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 28 

Abstract: 29 

Neonatal health is dependent on early risk stratification, diagnosis, and timely management of 30 
potentially devastating conditions, particularly in the setting of prematurity. Many of these conditions 31 
are poorly predicted in real-time by clinical data and current diagnostics. Umbilical cord blood may 32 
represent a novel source of molecular signatures that provides a window into the state of the fetus at 33 
birth. In this study, we comprehensively characterized the cord blood proteome of infants born 34 
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between 24 to 42 weeks using untargeted mass spectrometry and functional enrichment analysis. We 35 
determined that the cord blood proteome at birth varies significantly across gestational development. 36 
Proteins that function in structural development and growth (e.g., extracellular matrix organization, 37 
lipid particle remodeling, and blood vessel development) are more abundant earlier in gestation. In 38 
later gestations, proteins with increased abundance are in immune response and inflammatory 39 
pathways, including complements and calcium-binding proteins. Furthermore, these data contribute 40 
to the knowledge of the physiologic state of neonates across gestational age, which is crucial to 41 
understand as we strive to best support postnatal development in preterm infants, determine 42 
mechanisms of pathology causing adverse health outcomes, and develop cord blood biomarkers to 43 
help tailor our diagnosis and therapeutics for critical neonatal conditions.  44 
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Manuscript text: 45 

Introduction 46 

Neonatal health is dependent on early risk stratification, diagnosis, and timely management of many 47 
potentially devastating conditions. Preterm infants are at increased risk of prematurity-related 48 
complications, including: early-onset sepsis, chronic lung disease, intraventricular hemorrhage, 49 
necrotizing enterocolitis, and neurodevelopmental impairment.1-3 Many of these conditions are 50 
poorly predicted in real-time by clinical data, including currently available diagnostic testing. Thus, 51 
biomarkers have been sought to aid early and targeted treatment and prognosis for these conditions.  52 

Umbilical cord blood may represent a novel source of molecular signatures that provides a window 53 
into the state of the fetus at birth. Umbilical cord blood inflammatory markers have been studied as 54 
diagnostic indicators of early-onset sepsis4-6. Specific cord blood cytokines have been identified as 55 
predictors or correlates of retinopathy of prematurity7, atopic disease8, infantile hemangioma9, 56 
placental histopathology10, and more4. However, few of these cord blood biomarkers have been 57 
translated into diagnostic tools in clinical practice.  58 

“Omics” methodologies have been previously used to profile amniotic fluid and infant blood to 59 
predict pre-eclampsia, preterm birth, and late-onset sepsis11,12. Mass spectrometry (MS)-based 60 
proteomics approaches have emerged as a particularly powerful technology for the comprehensive 61 
profiling of proteins comprising the plasma microenvironment13. For example, longitudinal profiling 62 
of postnatal proteomic changes has provided insights into the development of the immune system 63 
over the first weeks to months of life14.  Untargeted proteomic analyses furthermore provide an 64 
unbiased approach to biomarkers discovery by removing the need to identify proteins of interest a 65 
priori.15 66 

Proteomic profiling of neonatal cord blood provides a molecular snapshot at variable timepoints 67 
throughout neonatal development that could be used to reveal the underlying cellular processes 68 
occurring at birth, readiness for postnatal life, and for the identification of biomarkers specific to 69 
different disease states and prematurity-related complications.   70 

While proteomic profiling of cord blood has demonstrated immunologic differences between preterm 71 
and term infants16, prior research has lacked inclusion of preterm infants across the continuum of 72 
gestational age and consideration of key perinatal characteristics such as the route of delivery, 73 
preeclampsia, intraamniotic infection, and neonatal sepsis that are likely to affect protein abundance. 74 
In this study, we have comprehensively characterized the cord blood proteome from infants born 75 
between 25 to 42 weeks using MS to provide a benchmark of normative cord blood proteomic profile 76 
and examine proteome differences across the developmental range of gestational ages.  77 

 78 

Methods 79 

Study cohort and specimen collection 80 

We utilized archived cord blood plasma from an ongoing prospective study of infants born at 81 
Northwestern Prentice Women’s Hospital between 2008-2019. Parents were consented prior to or 82 
after birth; cord blood was centrifuged at 3000 rpm for 10 minutes and was separated into aliquots 83 
stored at -80 degrees Celsius until use. Samples in this investigation were selected from the 84 
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biorepository based on gestational age and the absence of presumed or proven early onset neonatal 85 
sepsis (i.e., the infant received no antibiotic treatment course for sepsis within the first 72 hours of 86 
life and had no positive microbiologic sterile site cultures). A total of 150 infants were frequency 87 
matched within each gestational age (GA) category (epochs: 25-28 weeks, 29-32 weeks, 33-36 88 
weeks, 37-42 weeks) with approximately equal numbers by sex, route of delivery (vaginal delivery 89 
vs. caesarean delivery with or without labor), and reason for preterm birth (maternal indication such 90 
as preeclampsia vs. fetal/pregnancy indication such as spontaneous preterm labor or preterm 91 
premature rupture of membranes). Clinical data including birth weight and intraamniotic infection 92 
were collected from the electronic medical record. This study was approved by the Institutional 93 
Review Boards of Northwestern University (STU00201858) and Lurie Children’s Hospital (IRB 94 
2018-2145). Parental informed consent was obtained for use of clinical data and infant cord blood 95 
samples. All research activities were performed in accordance with the Declaration of Helsinki.  96 

Mass spectrometry sample preparation and analysis 97 

Samples were thawed on ice and 20µl of plasma was utilized for study. Protein concentrations were 98 
determined using the Bicinchoninic Acid (BCA) method; untargeted mass spectrometry-based 99 
proteomic analysis was applied to 600 µg of extracted protein from each plasma sample. Samples 100 
were first depleted of fourteen known highly abundant proteins (Albumin, IgA, IgD, IgE, IgG, IgG 101 
(Light chains), IgM, Alpha-1-acid glycoprotein, Alpha-1-antitrypsin, Alpha-2-macroglobulin, 102 
Apolipoprotein A1, Fibrinogen, Haptoglobin, and Transferrin) using the Top 14 Abundant Protein 103 
Depletion Spin Columns (Thermo Scientific, Rockford, IL, USA). Remaining proteins were purified 104 
by acetone/TCA precipitation, reduced, alkylated, and digested with trypsin. Digested peptides were 105 
desalted on C18 columns (Thermo Scientific, Rockford, IL, USA) and eluted in 80% acetonitrile in 106 
0.1% formic acid. Peptides were reconstituted with 0.1% formic acid in water and injected onto the 107 
in-house C18 trap column (3 cm length, 150 μm inner diameter, 3 μm particle size) coupled with an 108 
analytical C18 column (10.5 cm length, 75 μm inner diameter, 2 μm particle size, PicoChip). 109 
Samples were separated using a linear gradient from 5% ACN/0.1% formic acid to 40% ACN/0.1% 110 
formic acid over 120 minutes using an UltiMate 3000 Rapid Separation nanoLC coupled to a 111 
Orbitrap Elite Mass Spectrometer (Thermo Fisher Scientific Inc, San Jose, CA). The full scans were 112 
acquired from 400-2000m/z at 60,000 resolving power and automatic gain control (AGC) set to 113 
1x106.  The top fifteen most abundant precursor ions in each full scan were selected for 114 
fragmentation. Precursors were selected with an isolation width of 1 Da and fragmented by collision-115 
induced dissociation (CID) at 35% normalized collision energy. Previously selected ions were 116 
dynamically excluded from re-selection for 58 seconds. 117 

Samples were analyzed in duplicate, in a specified run order, across four batches. Samples were 118 
randomly assigned to batches using a stratified sampling approach to achieve balance on gestational 119 
age and other clinical characteristics (sex, type of delivery). A representative “pooled control,” 120 
including samples representing the full spectrum of the cohort, was used as an “internal standard” 121 
and run multiple times in each batch. Within each batch, the run order for samples and controls was 122 
determined by simple random sampling. MS raw files were analyzed with MaxQuant software 123 
(version 1.6.0.16).17 MS/MS-based peptide identification was carried out against the SwissProt 124 
human database with the Andromeda search engine in MaxQuant18 using a target-decoy approach to 125 
identify peptides and proteins at an FDR <1%. For LFQ, the MaxLFQ algorithm was used as part of 126 
the MaxQuant environment.19 The following modifications were set as search parameters: trypsin 127 
digestion cleavage after K or R (except when followed by P), 2 allowed missed cleavage sites, 128 
carbamidomethylated cysteine (static modification), and oxidized methionine, protein N-term 129 
acetylation (variable modification). Search results were validated with peptide and protein FDR, both 130 
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at 0.01. Transformed (log2) LFQ values were used for all statistical analyses. The mass spectrometry 131 
proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner 132 
repository with the dataset identifier PXD051974. 133 

Proteomics data normalization 134 

Boxplots representing the median and first and third quartiles were used to visualize the distribution 135 
of protein concentration among all proteins in pooled controls and identify the presence of any batch 136 
effects. To correct for batch effects demonstrated, batch normalization was conducted as follows. 137 
Proteins that were detected in only one batch were excluded. Using the pooled control samples, the 138 
average difference in log2 LFQ value relative to the first batch was estimated using a linear 139 
regression model. Briefly, a beta coefficient for each batch was estimated using linear regression with 140 
batch one serving as the referent. The average protein difference from the first batch was then 141 
subtracted from the log2 LFQ value of each batch to determine the normalized log2 LFQ value. 142 
Visual inspection of post-normalization protein levels by batch was used to determine the adequacy 143 
of the normalization procedure. The batch normalized protein abundance for each sample was 144 
averaged across each technical replicate for subsequent inter-patient analyses. If a protein was only 145 
detected in one of the replicates, the value of the batch normalized detected protein from the single 146 
replicate was used for analyses. 147 

Differential protein abundance determination 148 

Separate linear regression models were used to examine the association between protein abundance 149 
and GA (unadjusted and adjusted for sex, labor, route of delivery, and preeclampsia). The response 150 
variable for each model was the batch normalized value log2 transformed protein level for the given 151 
protein. Proteins were included in adjusted models if found in more than one sex, delivery category, 152 
and preeclampsia category. The primary explanatory variable of interest was GA. Scatter plots were 153 
examined to determine whether GA demonstrated a linear or nonlinear association (e.g., using splines 154 
or quadratic terms) with protein level. The relationships between GA and protein abundance, in 155 
general, appeared linear across proteins, so a linear term for GA was included in models. There were 156 
seven sets of twins among the 150 controls. One twin from a pair was randomly selected to be 157 
included in the models (n=143). To control Type 1 error rate, P-values were adjusted for multiple 158 
testing using the Benjamini-Hochberg False Discovery Rate (FDR) method, and associations with 159 
FDR-adjusted P values <0.05 were considered statistically significant20.  160 

Functional enrichment and visualization 161 

The relative expression abundance of all proteins that changes significantly over gestational age was 162 
visualized in a heat map. The batch normalized protein values were z-score normalized by 163 
subtracting the relative protein abundance within a given specimen by the mean abundance across all 164 
specimens in which the protein was detected and then dividing by standard deviation. Proteins that 165 
were undetected in more than 50% of specimens were excluded from visualization. Z-score 166 
normalized values were visualized in a heatmap using the clustermap function in the seaborn (v 167 
0.11.1) package within the python (v 3.8.8) environment with specimens ordered left to right by GA 168 
and proteins clustered by z-score profile from top to bottom. The clustermap function uses 169 
hierarchical clustering with average linkage and Euclidean distance. 170 

Functional enrichment analysis of the proteins found to be significantly increased or decreased in 171 
abundance was performed using MetaScape v3.5 172 
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(https://metascape.org/gp/index.html#/main/step1)21. UniProt IDs were used as unique identifiers; 173 
two isoforms of APOB (P04114), PLG (P00747), and FGA (P02671) were consolidated and 174 
immunoglobulins were excluded (P0DOX5, P0DOX7, P0DOY3, and P01859) for final analysis of 175 
64 proteins. All proteins detected in the overall proteomic dataset (n = 465) were set as the 176 
background gene set before enrichment. Protein-protein interaction networks were visualized using 177 
STRING v11.5 (https://string-db.org/)22. Network visualization was limited to physical subnetworks 178 
based on experiment and database active interaction sources with a 0.15 minimum interaction score 179 
required. Nodes were colored by an increase or decrease in abundance with edge width reflective of 180 
protein interaction confidence score. Proteins contributing to significantly enriched pathways were 181 
annotated with colored boxes.  182 

 183 

Results 184 

Patient demographics 185 

The distribution of GA and associated clinical/demographic details for the 150 infants included in 186 
this study are displayed in Table 1. The mean GA across all infants was 33.2 weeks (standard 187 
deviation 4.5, range 25.9-41.4). 17 infants (11%) were 25-28 weeks, 43 (29%) were 29-32 weeks, 50 188 
(33%) were 33-36 weeks, and 40 (27%) were 37 weeks and greater. 77 (51%) of the infants were 189 
female. 34 (23%) infants were born to women with preeclampsia. 44 (29%) infants were from 22 190 
individuals with multiple gestations, all of whom were born at less than 37 weeks GA. Only one 191 
infant was born to an individual who had clinical chorioamnionitis. 192 

Differential protein abundance across GA 193 

The total BCA, representative of protein abundance, is positively correlated with GA (Figure 1). Of 194 
the 465 unique proteins identified in control plasma samples, 391 were included in the adjusted 195 
regression models (adjusted for sex, preeclampsia, and delivery route). Proteins were excluded from 196 
adjusted multivariable regression models if they were only found in one group of the covariate 197 
categories (for example found in only male infants).  Gestational age was associated with protein 198 
abundance in 70 proteins with FDR-adjusted P-value <0.05 (Supplemental Table 1). To visualize 199 
each protein’s change over GA, the normalized protein abundance in each specimen was plotted 200 
relative to GA of the infant (Figure 2). The slope (‘beta’ value) of the linear fitted model for each 201 
protein is provided in Supplemental Table 1. Representative plots in Figure 2 demonstrate 202 
examples of proteins with positive (e.g., plasminogen; Figure 2A) and negative (e.g., alpha-203 
fetoprotein; Figure 2B) correlation between protein abundance and GA. These changes are 204 
summarized in a volcano plot (Figure 3) depicting the log10 of the FDR-adjusted P-values and the 205 
associated betas from linear regression models. Proteins such as alpha-fetoprotein, collagen alpha-206 
1(V) chain, and basement membrane-specific heparan sulfate proteoglycan core protein are highly 207 
abundant earlier in gestational development while many immunologically active proteins are more 208 
abundant later, including IgG-1 chain C region, complement C1q subunit C, and protein S100-A9, a 209 
calcium- and zinc-binding protein which plays a prominent role in the regulation of inflammatory 210 
response (all aforementioned proteins with p<0.0001).  211 

Visualization and pathway analysis 212 

To better visualize the differences in protein levels across GA, we plotted a heatmap of the 213 
normalized protein levels for each significantly changing protein identified above in each specimen 214 
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ordered along the x-axis by GA (Figure 4A). Proteins without detectable levels in more than 50% of 215 
specimens (n = 15) were excluded from visualization and hierarchical clustering was used to group 216 
proteins by similarity in abundance trends over GA. This highlights several distinct groups of 217 
proteins where levels change over time. For example, COL5A1, CD14, HSPG2, QSOX1, FCGBP 218 
seem to be abundant in early GA, but decrease as GA increases. This trend is also apparent in the 219 
cluster located at the bottom half of the heatmap that includes CD109, COL1AI, APOC3, APOE, 220 
TGFBI, AFP, AGT, APOB, LUM, SERPINA1, B2M, FGA, THBS4, F13A1 and SERPINA5. 221 
However, several proteins also follow the opposite trend with lower abundance early and higher 222 
abundance late, including HBA1, HBB, HPX, IGFALS, CP, AFM, SERPINF2, SERPIND1, A2M, 223 
ATRN, PGLYRP2, IGHG1, C7, ITIH1, PLG, F2, SERPINC1, C1QC and C1QA.  224 

Functional enrichment analysis was performed for those proteins found to be significantly decreased 225 
in relative abundance (n = 29, Figure 4B) or increased in abundance (n = 34, Figure 4C) with 226 
increasing GA (7 identifiers did not map back to unique proteins and were excluded from analysis, 227 
see Methods). Proteins that decreased in abundance were enriched for eight pathways: NABA core 228 
matrisome, extracellular matrix organization, lipid particle remodeling, smooth muscle proliferation, 229 
blood vessel development, glycosaminoglycan metabolism, insulin-like growth factor regulation, and 230 
amyloid fiber formation. These enriched protein sets include several components of known protein 231 
complexes. For example, the proteoglycan LUM and the collagen proteins COL5A1 and COL1AI 232 
form high confidence protein interactions and are all associated with extracellular matrix 233 
organization pathways. Likewise, CETP, APOC3, APOB, and APOE are known to interact and play 234 
critical roles in lipid particle remodeling. Several factors implicated in insulin-like growth factor 235 
regulation were also decreased, including SERPINF2, SERPIND1, FGA, and SERPINA5.  236 

More proteins were found to increase in abundance over GA than decrease. However, these were 237 
associated with a narrower set of pathways, specifically: protein nitrosylation, metal ion homeostasis, 238 
humoral immune response, NABA core matrisome, and positive regulation of cell death. One well-239 
known transition that occurs in the serum throughout development is the swapping of hemoglobin 240 
subunits from γ-globin in neonates to β-globin and δ-globin gene expression in pediatric and adult 241 
patients23. Consistent with this transition, we see increased abundance of β-globin (HBB) and δ-242 
globin (HBD), as well as α-globin (HBA2). We additionally see the increased abundance of several 243 
proteins associated with the immune response, including several complement proteins (C1QA, 244 
C1QC, C7, CFP, and C8G) and several S100 calcium binding proteins (S100A9, S100A12, and 245 
S100A8).  Notably, several immunoglobulins were also increased over the course of GA (specifically 246 
kappa light chain, lambda light chain, and gamma heavy chains), though these are not visualized 247 
here. 248 

 249 

Discussion  250 

Our data demonstrate that the abundance of several cord blood proteins varies significantly across 251 
GA. Proteins that function in structural development and growth, including extracellular matrix 252 
organization, lipid particle remodeling, blood vessel development, and insulin-like growth factor 253 
regulation, are more abundant earlier in gestation. Later in gestation, proteins involved in immune 254 
response pathways, including complements, and calcium-binding proteins involved in inflammation 255 
are higher in abundance. These data highlight the differences in immunologic state across GA and 256 
provide insights into the higher risk of invasive infections among preterm infants. Furthermore, these 257 
data contribute to the knowledge of the physiologic state of neonates across GA, which is crucial to 258 
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understand as we: 1) strive to emulate the in utero environment to best support the developmental 259 
process of those born preterm, 2) understand mechanisms of pathology that cause adverse health 260 
outcomes for preterm infants, and 3) develop cord blood markers for neonatal disease conditions that 261 
can predict and help tailor medical management.  262 

In a 2021 review of proteomic studies that attempted to identify biomarkers for prematurity-related 263 
diseases, Letunica et al. determined that only 13% of studies investigated cord blood even though 264 
cord blood is a readily available specimen at birth.11 Suski et al. investigated the cord blood proteome 265 
of preterm infants in three GA groups (<=26 weeks, 27-28 weeks, and 29-30 weeks) and compared 266 
them to the proteomes of a full term control group. They reported differences in inflammatory, 267 
immunomodulation, coagulation, and complement systems in preterm versus term infants.16 268 
Specifically, they found that preterm infants had decreased levels of anti-inflammatory proteins (e.g., 269 
orsomucoid isoforms) and B-cell mediated immunity markers, and increased abundance of 270 
inflammatory proteins such as leucine-rich alpha-2-glycoprotein (LRG1) and complement activation 271 
cascades, a finding that complements our results of lower proteins related to humoral immunity at 272 
earlier GA.  273 

However, the authors also suggest an increase in inflammatory mediators in preterm infants, whereas 274 
out results showed increased inflammatory and immune response proteins and complement 275 
components later in gestational age. Our pathway analysis revealed many of the proteins that function 276 
in inflammatory signaling and immune response are lower in preterm infants with no infection. A 277 
likely explanation for this notable difference is that our research excluded preterm infants with early 278 
onset sepsis, and thus represents the state of the cord blood proteome in the absence of infection. 279 
Given that treatment of early-onset sepsis is common in very preterm infants, the analysis of cord 280 
blood inflammatory proteins may be skewed if one has not accounted for infection. 281 

Other types of immune phenotyping have been reported in cord blood across GA. Olin et al. noted 282 
differences in both cord blood proteins and decreased neutrophil proportions in preterm compared to 283 
term infants. They reported an increase in inflammatory cord blood proteins, attributed to the role of 284 
inflammation and infection in preterm birth, but not reflecting gestational norms without infection.14 285 
Anderson et al. utilized flow cytometry and cytokine assays of cord blood to compare preterm infants 286 
(30-34 weeks GA) to full-term infants.24  They found that preterm infants had lower frequencies of 287 
monocytes, NK cells, CD8+ T-cells and gamma-delta T-cells than their term full term counterparts. 288 
There were increased intermediate monocytes, CD4 T cells, Tregs, and transitional B-cells in preterm 289 
infants indicating immaturity of the innate immune system and a skewed cellular landscape related to 290 
increased susceptibility of preterm infants to bacterial and viral infections. They also noted lower 291 
levels of pro-inflammatory cytokines and chemokines in preterm infants, further confirming preterm 292 
infants impaired ability to fight off infection. Finally, Peterson et al. applied single-cell 293 
immunoprofiling of cord blood for 45 infants (20 preterm) after excluding infants exposed to clinical 294 
chorioamnionitis or with active infection.25 The study also controlled for potential other clinical 295 
confounders, including steroid administration. They found a strong relationship between GA and the 296 
neonatal immune profile at birth. Specifically, increasing GA was associated with a progressive 297 
increase in the ligand-specific responsiveness to immune system stimulation. This finding aligns with 298 
our finding of increased cell-signaling, calcium binding, and immune response proteins with later 299 
gestational age. Our work supports the conclusion that decreased antigen- and cytokine-specific 300 
immune responses may contribute to preterm infant susceptibility to infection.  301 

Furthermore, differences in proteins across GA may provide insight into underlying pathophysiology 302 
and risk of pathology. Functional analysis identified several pathways associated with increased 303 
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abundance of proteins that are implicated in vascular development, lipid metabolism, smooth muscle 304 
proliferation, insulin-like growth factor regulation, and the matrisome. For example, afamin, an anti-305 
inflammatory protein previously hypothesized to be a hallmark of detrimental oxidative stress and 306 
related to retinopathy of prematurity, is less abundant in the cord blood of preterm infants.16 The 307 
process of in utero development represents a complex and dynamic system between the pregnant 308 
person and fetus. Through this study of neonates born from 25-42 weeks GA, we aim to help 309 
establish the baseline state of the developmental continuum. 310 

The strengths of this study include: 1) the analysis of cord blood proteomics on a large sample size 311 
across the GA spectrum; 2) precise clinical categorization and consideration of covariates that may 312 
impact the cord blood proteome including exclusion of infants with early onset infection and 313 
adjustment for labor, preeclampsia, and sex; and 3) careful methodologic and data normalization, 314 
both in design and analysis of discovery mass spectrometry proteomics (distribution and 315 
normalization across batches, pooled control, addressing missingness). Additionally, functional 316 
pathway analysis strengthens our ability to parse key pathways of relevance and provide validation 317 
through the demonstration of known GA-related differences in hemoglobin and immunoglobulin 318 
proteins26. Limitations include that mass spectrometry proteomics does not provide absolute 319 
quantitation of protein, but rather spectral counts and relative abundance. The detectable protein 320 
abundance reflects the level after potential clearance, degradation, or transport/localization of 321 
expressed proteins to compartments. For this reason, we highlight relative abundance and levels of 322 
proteins rather than using terms akin to protein expression (i.e., “up/down-regulation”). Thus, 323 
specific biomarker development warrants quantitative validation methods. Additionally, the cord 324 
blood specimen used in this analysis was intended to be obtained at the time of birth from the 325 
umbilical vein. However, it is possible that there is some mixing of umbilical arterial and venous 326 
blood. Prior literature raises questions about mediating cord blood markers by placental clearance 327 
and whether cord blood proteins may reflect maternal serum. In multiple studies, paired analysis of 328 
maternal and fetal cord blood biomarkers has shown weak or no correlation.27,28 329 

In conclusion, our study utilizing untargeted proteomics has demonstrated that the cord blood 330 
proteome varies significantly with GA at birth. There are meaningful differences in several pathways, 331 
including crucial aspects of inflammation and immune response. Future research can apply this 332 
knowledge of the baseline state to find methods to develop more precise, GA-specific cord blood 333 
diagnostic markers of short and perhaps long-term29 health and disease.  334 
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 460 

Figures: 461 

 462 

Figure 1. Total protein concentration in each plasma sample. Box and whisker plot of protein 463 
concentration (ug/uL) distribution across gestational age (GA) categories. The lower and upper ends 464 
of each box correspond to the 25th and 75th percentiles for a given group [shaded area is the 465 
interquartile range (IQR)].  The black line in each box is the median.  The whiskers represent the 466 
largest and smallest observed data points that are no further than +/-1.5 times the IQR, respectively. 467 
Points outside of the boundary of the whiskers are outliers. Kruskal-Wallis across GA categories 468 
p<0.0001.  469 

 470 
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 471 

Figure 2.  Representative plots of relative protein abundance by gestational age. The scatter 472 
plots show the observed values by sex of newborn. The blue line and shaded blue show the fitted 473 
linear model and 95% confidence interval (CI) of the association respectively. The purple dashed line 474 
shows a loess smoothed line of the association, and the 95% CI is the shaded gray region (most 475 
appeared approximately linear). A) Plasminogen model included n=74 samples. B) Alpha-fetoprotein 476 
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included n=143 unique samples in the model.477 

 478 

Figure 3. Volcano plot of protein abundance association with gestational age. Shown are -log10 479 
of the FDR adjusted P values and betas from linear regression models for a unit increase in 480 
continuous gestational age term on a standard deviation increase in protein abundance for a given 481 
protein adjusted for sex, preeclampsia, labor route of delivery.  Colors show direction of linear 482 
associations (positive [blue] indicates increasing GA associated with increasing protein abundance 483 
and negative [red] indicates decreasing GA associated with decreasing protein abundance).  Seventy 484 
proteins were found to be significantly associated with gestational age in adjusted models. Proteins 485 
with FDR adjusted p <0.0001 are labelled.  The full list of proteins with FDR adjusted p<0.05 can be 486 
found in Supplementary Table 1.  487 
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488 

Figure 4. Functional enrichment analysis of proteins in neonatal cord blood that change over 489 
gestational age. A) Heatmap of the protein Z-scores detected in neonatal cord blood samples 490 
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arranged by gestational age from left to right. Proteins are grouped top to bottom by hierarchical 491 
clustering. Functional enrichment analysis and protein-protein interaction networks of proteins 492 
significantly B) decreased or C) increased over gestational age are shown below. Network nodes are 493 
shaded by abundance change over gestational age with edge width reflecting protein-protein 494 
interaction confidence. Significantly enriched pathways are highlighted in colored bar charts to the 495 
left; each protein that maps to the identified pathways is indicated by a color-matched box beneath 496 
the network node.  497 
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Table 1. Demographics and clinical covariates 498 

n=150 Patients  
n (%) 

Gestational age weeks 
median (IQR) 33.7 (29.6-37.5)  

25-28 17 (11%) 

29-32 43 (29%) 

33-36 50 (33%) 

≥37 40 (27%) 

Infant sex (female) 77 (51%) 

Labor and delivery   

vaginal with labor 77 (51%) 

caesarean with labor 42 (28%) 

caesarean without labor 31 (21%) 

Preeclampsia 34 (23%) 

Multiple gestation 44 (29%) 

Clinical chorioamnionitis 1 (0.7%) 

 499 
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