (VOCs) Alpha, Beta, 4 
Gamma, Delta, and Omicron, followed by second-generation variants such as BA.2.75, 5 
XBB.1.5, and JN.1 1–3. A notable feature of these variants is that they have a large 6 
number of nonsynonymous mutations compared to their closest ancestors, particularly 7 
in the Spike protein's N-terminal domain (NTD) and receptor-binding domain (RBD), and 8 
show signs of strong positive selection driven by increased transmissibility and antibody 9 
immune escape 4,5. Within-host evolution of SARS-CoV-2 likely plays a key role in 10 
shaping these patterns of evolutionary change over time. Many chronically infected 11 
individuals also show evidence of strong viral adaptive evolution, characterised by 12 
accelerated evolutionary rates that feature key lineage-defining mutations in Spike 1,6,7. 13 
Given the likely importance of long-term (persistent) infections on the evolution of the 14 
virus at the population scale, we sought to characterise the evolution of SARS-CoV-2 in 15 
‘typical’ persistent infections. 16 
 17 
The majority of studies on the evolutionary dynamics of persistent SARS-CoV-2 18 
infections have focussed on chronic cases. These are infections with consistently high 19 
viral titres, and are often found in hospitalised patients who are immunocompromised 20 
and receiving treatments. However, we recently showed that persistent SARS-CoV-2 21 
infections, many of which have rebounding viral loads, are also prevalent in the general 22 
population 8. There remains a major gap in our understanding of host factors 23 
contributing to higher odds of experiencing persistent infections, reasons why the virus 24 
undergoes accelerated adaptive evolution in certain individuals, but not in others, 25 
identifying genomic regions and mutations, particularly outside of Spike, that undergo 26 
adaptive evolution during persistent infections, and ultimately developing effective 27 
therapeutics to clear viral infections 9,10. Characterisation of evolution is particularly 28 
important to determine if adaptive changes during infections mirror the saltatory 29 
evolution of SARS-CoV-2 observed with the emergence of new, highly divergent 30 
variants. In addition, identifying mutations that present complex trade-offs, being 31 
advantageous at the within-host level and detrimental at the between-host level, is 32 
crucial for understanding evolutionary factors that contribute to prolonged viral 33 
replication within hosts and increased odds of transmission between hosts 6,11. 34 
 35 
Here, we explored the within-host evolutionary dynamics of SARS-CoV-2 in 576 36 
persistently infected individuals, who participated in the Office for National Statistics 37 
Covid-19 Infection Survey (ONS-CIS), and identified factors associated with rate 38 
differences between individuals. Investigating the evolutionary dynamics of SARS-CoV-39 
2 within persistent infections is essential for understanding the selective pressures that 40 
shape viral evolution at the within-host level, factors contributing to increased risk of 41 
resistance to treatments, and also to gauge the extent to which these individuals may 42 
contribute to the generation and subsequent spread of new variants 12–14. 43 
 44 
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Results 45 
 46 
Saltatory evolution between major lineages for nonsynonymous but not synonymous 47 
mutations 48 
 49 
Our analysis of the evolutionary dynamics of SARS-CoV-2 at the between-host level 50 
identifies two distinct patterns of mutation accumulation: within-lineage and between-51 
lineage rates. Within each major viral lineage, mutations accumulate linearly over time, 52 
indicating a steady evolutionary clock (Figure 1; see Methods).  53 

 54 
Figure 1: Evolutionary dynamics of SARS-CoV-2 at the between-host level. (a) Mutations 55 
accumulate linearly over time within each major viral lineage, punctuated by significant 56 
evolutionary leaps that demarcate these lineages (between-lineage rate; grey line). (b) This 57 
pattern is characterised by a disproportionate accumulation of nonsynonymous mutations at the 58 
point of transition between major lineages, whereas (c) synonymous mutations accumulate at a 59 
comparatively steady rate both within and across these lineages. Genetic distance within each 60 
major lineage is the Hamming distance between the putative ancestral sequence (shown with 61 
square markers) of that major lineage. The between-lineage distance is calculated as the 62 
Hamming distance between Wuhan reference sequence (NC_045512.2) and the putative 63 
ancestors of each major lineage. Lines represent the best fit from a linear regression. (d) 64 
Substitution rate per site per year (s/s/y) for genome-wide (total), nonsynonymous, and 65 
synonymous mutations, over time per major lineage. The substitution rates are 2.5-6.0x10-4 66 
s/s/y for genome-wide, 1.5-4.0x10-4 s/s/y for nonsynonymous, and 0.5-2.5x10-4 s/s/y for 67 
synonymous mutations per major lineage. The between-lineage rate is highlighted with grey 68 
circles.  69 
 70 
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The within-lineage rate is characterised by nonsynonymous and synonymous mutations 71 
accruing at relatively similar rates. Taking synonymous mutations as a baseline for 72 
neutral changes, this suggests that the within-lineage evolution is neutral or nearly 73 
neutral. However, the evolutionary pattern is punctuated by significant leaps at the 74 
points of transition between major lineages (see Figure 1). These transitions exhibit a 75 
much higher rate of accumulation of nonsynonymous mutations compared to 76 
synonymous ones (grey line in Figure 1a-c), indicating bursts of adaptive evolution that 77 
distinguishes one major lineage from another 15,16.  78 
 79 
It has long been hypothesised that this saltatory pattern of SARS-CoV-2 evolution at the 80 
between-host level comes from prolonged SARS-CoV-2 infections in 81 
immunocompromised individuals, where the virus has extended time to adapt and 82 
accumulate advantageous mutations without undergoing tight transmission bottlenecks, 83 
followed by the onward transmission of the highly divergent virus to the rest of the 84 
population 1. We set out to investigate whether viral evolution in long infections is 85 
consistent with this hypothesis by analysing the evolutionary dynamics of SARS-CoV-2 86 
in 576 persistently infected individuals identified as part of the ONS-CIS.  87 
 88 
Persistent infections are more frequent in older individuals and males 89 
 90 
We defined persistent infections as those with at least two RT-PCR positive samples 91 
with a high viral RNA titre (cycle threshold values ≤30), collected at time intervals of at 92 
least 26 days apart, and representing the same infection. We previously identified 381 93 
persistent infections within the ONS-CIS using samples collected between 2 Nov 2020 94 
to 15 August 2022 8. For the current analysis, we extended this dataset to samples 95 
collected up to 21 March 2023, and so covering the entire duration of ONS-CIS before it 96 
was paused 2, and thereby identifying an additional 195 persistent infections (see 97 
Methods).  98 
 99 
In total, our dataset comprised 576 cases of persistent SARS-CoV-2 infections, 100 
including 11 infections with B.1.1.7 (referred to as Alpha), 106 B.1.617.2 (referred to as 101 
Delta), 102 with BA.1, 204 with BA.2,16 with BA.4, 133 with BA.5, and 4 with XBB major 102 
lineages.  All persistent infections had viral sequencing data from at least two time 103 
points; 27 had sequencing data from three or more time points, typically collected at 20- 104 
to 40-day intervals, and the longest-lasting persistent infection spanned nearly a year 105 
with eight sequenced time points (Figure 2a-c).  106 
 107 
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 108 
Figure 2: Baseline characteristics of persistent SARS-CoV-2 infections. (a) Number of 109 
sequences per persistent infection. Numbers on each bar show the number of persistent 110 
infections per category. (b) Distribution of numbers of elapsed days between consecutive 111 
sequences collected per persistent infection. In cases where a persistent infection has multiple 112 
samples, each pair of consecutive samples is considered. (c) Number of days between the 113 
earliest and latest genomic samples for each persistent infection, with each point representing a 114 
persistent infection. Solid vertical lines are drawn at the 26- and 56-day marks to denote the 115 
thresholds for persistent infections lasting at least one month and two months, respectively. 116 
Numbers on the side of each bar shows the total number of persistent infections per major 117 
lineage. (d) Proportion of persistent infections in each sex and per age-group. Numbers on each 118 
bar show the raw number of persistent infections in each age-group. Grey bars on either side 119 
show the relative proportion of infections with a single positive PCR within the ONS COVID 120 
Infection Survey per sex and age group.  121 
 122 
Compared to individuals with a single positive PCR test within the ONS-CIS (hereafter 123 
referred to as non-persistent infections), persistently infected individuals were more 124 
prevalent in the above 60 age groups (X-squared = 8.98, df = 1, p-value = 0.00273; see 125 
also Figure 2d). We also found a significant association between sex and type of 126 
infection (X-squared = 21.28, df = 1, p-value = 3.97x10-6), with males representing 127 
57.8% of persistently infected cases compared to 48.1% of non-persistently infected 128 
cases. Although we lacked specific information about the underlying health conditions of 129 
participants, the age and sex profile of individuals with persistent infections closely 130 
mirrors the demographic characteristics of individuals diagnosed with Type 1 and Type 131 
2 diabetes in England 17.  132 
 133 
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Nucleotide diversity increases during infection 137 
 138 
We began investigating the within-host evolutionary dynamics of the virus in these 576 139 
individuals by first identifying intra-host single nucleotide variants (iSNVs) for each 140 
sample collected during infection, and measuring nucleotide diversity, π, over time (see 141 
Methods). An iSNV was called at a given genomic position if there was a minimum read 142 
depth of 10 at that position and a minor allele present at frequency of 20-50%. Positions 143 
where the majority of reads were gaps, and those where observed iSNVs are unlikely to 144 
represent genuine within-host diversity, were excluded from the analysis (see 145 
Methods).  146 
 147 
In the great majority of cases, nucleotide diversity at the earliest time point for each 148 
persistent infection was very low, with more than 61% (355/576) of infections displaying 149 
no detectable diversity (Figure 3a). This suggests that the first sample in most 150 
persistent infections was collected near the onset of infection, and with infection initiated 151 
by a single, or very closely related, variants 18,19. The average within-host diversity (π) of 152 
all sampling time points was approximately 4x10-5 per nucleotide which is more than an 153 
order of magnitude smaller than the between-host diversity at approximately 5x10-4 per 154 
nucleotide 2. As might be expected, this indicates that samples collected from the same 155 
infection have much lower diversity than samples collected independently from different 156 
individuals 20. Despite significant variation in diversity over time across different 157 
infections (Figure 3b), genetic diversity tended to increase until approximately 100 days 158 
after the first time point, at which point it either declined or began to plateau in most 159 
cases. This pattern suggests that iSNVs appearing late in the infection do not 160 
significantly contribute to the overall nucleotide diversity. This could be because they 161 
reach mutation-selection balance, remain at low frequency due to their deleterious 162 
fitness effects, or rapidly increase in frequency and become fixed. A similar pattern has 163 
also been observed during the within-host evolution of HIV 21.  164 
 165 
We also measured nucleotide diversity by codon position. The first and second codon 166 
positions typically induce nonsynonymous changes, while most mutations in third 167 
position result in synonymous changes 22. Looking at the first and second position 168 
across different genomic regions within our samples from persistent infections, the 169 
lowest nucleotide diversity was in open reading frame 6 (ORF6), with no diversity at the 170 
second position, indicating this genomic region is highly conserved and likely subject to 171 
strong purifying selection. Conversely, the Envelope (E) gene exhibited the highest 172 
diversity at the first two codon positions, followed by Spike (S) and ORF8 (Figure 3c). 173 
Some of the other genomic regions such as ORF1ab had a more uniform diversity 174 
across all three codon positions while ORF6 and Nucleocapsid (N) had higher 175 
synonymous diversity compared to nonsynonymous diversity across all genomic 176 
regions. 177 
 178 
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 179 
Figure 3: Within-host nucleotide diversity. (a) Aggregate nucleotide diversity (π) over time 180 
across all persistent infections. Each data point represents the diversity of a sample from a 181 
persistent infection at a given time since the first sequenced sample in that infection (t=0). The 182 
black line shows the median nucleotide diversity in 30-day intervals and the shaded area 183 
covers the interquartile range. (b) Nucleotide diversity over time for persistent infections with 184 
three or more samples. (c) Mean nucleotide diversity per codon position in each genomic 185 
region including the Open Reading Frames (ORFs), Spike (S), Envelope (E), Membrane (M), 186 
and Nucleocapsid (N). 187 
 188 
Higher prevalence of nonsynonymous mutations later in infection  189 
 190 
Next, we identified synonymous and nonsynonymous mutations present at 20% 191 
frequency or above at any time point over the course of infection, taking the majority 192 
allele at the first time point as reference (see Methods). Nearly 67% of all mutant alleles 193 
and 73% of those within the coding region were nonsynonymous, with less than 2% 194 
synonymous at the first and second codon positions (Figure 4a). ORF6, Membrane (M), 195 
and N had the highest proportion of synonymous compared to nonsynonymous 196 
mutations, and ORF8 the lowest (Figure 4b). Comparing the allele frequency of 197 
mutations at different points during infections, towards the start of infections (less than 198 
120 days since the first sampled time point), both nonsynonymous and synonymous 199 
alleles were typically at comparable frequencies, predominantly below 50% (Figures 200 
4c,d). However, later on nonsynonymous alleles tended to be at higher frequencies, 201 
likely indicative of positive selection (see Figure 4c,d). 202 
 203 
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 204 
Figure 4: Basic characteristics of mutant alleles. (a) Proportion of synonymous (green) and 205 
nonsynonymous (orange) mutant alleles per codon position observed in samples from 206 
persistent infections, taking the majority allele at the first time point as reference, compared to 207 
expectations under neutrality, taking NC_045512.2 as reference. (b) Proportion of alleles per 208 
mutation type for each genomic region including the Open Reading Frames (ORFs), Spike (S), 209 
Envelope (E), Membrane (M), and Nucleocapsid (N). (c) Proportion of synonymous and (d) 210 
nonsynonymous alleles over time across different frequency bands. The proportions of alleles 211 
within the smallest and largest frequency bands are highlighted for both early (t<30) and late 212 
(t≥120) stages of infection. 213 
 214 
Nonsynonymous alleles were two to three times more prevalent than synonymous ones 215 
across all frequency bands (see Supplementary Figure 1), with about 73% of mutants 216 
in the coding region that exceeded 50% frequency being nonsynonymous. This ratio is 217 
close to the expectation under neutrality, with 78% of all possible mutations across the 218 
genome expected to be nonsynonymous 22 (see Figure 4a,b). Given it has previously 219 
been found that half of the mutations causing nonsynonymous changes are purged both 220 
at the between-host level and during acute infections (dN/dS ≈0.5) 18,23, observing a 221 
ratio of nonsynonymous mutations that is similar to the neutral expectation in 222 
persistently infected individuals suggests that at least some genomic regions are under 223 
positive selection. 224 
 225 
Variation in evolutionary rates among infections is driven by nonsynonymous changes 226 
 227 
To determine the within-host evolutionary rates for each infection, we used changes in 228 
allele frequency relative to first sequenced time point (hereafter referred to as the 229 
baseline) as a proxy for measuring evolutionary distance over time (see Methods). 230 
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Within this framework, a full sweep of a mutant allele (a frequency change of 100%) 231 
contributes 1 unit of distance and a partial sweep with a frequency change of 40% 232 
contributes 0.4 units. This definition of evolutionary distance does not invoke any 233 
assumptions about the founder population, which might differ from the population at 234 
baseline, as it relies on absolute changes in allele frequencies to measure evolutionary 235 
distance 24. 236 
 237 
Allele frequencies change over the course of infection both as a result of sampling noise 238 
and actual evolution. To assess the impact of sampling noise on the variation in allele 239 
frequencies over time, we required that at least one allele be present at a frequency of 240 
≥20% at at least one time point per persistent infection. In other words, if no allele 241 
meets this threshold in any sample from a persistently infected individual, we will not 242 
(incorrectly) assume there is zero noise (or evolution) due to insufficient data. We also 243 
limited our analysis to samples with sufficient sequencing coverage to ensure unbiased 244 
estimates of genetic distance per site and, therefore, excluded samples where the 245 
number of overlapping base pairs between the consensus sequence at the baseline and 246 
the consensus sequence of the sample was less than half the length of the genome. 247 
Approximately 14% (82/576) of persistent infections did not meet these criteria and 248 
were excluded. We categorised the genetic distances as either synonymous or 249 
nonsynonymous, depending on whether the mutant alleles induced a synonymous or 250 
nonsynonymous change to the consensus sequence at the baseline for each persistent 251 
infection. 252 
 253 
To determine within-host evolutionary rates we used linear regression models, with the 254 
slope of the regression line representing the rate of evolution and the y-intercept the 255 
level of background noise in the data. The non-zero y-intercept could be attributed to 256 
sampling noise and/or residual population structure at baseline 24. To determine the 257 
most appropriate model for measuring within-host evolutionary rates, we compared 258 
several linear regression models with varying levels of complexity based on their 259 
Bayesian Information Criterion (BIC) values. This comparison included a null model 260 
which assumed a single fixed slope and y-intercept for all persistent infections (see 261 
Methods).  262 
 263 
For genome-wide and nonsynonymous genetic distances, a linear mixed-effect model 264 
which assigned a unique evolutionary rate to each persistent infection, but a fixed y-265 
intercept for all infections, gave the best fit (Supplementary Table 1). For synonymous 266 
distances, a model with a single rate for all infections, but a random y-intercept for each 267 
infection, was the most appropriate model. This suggests there was considerable 268 
variation in the rate of evolution among individuals, predominantly influenced by 269 
nonsynonymous changes, and no strong evidence supporting variation in rate of 270 
synonymous evolution across individuals. We also confirmed that the level of noise in 271 
allele frequencies is not associated with different sequencing centres (see Methods and 272 
Supplementary Table 1). 273 
 274 
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The median genome-wide evolutionary rate was 7.9x10-4 substitutions per site per year 275 
(s/s/y) with an interquartile range (IQR) of 7.0-9.0x10-4 s/s/y (Figure 5a). Almost 95% 276 
(469/494) of persistent infections exhibited an evolutionary rate exceeding 5.5x10-4 277 
s/s/y, indicating that the vast majority of individuals experienced a rate surpassing the 278 
between-host within-lineage evolutionary rate of SARS-CoV-2 which typically ranges 279 
from 2.5 to 5.0x10-4 s/s/y for the Alpha, Delta, and Omicron sublineages (see Figure 1). 280 
Furthermore, 23% (114/494) of the infections had an evolutionary rate higher than the 281 
between-lineage rate of 1x10-3 s/s/y. The rate of nonsynonymous evolution was 5.0x10-4 282 
(IQR: 4.4-6.1x10-4) s/s/y, which was about four times higher than the synonymous rate 283 
of 1.2x10-4 s/s/y across most persistent infections (see Figure 5). 284 
 285 
The considerably higher rate of nonsynonymous evolution indicates at least some 286 
nonsynonymous mutations are subject to positive selection, and moreover that this 287 
selective pressure differs among individuals. In contrast, the preference for a regression 288 
model with a single rate for synonymous mutations implies that these mutations are 289 
evolutionarily neutral or nearly neutral, evolving at approximately the same rate across 290 
all individuals.  291 
 292 

 293 
Figure 5: Rates of genome-wide, nonsynonymous, and synonymous evolution in 294 
persistently infected individuals. (a) Distribution of inferred evolutionary rates per individual, 295 
based on analyses using a linear mixed-effects model optimised for the best fit to the data (as 296 
indicated by the lowest BIC value). The model differentiates between unique genome-wide 297 
(black) and nonsynonymous (orange) rates for each individual, while applying a single 298 
synonymous rate (green) across all individuals. (b) Illustrates the evolutionary distance over 299 
time for three selected persistently infected individuals – see Supplementary Figure 7 for all 576 300 
persistent infections. Points on the graphs represent the total genetic distance from the 301 
consensus sequence at the initial time point, calculated based on allele frequency changes over 302 
time. Dashed lines indicate the regression lines that best fit these data. (c) Shows the mutant 303 
allele frequency trajectories for the three persistent infections examined, categorised into 304 
synonymous, nonsynonymous, and non-coding (grey) mutations – see Supplementary Figure 2 305 
for trajectories in all individuals with measurable evolution in at least 3 time points. Each 306 
mutation that reached a minimum frequency of 20% at least at one time point is shown. We can 307 
see partial and full sweeps of de novo mutations over the course of persistent infections. A 308 
horizontal grey line across the graphs marks the 20% allele frequency threshold. 309 
 310 
To assess how well our model choices fit the data, we further examined the 13 311 
persistent infections with three or more sequenced samples, and that included at least 312 
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one measurement of genetic distance for both synonymous and nonsynonymous 313 
mutations (Supplementary Figure 2). The best fit regression lines captured most of the 314 
changes in the genetic distances over time, with nonsynonymous mutations occurring 315 
more frequently, and reaching higher frequencies, than synonymous ones 316 
(Supplementary Figures 2a,b; see also Figures 5b,c). We typically observed two 317 
distinct patterns in allele frequencies across different persistent infections. In some 318 
cases, transient alleles emerged together at one time point, before disappearing at the 319 
later time points, suggesting we are capturing distinct subpopulations within infections. 320 
In other cases, we observed the near complete sweep of mutations from low to high 321 
frequencies. Other cases were largely a combination of both patterns with some 322 
mutations appearing and disappearing in groups while others were present throughout 323 
most of the infection (see Supplementary Figure 3). 324 
 325 
The nonsynonymous divergence rate is highest in the receptor binding domain 326 
 327 
To explore evolutionary rate variation across the genome, we next assumed the 328 
consensus sequence at baseline represents the founder virus, and that the start of 329 
infection occurred at the midpoint between the last negative PCR test and the first 330 
sampled time point of the persistent infection. For the majority of infections, the last 331 
negative PCR test was taken between 20 to 40 days before the baseline (see 332 
Supplementary Figure 4). Using the estimated infection start dates, we calculated an 333 
evolutionary rate for each region of the genome, aggregating across all individuals (see 334 
Methods). We called this the divergence rate to distinguish it from the approach we 335 
took to measure evolutionary rates per individual, because most infections had only a 336 
limited number of mutations, which precluded a calculation of a per-individual rate per 337 
gene or gene segment. This commonly used approach to measuring within-host 338 
divergence rates comes with two key disadvantages compared to the intra-infection 339 
evolutionary rates we measured in the previous section. First, it requires estimating the 340 
time elapsed since the start of the infection rather than using only known sample 341 
collection dates. Second, this method has a tendency to ascribe any changes in allele 342 
frequencies, or their absence, to substitution rates rather than to sampling noise. 343 
 344 
We observed considerable variability in the rate of divergence across the genome 345 
(Figure 6). The bulk of this rate variation among different genomic regions came from 346 
nonsynonymous changes, with the rate of synonymous divergence remaining relatively 347 
uniform across most regions, except for the M and N genes which had a synonymous 348 
rate nearly double that of the other regions (Figure 6a). ORF8 and S had the highest 349 
rates of nonsynonymous divergence, nearly five times greater than the rates of 350 
synonymous divergence, whereas ORF6 showed the lowest rate of nonsynonymous 351 
divergence, further indicating it is likely under strong purifying selection. 352 
 353 
Looking at divergence rates across non-overlapping gene segments of 100 base pairs 354 
in length, most segments in ORF1ab and S, which together make up approximately 355 
85% of the SARS-CoV-2 genome, displayed low levels of variation in synonymous 356 
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divergence rates, while nonsynonymous rates varied up to 5 times in some segments of 357 
ORF1ab, and 10 times in S (Figure 6b-d). The end tail of the RBD in S (22990 to 358 
23090) had the highest rates of nonsynonymous divergence, suggesting that it is under 359 
strongest positive selection (Figure 6d). Accelerated nonsynonymous evolution in the 360 
NTD and RBD during persistent infections supports the idea that these infections are 361 
the main source behind the emergence of highly divergent variants at the population 362 
level. New major lineages that successfully spread also exhibit an overabundance of 363 
nonsynonymous mutations in the same genomic regions compared to other circulating 364 
lineages at the time of their emergence in the population. 365 
 366 

 367 
Figure 6: Virus divergence rates across the genome. (a) This panel presents the estimated 368 
divergence rates from the putative founder, showcasing genome-wide (black), nonsynonymous 369 
(orange), and synonymous (green) substitution rates across different regions. The distributions 370 
represent the bootstrap estimates derived from 576 persistent infections. (b-d) Display the 371 
estimated divergence rate per 100 (nonoverlapping) base pair segments of the genome for non-372 
structural proteins (NSPs): NSP 1 to 4 in (b), NSP 5 to 15 in (c), and NSP 15 and 16, along with 373 
other structural non-structural proteins and accessory factors in (d). Shaded area represents the 374 
95% confidence intervals from bootstrapping. Recurrent mutations identified in three or more 375 
persistent infections are highlighted. 376 
 377 
Recurrent within-host mutations with transient fitness advantage 378 
 379 
We found 379 (262 nonsynonymous and 117 synonymous) mutations found in at least 380 
two individuals among the 576 persistent infections (Source file; see also Figure 5b-d). 381 
The highest concentration of these recurrent mutations that were nonsynonymous were 382 
in ORF8 (24 mutations), E (14 mutations), and S (210 mutations), whereas the highest 383 
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concentration of recurrent synonymous mutations was in ORF7b (3 mutations) and M 384 
(14 mutations).  385 
 386 
The per-lineage fitness effect of recurrent mutations was measured at the between-host 387 
level using a globally representative SARS-CoV-2 phylogeny 25. When fitness effects 388 
were examined within the same major lineage as the virus from persistent infections, 389 
54% of these mutations showed a positive fitness effect (Supplementary Figure 5a-c). 390 
Most recurrent mutations also had very low population-prevalence with nearly 47% 391 
being present in less than 0.01% of all samples within ONS-CIS sequences from the 392 
same major lineage as the virus from persistent infections (Supplementary Figure 5d). 393 
This suggests that almost half of the recurrent mutations have a fitness advantage at 394 
the within-host level but a fitness disadvantage and low prevalence at the between-host 395 
level. 396 
 397 
The most recurrent mutations were S:N405D (with corresponding nucleotide 398 
substitution A22775G in 8 infections), NSP14: T516T (T19587A, in 13 infections), and 399 
NSP14:C382G (T19183G, in 10 infections), all of which were found in persistent 400 
Omicron infections, BA.2, BA.4, and BA.5. The highly recurrent Spike mutations that 401 
were found in at least three persistent infections and had very high between-host fitness 402 
effects were S:L452R, S:K356T, and S:T547K all of which are lineage-defining 403 
mutations (see Supplementary Figure 5e). In particular, S:K356T is lineage-defining 404 
for BA.2.86 and was found in multiple BA.2 and BA.5 persistent infections. On the other 405 
hand, most of the highly recurrent mutations with strong negative between-host fitness 406 
effects were concentrated in various non-structural proteins of ORF1ab (see 407 
Supplementary Figure 5e). 408 
 409 
We also investigated potential associations between host characteristics and recurrent 410 
mutations in SARS-CoV-2 persistent infections. Specifically, we examined whether 411 
there is an association between the age group of the persistently infected individual and 412 
the number of times a mutation recurs (Supplementary Figure 5f), the between-host 413 
fitness effect of recurrent mutations and the age group of the individual in which they 414 
appeared (Supplementary Figure 5g), and the fitness effect of the recurrent mutations 415 
with respect to the duration of persistent infections (Supplementary Figure 5h). 416 
However, we found no strong associations between these factors. 417 
 418 
Infection duration is correlated with evolutionary rates 419 
 420 
We found no significant associations (ΔBIC < 0) of age, sex, vaccination status, prior 421 
infection, or virus lineage with within-host evolution rates. This evaluation was based on 422 
comparing the BIC values of the best-fit regression model for determining within-host 423 
rates with models that included each of these parameters as an additional fixed effect 424 
(see Supplementary Table 2). Notably, our observation that the within-host 425 
evolutionary rates do not significantly differ between vaccinated and unvaccinated 426 
individuals suggests that vaccination does not lead to accelerated evolutionary rates. 427 
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We were also interested in investigating whether experiencing a viral rebound had an 428 
impact on evolutionary rates. To do this, we categorised persistent infections into either 429 
persistent-chronic (consistently positive PCR tests throughout the infection) or 430 
persistent-rebounding (at least one negative PCR test during the infection); see also ref 431 
8 for more about these two categories. We found weak evidence (ΔBIC=1) in support of 432 
a positive association between experiencing a rebounding viral load and an elevated 433 
nonsynonymous evolutionary rate. After controlling for duration of infection, since it is 434 
more likely to identify persistent-rebounding infections when the infections are longer 435 
(i.e. more time to pick up a negative PCR test during a prolonged infection), by only 436 
examining a subset of infection where the duration of infection is longer than at least 56 437 
days, we found no association between viral rebound and higher evolutionary rates 438 
(ΔBIC <0). However, we did identify a positive association (ΔBIC >2) between the 439 
evolutionary rates and the duration of infection, indicating that longer infections exhibit 440 
higher rates of nonsynonymous evolution. To determine if this association was biased 441 
by the lower genetic diversity typically seen in shorter infections, which could result in 442 
lower evolutionary rate estimates, we also examined longer infections lasting at least 56 443 
days. Our analysis confirmed statistical support (ΔBIC >2) for the positive relationship 444 
between infection duration and evolutionary rates, even within these subsets of 445 
infections (see Supplementary Table 2). 446 
 447 
Discussion 448 
 449 
We characterised viral genomic diversity and within-host evolutionary rates in 576 450 
individuals with persistent SARS-CoV-2 infections, identified through large-scale 451 
community surveillance, and including samples collected between November 2020 to 452 
March 2023. Central to our investigation was the hypothesis that persistent infections 453 
could serve as the primary source for the saltatory evolution of the virus at the between-454 
host level, mirroring the same evolutionary changes we see with the emergence of 455 
highly-divergent variants. This premise led us to identify host characteristics associated 456 
with prolonged infections and to characterise viral evolutionary patterns across the 457 
genome and between individuals.  458 
 459 
We observed significant variability in within-host viral evolutionary rates between 460 
infections. This variability was predominantly attributed to the different rates at which 461 
individuals accumulated nonsynonymous mutations, with the rate of synonymous 462 
mutations being similar among all individuals and typically more than four-fold slower 463 
than the rate of nonsynonymous mutations. This variability among individuals explains 464 
previous findings of limited consensus change mutations in some individuals and over-465 
abundance of mutations in others 8,26. We also observed considerable variability in 466 
nonsynonymous evolutionary rates across most of the genome, but not synonymous 467 
rates, with the receptor binding domain of the Spike protein having the highest rate of 468 
nonsynonymous evolution relative to all other genomic regions. We also found elevated 469 
synonymous rates in M and N genes which suggest they could have functional benefit 470 
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for mRNA stability and translation efficacy, particularly on phosphorylation sites that are 471 
abundant in N 9. 472 
 473 
Although older individuals were more likely to experience persistent infections, we found 474 
no evidence to suggest that host factors such as age, sex, vaccination status, virus 475 
lineage, previous infection, or dynamics of viral RNA titres significantly affected 476 
evolutionary rates. However, we did observe a positive association between 477 
evolutionary rates and the duration of infection, with longer-lasting infections exhibiting 478 
higher rates of nonsynonymous evolution. We speculate that individuals with longer 479 
infections may have more impaired immune responses, and/or be undergoing 480 
treatment, which may result in faster rates of adaptive evolution. Our examination of 481 
recurrent within-host mutations which are rare in the general population and have 482 
negative between-host fitness effects further illustrates the complex evolutionary 483 
dynamics at play within persistent infections. These mutations likely confer a selective 484 
advantage within hosts due to enhanced replication rates and/or immune evasion. 485 
However, they may prove detrimental at the between-host level, for example if they 486 
result in reduced transmissibility of the virus between individuals 11,27,28. 487 
 488 
We found that ORF6 had the lowest levels of nonsynonymous diversity and divergence 489 
rate compared to the other genomic regions, indicating it is functionally conserved 490 
during persistent infections. Strikingly, we found no diversity in the second codon 491 
position of ORF6; all mutations at this position would be nonsynonymous. These 492 
observations are consistent with several studies that have highlighted the crucial role of 493 
ORF6 in viral replication and disease progression 29–31. These results suggest that 494 
ORF6 could be a promising candidate for the development of therapeutic drugs for 495 
treating individuals with persistent infections32.  496 
  497 
Many of the recurrent mutations identified in our study have been found to have 498 
functional importance for SARS-CoV-2. For example, the mutation S:G446V is linked to 499 
treatment resistance 33. The mutation NSP3:T820I frequently occurs in patients treated 500 
with Nirmatrelvir and Ritonavir 34, while NSP7:L3935L is commonly found in cancer 501 
patients and those undergoing immunosuppressive or steroid therapies 35. Another 502 
mutation, S:D1153Y, is known for its antibody escape properties 36. The mutation 503 
M:N117K may play a role in the glycosylation of the virus 37. Also, recurrent mutations 504 
S:L216F, S:S98F, and N:P151S have previously been identified as being under 505 
multilevel selection, beneficial at the within-host level but deleterious at the between-506 
host level 11.  507 
 508 
Our findings shed light on the complex interplay between persistent SARS-CoV-2 509 
infections, the demographic characteristics of those infected, and the evolutionary 510 
mechanisms driving the virus evolution within these individuals. This study also 511 
underscores how persistent infections may contribute to the emergence of highly 512 
divergent variants, with factors such as the duration of infection and accelerated rate of 513 
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evolution at nonsynonymous sites, particularly in the RBD of Spike protein, influencing 514 
their evolutionary rates.  515 
 516 
Methods 517 
 518 
ONS COVID-19 Infection Survey 519 

 520 

This work contains statistical data from ONS which is Crown Copyright. The use of the 521 
ONS statistical data in this work does not imply the endorsement of the ONS in relation 522 
to the interpretation or analysis of the statistical data. This work uses research datasets 523 
which may not exactly reproduce National Statistics aggregates. 524 
 525 
The Office for National Statistics Covid-19 Infection Survey (ONS-CIS) is a UK 526 
household-based surveillance study, which began in the UK from April 2020 38 and was 527 
first paused in March 2023 2. Our analysis here covered the period from 2 Nov 2020 to 528 
21 March 2023. Households from nationwide address lists were invited to participate 529 
(every household member aged two years and above), ensuring as representative a 530 
cross-section of the population as possible. Participants gave written informed consent 531 
to contribute swab samples (self-collected or by a parent/carer for those under 12 532 
years), irrespective of symptoms, and completed a questionnaire for each assessment. 533 
 534 
Most of the participants in the survey consented to routine PCR sampling at weekly 535 
intervals for the first month of enrollment and monthly thereafter for the duration of the 536 
study 2,8. From December 2020, all cases where a participant tested positive with a high 537 
viral load (Ct ≤30), their sample was further sent for sequencing. 538 
 539 
Sequencing 540 
 541 
Samples were sequenced at one of five sequencing centres, University of Oxford 542 
(OXON), Northumbria University and associated NHS foundation trusts (NORT), 543 
National Infection Service Public Health England (PHEC), Quadram Institute 544 
Bioscience, Norwich (NORW), and Wellcome Sanger Institute (Sanger). The great 545 
majority of samples were sequenced on Illumina Novaseq, with the rest using Oxford 546 
Nanopore GridION or MINION. The standard consensus FASTA sequences for all 547 
ONS-CIS samples were generated using the ARTIC Nextflow processing pipeline (v1) 548 
39, or veSeq, an RNA sequencing protocol based on a quantitative targeted enrichment 549 
strategy 2,40 with consensus sequences produced using Shiver (v1.5.8) 41. For additional 550 
information about the survey, sequencing protocol, and FASTA consensus sequence 551 
protocol see 2,8. 552 
 553 
 554 
 555 
 556 
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Identification of persistent infections 557 

 558 
We used the consensus sequences generated using ARTIC Nextflow or Shiver to 559 
determine whether two or more sequences from the same individual were from the 560 
same infection, using the method outlined in 8. Briefly, if two sequences from the same 561 
individual were collected at least 26 days apart, were of the same major lineage, and 562 
shared a rare single nucleotide polymorphism (SNP) compared to the population-level 563 
consensus, the individual was determined to be persistently infected. Our analysis 564 
covered infections with the Alpha, Delta, Omicron BA.1, BA.2, BA.4, BA.5, and XBB 565 
major lineages, and a SNP was deemed to be rare if found in <400 samples of that 566 
lineage (see Supplementary Figure 6). Due to possible misclassification of some BA.2 567 
sequences as BA.5 and vice versa using the Pango lineage nomenclature 42, we 568 
considered the possibility that some BA.5 sequences could belong to a BA.2 infection. 569 
This approach identified 3 cases of BA.2 persistent infections, which included at least 570 
one sequence misclassified as a BA.5 lineage. Without requiring any additional 571 
adjustment to separate second-generation BA.2 (e.g. BA.2.75) and BA.5 (e.g. BQ.1) 572 
major lineages from their closest ancestors, our method reliably recovered subsets of 573 
infections within BA.2 and BA.5 that were attributable to second-generation variants. 574 
Specifically, we found 21 BA.2.75 and 25 BQ.1 persistent infections.  575 
 576 
Identifying intra-host single nucleotide variants 577 
 578 
We called an intra-host single nucleotide variant (iSNV) at a given position in the 579 
genome if there were 10 or more bases called at that position, including gaps, and if the 580 
most common minor allele was present at 20% or more but less than 50%. The small 581 
number of bases required to call an iSNV was chosen because many samples had low 582 
viral titre, whilst the 20% threshold was to avoid biases introduced by differing amounts 583 
of sequencing noise across all the samples. 584 
 585 
We also identified mutations, which we defined as iSNVs or major alleles that differed 586 
from the majority allele at the first sampling time point, and reached at least 20% 587 
frequency at baseline or any of the subsequent time points. Whereas iSNVs are always 588 
less than 50% frequency by definition, a mutation can be at any frequency above 20% 589 
(including 100%). To ensure consistency of methods across our analyses, we also 590 
defined the majority-rule consensus at each sampling as the majority allele, with a 591 
minimum of 10 bases to call a consensus at any given position. Unless stated 592 
otherwise, when we refer to the consensus we mean the majority-rule consensus, not 593 
the consensus generated using ARTIC Nextflow or Shiver. 594 
 595 
Some positions in the genome are prone to having low frequency iSNVs in a high 596 
proportion of samples, and are often sequencing centre specific. Although we do not 597 
know what causes these low frequency iSNVs, they are unlikely maintained through 598 
descent and we therefore label them ‘artefactual iSNVs’. For each sequencing centre in 599 
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our study, we masked genomic positions where an iSNV was present at ≥2% frequency 600 
in more than 1% of samples from that sequencing centre. 601 
 602 
Nucleotide diversity 603 
 604 
Nucleotide diversity was calculated using the π statistic, which is the common measure 605 
of diversity least affected by the number of sequences used in the analysis 43. For each 606 
persistent infection, nucleotide diversity at a given time point is given by: 607 
 608 

 609 
 610 
where L represents the number of nucleotide positions being examined, and Dl the 611 

genetic diversity at locus  with an iSNV present at a frequency ≥20%. This is 612 
calculated as: 613 
 614 

 615 
 616 
where ni represents the number of nucleotides i = A, C, G or T (not including gaps), and 617 
N the total number of reads at that locus.  618 
 619 

Estimating within-host genetic distance 620 

 621 
We used differences in mutant allele frequencies between two sequences from the 622 
same infection to calculate the genetic distance between the sequences. This is similar 623 
to an approach that has been used to measure within-host evolutionary rates of 624 
influenza A in a chronically infected individual 24. We calculated changes in allele 625 
frequency relative to the first sequenced time point in each persistent infection. 626 
Synonymous and nonsynonymous distance was determined by whether the mutant 627 
allele would result in the same (synonymous) or a different (nonsynonymous) amino 628 
acid being coded for compared to the first time point in the infection.  629 
 630 
Following this definition of evolutionary distance, a mutant allele i, present at frequency 631 
fi(t0) at the first time point and fi(tk) at the kth time point contributes |fi(tk) - fi(t0)| to the 632 
pairwise distance between the two sequences. More generally, if the pair of sequences 633 
has M mutant alleles, the total genetic distance between them is 634 
 635 

d(tk,t0) = ∑i∈M |fi(tk) - fi(t0)| ,   636 

 637 
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where |.| represents the absolute change of allele frequency. We excluded pairs of 638 
samples where the total number of overlapping base pairs between the two consensus 639 
sequences is smaller than 50% of genome length as these can give rise to deflated or 640 
inflated measures of genetic distance per site.  641 
 642 
Estimating within-host evolutionary rate 643 

 644 
We quantified within-host evolutionary rates by assuming a linear relationship between 645 
the genetic distance and the time elapsed since the first sequence was collected from 646 
each individual. 647 
 648 
A linear regression model represented the changes in genetic distance relative to first 649 
sequence over time within each persistent infection as 650 
 651 

 d(tk,t0) ≈ r |tk - t0| + e , 652 

 653 
where r is the evolutionary rate and e is the y-intercept, which represents the expected 654 
amount of noise when measuring genetic distance. The noise could arise from either 655 
sequencing error or undiagnosed population structure 24. If a persistent infection does 656 
not have a detectable mutant allele that reaches frequency ≥20%, we exclude that 657 
individual from evolutionary rate analysis as we cannot quantify the contribution of noise 658 
in frequency change of alleles. 659 
 660 
Our analysis encompassed five different regression models with varied levels of 661 
complexity (see Supplementary Table 1) to estimate genome-wide, synonymous, and 662 
nonsynonymous within-host evolutionary rates. We used the Bayesian Information 663 
Criterion (BIC) value for model selection, balancing model complexity against fit quality. 664 
 665 
The y-intercept can be interpreted as the baseline level of noise in changes of allele 666 
frequencies. With a fixed nonsynonymous y-intercept at 3.4x10-5 substitutions per site 667 
and an average of 4.5 nonsynonymous mutations per infection, we can estimate that 668 
roughly 23% of the variations in nonsynonymous allele frequencies may be attributed to 669 
noise. Conversely, for a typical synonymous mutation characterised by a y-intercept of 670 
2.2x10-5 substitutions per site and an average of 1.6 synonymous mutations per 671 
infection, about 40% of changes in allele frequencies are driven by noise. While we 672 
expect the contribution of sampling noise to be the same for both synonymous and 673 
nonsynonymous mutations, biological factors such as selection and functional 674 
constraints may not be uniform across different mutation types. More specifically, given 675 
that synonymous mutations are more likely to be neutral or nearly neutral, their baseline 676 
noise can be more reflective of sampling noise and the stochastic nature of viral 677 
replication and mutation.  678 
 679 
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We examined the following linear regression models for measuring evolutionary rates 680 
and baseline noise: 681 
 682 
(i) Complete pooling: di(t) = r0 t + e0 + εi(t) 683 
 684 
This model assumes a single (fixed) underlying rate, denoted as r0, and intercept, e0, 685 
which describes a common evolutionary rate and noise contribution across all 686 
individuals. The error term εi(t) represents the residual unexplained variability in 687 
distance, di(t) for persistent infection i. 688 
 689 
Models (ii) to (v) all incorporate partial pooling with varying degrees of complexity. 690 
 691 
(ii) Random intercept: di(t) = r0 t + ei + e0 + εi(t) 692 
 693 
A linear mixed effect model which assumes a shared rate, r0, and error, e0, across all 694 
infections (fixed effects)with each infection i also having a unique intercept ei, indicative 695 
of individual-level noise variation (random effect). 696 
 697 
(iii) Random slope with one fixed intercept: di(t) = (r0+ri) t + e0 + εi(t)  698 
 699 
A linear mixed effect model which assumes a single (fixed) underlying rate,r0, and error, 700 
e0, shared by all individuals in addition to a unique underlying rate, ri, for each persistent 701 
infection, i (random effect).  702 
 703 

(iv) Random slope with multiple fixed intercepts: di(t) = (r0+ri) t + ∑j  ej + εi(t) 704 

 705 
Considering potential sequencing centre-specific noise, we categorised y-intercepts into 706 
nine groups, based on where the sequences were sampled. For instance, if the initial 707 
sample from a persistently infected individual was sequenced in Sanger Institute 708 
("Sanger") and a subsequent sample in the University of Oxford ("OXON"), the y-709 
intercept corresponding to this persistent infection belong to the j=("Sanger", "OXON") 710 
category. There are a total of nine such y-intercept categories, represented as 711 
j∊{(NORT, PHEC), (NORT, NORW), (NORT, Sanger), (OXON, PHEC), (Sanger, 712 
OXON), (NORT), (PHEC), (OXON), (Sanger)}. There are 9 pairs of samples that are 713 
(NORT, PHEC), 4 (NORT, NORW), 90 (NORT, Sanger), 14 (OXON, PHEC), 1 (Sanger, 714 
OXON), 147 (NORT), 16 (PHEC), 10 (OXON), and 331 (Sanger). We assessed these 715 
categories for their impact on baseline noise in the data, assuming their influence is 716 
constant over time. This model therefore introduces nine fixed effects ej to account for 717 
variations in y-intercepts due to sequencing noise levels. 718 
 719 
(v) No pooling: di(t) = ri t + ei 720 
 721 
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Each persistent infection, denoted as i, has a unique rate and error term. In practice, 722 
this model cannot be applied to our dataset because the number of measurements is 723 
smaller than the number of random effects, as persistent infections with only two 724 
samples yield a single measurement for genetic distance. 725 
 726 
Our analysis showed, based on the lowest BIC value, that the random slope with one 727 
fixed intercept regression model (iii) best explains genome-wide and nonsynonymous 728 
evolutionary rates while the random intercept regression model (ii) best explains 729 
synonymous rate for persistent infections. The lines of best fit for all the persistent 730 
infections with measurable evolution is shown in Supplementary Figure 7. 731 
 732 
Estimating within- and between-lineage rates at the between-host level 733 
 734 
To assess the saltatory evolution of SARS-CoV-2 at the between-host level, we used a 735 
previously identified representative sample from the ONS-CIS dataset 2. This dataset 736 
covered sequences from the Alpha, Delta, Omicron BA.1, BA.2 (excluding BA.2.75), 737 
BA.2.75, BA.4, BA.5 (excluding BQ.1), and BQ.1 lineages. We then constructed the 738 
ancestral sequence for each major lineage using TreeTime 44 and calculated total, 739 
nonsynonymous, and synonymous Hamming distances between samples from each 740 
major lineage relative to the ancestral sequence of the same major lineage. Finally, to 741 
estimate the between-lineage rate, we calculated the total, nonsynonymous, and 742 
synonymous Hamming distances between the Wuhan reference sequence 743 
(NC_045512.2) and the ancestral sequence for each major lineage. 744 
 745 
Divergence rate from putative founder 746 
 747 
Since persistent infections on average have 5 mutations across the genome (IQR: 2, 8), 748 
estimating an evolutionary rate for different segments of the genome at an individual 749 
level is not practical. We therefore used the majority-rule consensus sequence at the 750 
first time point of each persistent infection as a proxy for the founding virus. We then 751 
estimated the start time of infection as the midpoint between the last negative PCR test 752 
and the first sequence from the persistent infection. We measured the typical 753 
evolutionary rate (rather than mean) from the putative founder across all individuals for 754 
each segment of the genome.  755 
 756 
While this method is frequently used for calculating within-host divergence rates for 757 
viruses like HIV 45, it will miss early fixation events that might have shifted the 758 
consensus sequence away from the true founding virus by the time the first sample was 759 
collected; assumes the founding viral population was genetically homogeneous 46; does 760 
not control for noise which could bias estimates of the divergence rate. Nonetheless, 761 
aggregating across a large number of individuals should help mitigate these effects. 762 
 763 
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This approach involved treating each measurement of divergence from the putative 764 
founder at any given time point, t, as an independent observation, regardless of its 765 
associated persistent infection. The divergence from the founder for each genomic 766 
segment at any time point, including baseline, was defined as the cumulative frequency 767 
of all mutant alleles within that segment at time t. For example, if there were no mutant 768 
alleles within a genomic segment at a given time point, we recorded a divergence of 769 
zero. Subsequently, we used a linear regression with a zero y-intercept at the start time 770 
of infection to calculate the divergence rate from the putative founder for each genomic 771 
segment. This can be expressed as d(n)i(t) = ri t + ε(n)i(t), where ri is the divergence rate 772 
for genomic segment i, and d(n)i(t) is calculated as the genetic divergence of sample n 773 
from its putative founder within segment i at time t. Each sample, n, from a persistent 774 
infection represents one measurement of d(n)i(t). If a sample is collected at time t=t* and 775 
has no mutant alleles within segment i, then d(n)i(t*)=0. For each sample, the estimated 776 
start of infection is taken as t=0. Each sample from an individual acts as an independent 777 
observation of genetic distance for segment i. The error term ε(n)i(t) represents the 778 
residual unexplained variability in distance, d(n)i(t), for sample n.  779 
 780 
To ensure an equal representation of each persistent infection in the divergence rate 781 
assessment for a genomic segment, we limited our analysis to two divergence 782 
measurements per individual—one at the baseline and another selected randomly from 783 
later in the infection. We then performed bootstrapping across all individuals and every 784 
possible pair of divergence measurements per individual to create a distribution of 785 
divergence rate estimates for each genomic segment. 786 
 787 
Data availability 788 
 789 
All raw consensus sequences have been made publicly available as part of the COG-790 
UK Consortium 791 
(https://webarchive.nationalarchives.gov.uk/ukgwa/20230505214946/https://www.cogco792 
nsortium.uk/priority-areas/data-linkage-analysis/) and are available from the European 793 
Nucleotide Archive at EMBL-EBI under accession number PRJEB37886. 794 
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Supplementary Tables 
 
Supplementary Table 1: Model comparison for estimating within-host evolutionary rates. 
Comparison of regression models for estimating genome-wide (GW), nonsynonymous (NS), 
and synonymous (S) evolutionary rates. Each model is presented with its corresponding 
equation and Bayesian Information Criterion (BIC) value, which assesses model fit to the data. 
Parameters e0 and r0 represent fixed effects for y-intercept at time t=0 (corresponding to the day 
when the first sample from a persistent infection was collected) and rate across all persistent 
infections, respectively; di(t) represents distance at time t for persistent infection i (dependent 
variable); ri and ei represent random effects for evolutionary rate and intercept per persistent 
infection, respectively; εi(t) is the error term which represents the unexplained variability in the 
dependent variable; the index j corresponds to nine categories for y-intercept labelled based on 
sequencing centre(s) that genetic samples are collected from. Models with lowest BIC values 
are highlighted with an underline. 
 
Regression model Equation BIC (GW) BIC (NS) BIC (S) 

Complete pooling di(t) = r0 t + e0 + εi(t) -8059 -7755 -6792 

Random intercept di(t) = r0 t + ei + e0 + εi(t) -8131 -7822 -6880 

Random slope with 
one fixed intercept 

di(t) = (r0+ri) t + e0 + εi(t) -8146 -7866 -6863 

Random slope with 
multiple fixed intercepts 

di(t) = (r0+ri) t + ∑j  ej + εi(t) -8142 -7860 -6830 

No pooling di(t) = ri t + ei + εi(t) * * * 
 

*Number of observations is smaller than the number of random effects.  
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Supplementary Table 2: Evaluation of associations between various host factors and 
within-host evolutionary rates. (a) This table examines the impact of integrating individual 
host factors—age, sex, vaccination status, prior infection, virus lineage, duration of infection, 
and RNA viral load dynamics—into the best-fit regression model as fixed effect parameters and 
comparing best fits using the Bayesian Information Criterion (BIC) values. The baseline model is 
a linear mixed-effects regression, identified as the optimal fit for genome-wide (GW), 
nonsynonymous (NS), and synonymous (S) distances over time (see Supplementary Table 1). 
Each of the seven factors is added as a fixed effect to this baseline model, with categorical 
variables including age (aged 60 and above: 295; aged below 60: 199), sex (male: 293; female: 
201), vaccination status (received at least one dose: 470; no vaccination: 24), prior infection 
(none: 478; at least one: 16), viral lineage (10 Alpha, 95 Delta, 87 BA.1, 173 BA.2, 14 BA.4, 111 
BA.5, and 4 XBB with measurable evolution), and viral load dynamics (experienced viral 
rebound: 32; no rebound detected: 462). Duration of infection is classed as a continuous 
variable ranging from 26 to 316 days per infection. (b) Comparing the BIC values for a subset of 
infections with durations lasting longer than 36 days (198 infections) and 56 days (110 
infections) between the null model and a model that includes duration of infection as an 
additional fixed effect parameter.  
 
(a) 

(b) 

 
*Indicates ΔBIC = BICNull - BICAlternative > 2.  

Fixed effects BIC (GW) BIC (NS) BIC (S) 

Null model -8146 -7866 -6880 

Virus lineage -8120 -7838 -6847 

Prior infection -8141 -7860 -6874 

Vaccination status -8141 -7861 -6874 

Sex -8142 -7862 -6874 

Age -8143 -7861 -6874 

Viral load dynamics -8145 -7867 -6877 

Duration of infection -8150* -7868* -6881 

Fixed effects BIC (GW) BIC (NS) BIC (S) 

Null model (t>36) -2907 -2925 -2661 

Duration of infection (t>36) -2910* -2928* -2659 

Null model (t>56) -1559 -1558 -1605 

Duration of infection (t>56) -1560 -1560* -1602 
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Supplementary Figures 
 

 
Supplementary Figure 1: Site frequency spectrum. Proportion of synonymous (green) and 
nonsynonymous (orange) mutations in persistent infections across all frequency bands. 
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Supplementary Figure 2: Rates of genome-wide, nonsynonymous, and synonymous 
evolution in 13 persistently infected individuals. (a) Illustrates the evolutionary distance over 
time for a subset of 13 persistently infected individuals, each characterised by a minimum of 
three temporal data points and the presence of at least one synonymous and one 
nonsynonymous mutant allele. Points on the graph represent the total genetic distance from the 
consensus sequence at the initial time point, calculated based on allele frequency changes over 
time. Dashed lines indicate the regression lines that best fit these data. (c) Shows the allele 
frequency trajectories for the 13 persistent infections examined, categorised into synonymous, 
nonsynonymous, and non-coding (grey) mutations. Each mutation that reached a minimum 
frequency of 20% at least at one time point is shown. A horizontal grey line across the graphs 
marks the 20% allele frequency threshold. 
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Supplementary Figure 3: Temporal allele frequency dynamics in nine persistent 
infections. The figure illustrates two distinct patterns of allele dynamics over time. In the left 
column (infections p1, p66, and p140), we observe transient allele groups that emerge at one 
time point, with some reaching high frequencies before vanishing in subsequent time points 
(dashed lines). Consensus sequence samples from p1, p66, and p140 (as well as the other 6 
infections shown here) form a monophyletic clade on a representative phylogeny of non-
persistently infected individuals 8. Additionally, certain alleles that were not present at the early 
stages of infection surge to high frequencies towards the end of infection (bold solid lines). 
Conversely, the middle column (infections p132, p288, and p341) showcases alleles that 
experience a sweep from low to high frequencies, with some ultimately disappearing (dashed 
lines) and others reaching fixation (bold solid lines). The right column (p75, p288, and p523) 
show allele frequency dynamics that is a mix of the two patterns with some alleles appearing 
and disappearing in groups while other are present in the population in at least two time points, 
with some reaching fixation without disappearing at later time points.   
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Supplementary Figure 4: Number of days elapsed since the last time a persistently 
infected individual had a negative PCR test. The histogram plot includes all 576 identified 
persistent infections.  
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Supplementary Figure 5: Between-host fitness effect and prevalence of recurrent 
mutations identified in persistently-infected individuals. (a)  Distribution of between-host 
fitness effects of all SARS-CoV-2 mutations on a global phylogeny (orange), between-host 
fitness of all mutations found in persistently infected individuals (blue), (b) for those found only 
in a single persistent infection (magenta), and (c) for those found in two or more persistent 
infections (green). The percentage of mutations in persistent infections with a positive between-
host fitness effect (s) is highlighted on each graph in (a)-(c). The between-host fitness effect of 
mutations in persistent infections corresponds to the fitness effect of that mutation on a global 
phylogeny within the same major viral lineage that was found to be in the persistently infected 
individual. For example, if a recurrent mutation is found in two persistently infected individuals 
with BA.2 and BA.5 infections, the between-host fitness effect of that mutation in both the BA.2 
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and BA.5 major lineages is recorded. (d) The between-host fitness effect of recurrent mutations 
found in persistent infections and their corresponding prevalence across all ONS-CIS 
sequences of the same major lineage as the persistent infection. (e) The aggregate between-
host fitness effect (averaged across all major lineages of SARS-CoV-2 on a global phylogeny) 
of recurrent mutations found in n persistent infections. Some of the mutations with extremely 
high and low fitness effects are highlighted. (f) Age-group of all individuals which share n 
recurrent mutations. (g) Aggregate fitness effect of recurrent mutations per age group. (h) 
Aggregate fitness effect of recurrent mutations based on the duration of the persistent infection 
(as measured based on number of days between first and last sequence from a persistent 
infection) in which they emerged. Fitness effect of mutations are taken from 
https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/results_public_2024-04-
19/nt_fitness/ntmut_fitness_by_clade.csv 25.  
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Supplementary Figure 6: Number of persistent infections identified with a shared rare 
SNP as a function of the threshold number of cases for calling a rare SNP. A threshold 
value of 1 for a rare SNP means the rare SNP is only found in one sequence of that lineage in 
the ONS-CIS dataset, excluding sequences from any persistently infected individuals. The 
number of persistent infections identified gives the number of persistent infections lasting at 
least 26 days we would identify as persistent in the ONS-CIS using the given threshold (black). 
The false positive percentage gives the percentage of times two random samples of the same 
major lineage taken from the ONS-CIS would be falsely identified as belonging to the same 
persistent infection (blue; 1,000 pairs of samples were considered). As the threshold value for 
calling a rare SNP increases, the number of persistent infections identified (black) increases, but 
so does the false positive rate. Similar to the approach we took in our previous study 8, we 
chose a threshold number of 400 (vertical dashed line) in this study for identifying persistent 
infections, since for this threshold the percentage of false positives were 0-3% for all major 
lineages, but the number of persistent infections identified has begun to plateau. We allowed for 
possible misclassification of some BA.2 and BA.5 major lineages by allowing for potential 
identification of persistent infections with a mix of BA.2 and BA.5 samples.   
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Supplementary Figure 7: Rates of genome-wide, nonsynonymous, and synonymous 
evolution in all persistently infected individuals with measurable rates. The evolutionary 
distance over time for 494 persistently infected individuals with measurable genome-wide rate 
(black), 457 nonsynonymous rate (orange), and 368 synonymous rate (green). Points on the 
graph represent the total genetic distance from the consensus sequence at the initial time point, 
calculated based on allele frequency changes over time. Dashed lines indicate the regression 
lines that best fit these data. 
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