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Abstract

Purpose: Predicting medium-term survival after admission is necessary for identifying end-of-life
patients who may benefit from goals of care (GOC) discussions. Considering that several patients
have multiple hospital admissions, this study leverages patients’ longitudinal data and information
collected routinely at admission to predict the Hospital One-year Mortality Risk.
Methods: We propose an Ensemble Long Short-term Memory neural network (ELSTM) to predict
one-year mortality using patients’ longitudinal records. The model was evaluated: (i) with only predic-
tors reported upon admission (AdmDemo); and (ii) also with diagnoses available later during patients’
stay (AdmDemoDx). Using records of 123,646 patients with 250,812 hospitalizations from 2011-2021,
our dataset was split into a learning set (2011-2017) to compare models with and without longitudi-
nal information using nested cross-validation, and a holdout set (2017-2021) to assess clinical utility
towards GOC discussions.
Results: The ELSTM achieved a significant increase in predictive performance using longitudinal
information (p-value < 0.05) for both the AdmDemo and AdmDemoDx predictors. For randomly
selected hospitalizations in the holdout set, the ELSTM showed: (i) AUROCs of 0.83 (AdmDemo)
and 0.87 (AdmDemoDx); and (ii) superior decision-making properties, notably with an increase in
precision from 0.25 for the standard process to 0.28 (AdmDemo) and 0.36 (AdmDemoDx). Feature
importance analysis confirmed that the utility of the longitudinal information increases with the
number of patient hospitalizations.
Conclusion: Integrating patients’ longitudinal data provides better insights into the severity of illness
and the overall patient condition, in particular when limited information is available during their stay.

Keywords: Machine learning; Long Short-Term Memory neural network; Longitudinal data, Mortality risk;
Administrative data.
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1 Introduction

Estimating the life expectancy of patients helps
identifying high-risk individuals and improve the
quality of care they receive in hospital settings
[1–3]. Unlike patients with cancer who receive pal-
liative care in their final months of life, patients
with other less predictable conditions are only
referred for these services in their final weeks or
days, if at all [4]. In Canada, despite common
individual preference for most individuals to die
in community and other home-like settings [5],
58% of those who died in 2015 were hospital-
ized more than once in their last year of life,
and 61% died in hospital [6]. An early identi-
fication of these high-risk patients would allow
important discussions with healthcare providers
regarding end-of-life choices, to align their pref-
erences with the care they receive [7]. Such dis-
cussions would enable goals-of-care (GOC) doc-
umentation, including code status orders (CSOs)
clarifying essential preferences for life-supporting
therapy [8, 9]. Early identification would also facil-
itate communication between clinicians and fam-
ilies regarding patients’ life trajectories, ensuring
informed shared decision-making [10] and poten-
tially reduce depression and grief [11]. However,
a clear and timely prognostication of high-risk
patients in hospital settings is time-consuming
and therefore challenging for workload-burdened
clinicians [12]. An accurate automated tool not
requiring human involvement could initially flag
these patients, lightening the work burden of the
clinical team.

Several studies have investigated the ability
of data available in Electronic Health Records
(EHRs) to predict the mortality risk of patients,
potentially driving an automated clinical deci-
sion support system. van Walraven et al [13, 14]
introduced the Hospital One-year Mortality Risk
(HOMR) score, representing the probability of
death within one year of patient’s admission.
The original model consisted of a logistic regres-
sion using post-discharge administrative data rou-
tinely collected upon admission, evaluated using
Area Under the Receiver Operating Characteristic
curve (AUROC). Their goal was to flag high-risk
individuals and initiate end-of-life discussions with
them to decide in favor or against potentially
aggressive and invasive interventions. To operate
in real-time settings, subsequent studies modified

the HOMR score according to the availability of
data in each hospital, and included only vari-
ables available immediately when patients were
admitted [15, 16]. As a result, due to specific
EHRs constraints, diagnostic codes were omitted
from the predictors. More recently, Taseen and
Ethier [9] explored the clinical utility of mod-
els predicting the HOMR score, in which they
developed three random forest models based on
variable sets available at different times during
a patient’s admission. The authors compared the
discriminative power of such models with pre-
viously established linear regression models and
evaluated their clinical utility within their hospital
setting.

Nevertheless, these studies did not include
valuable longitudinal information present in
patients’ records, as they focused on single visits
and did not take into account the patient’s history
from previous hospital admissions. This approach
diverges from the clinical reality, where clinicians
consistently consider the patient history before
making a prognostic prediction for a given condi-
tion. Another approach proposed in previous work
has been to incorporate broader covariates (e.g.,
medical disease codes, clinicians’ notes, social his-
tory) and aggregate patient information within
and across admissions to predict their mortality
risk in order to refer them for end-of-life care
[17, 18]. However, these studies did not explicitly
quantify the impact of integrating patient history
in developing more accurate solutions. Moreover,
these proposed models are more challenging in
terms of data acquisition and are therefore less
likely to be deployed in a clinical decision support
system — unlike HOMR-based models that have
already been clinically deployed [16] or are in the
process of deployment [9].

In this work, we evaluated the benefits of
integrating patients’ longitudinal data to improve
the accuracy of the HOMR score. We built
on the work of Taseen and Ethier [9] by re-
analyzing the same data routinely collected during
patients’ admissions while also integrating addi-
tional recent visits. To assess the benefits of a
temporal EHR analysis, we developed and com-
pared a Long Short-TermMemory-based ensemble
model (ELSTM) that leverages patients’ longi-
tudinal data, to baseline models that consider
patients’ visits independently without including
previous visits. Fig. 1 shows an overview of our
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study. We further analyzed the predictive power
of our model in two different scenarios with differ-
ent requirements of data access: (i) including only
demographics and admission characteristics avail-
able on patient’s admission (“AdmDemo”), and
(ii) adding also admission diagnoses and comor-
bidity diagnoses available during patient’s hospi-
talization (“AdmDemoDx”). In an effort to better
inform about the clinical utility of such models,
we quantified the gains and losses of our ELSTM
in terms of true and false positives as compared
to standard human decision-making.

2 Materials and methods

2.1 Dataset

This retrospective study took place at an inte-
grated university hospital network with 2 sites
and 700 acute care beds in Sherbrooke, Quebec,
Canada. Data was obtained from the institutional
data warehouse, combining EHR and administra-
tive information. The cohort included all adult
patients admitted to a non-psychiatric service
between July 1, 2011 and June 30, 2021, exclud-
ing admissions to infrequently admitting services
(such as genetics) or admissions with a legal con-
text (i.e. court-ordered). Mortality status was also
extracted from the institutional data warehouse,
which was sourced from the Quebec vital statistics
registry. Institutional Review Board approval was
obtained prior to data acquisition (Institutional
Review Board of the CIUSSS de l’Estrie—CHUS
Nagano #2022-4409). We followed the data
extraction steps previously described by Taseen
and Ethier [9] since we used the same source of
data. Table 1 lists the predictors used for model
comparisons. Comorbidity diagnoses from prior
visits became accessible in the information system
6 months following a given visit, or only 2 weeks
later for emergency department encounters.

Given the potential variations in data avail-
ability on admission across different hospital infor-
mation systems, we explored the feasibility of
early identification of high-risk patients in several
scenarios. We evaluated two strategies with differ-
ent data requirements: (i) “AdmDemo”, including
only demographics and admission characteristics
and, (ii) “AdmDemoDx” including demographics,
admission characteristics, comorbidity diagnoses
and admission diagnoses.

2.2 Ensemble Long Short-Term
Memory neural network
(ELSTM)

To evaluate the impact of incorporating a
patient’s longitudinal health record for improv-
ing the HOMR score, we introduce an Ensem-
ble Long Short-Term Memory neural network
(ELSTM) that leverages information learned by
multiple LSTMs trained at different stages of
patients’ admissions to hospital (Fig. 1a). We
base our ensemble model on an LSTM archi-
tecture [19] since recurrent neural networks can
handle sequences of different lengths without extra
padding. This is particularly relevant in our case
where patients can have varying numbers of pre-
vious visits.

More formally, we define Ck as the temporal
cohort including the visits sequence of each patient
up to their kth visit; if a patient has less than k
visits, Ck includes all their visits. Clast denotes the
cohort including the visits sequence of each patient
up to their last visit available in our dataset. The
formal definition of Ck is given by:

Ck = {{V i
j }

min(k,Mi)
j=1 }Ni=1

where N ∈ N is the number of patients, M i ∈ N
the number of visits for the ith patient and V i

j the

jth visit of the ith patient.
During the training phase, we train multiple

LSTMs on temporal cohorts including patients
with varying numbers of visits. The goal is to
capture diverse information at different stages of
patients’ visit sequence. Each LSTMk is trained
using the temporal cohort Ck to aggregate a
patient’s visit sequence and estimate their mor-
tality risk at their last visit available in Ck, with
k ∈ {1, . . . ,K}∪{last}. The ensemble model learns
from multiple visits for each patient, while each
LSTMk is exclusively trained on a single visit
sequence per patient. This setup guarantees that
the training data for each LSTMk are independent
and identically distributed (iid). We set K = 5
given that only 5% of patients have more than 5
visits in our dataset. We chose not to restrict Ck

to patients with only k visits in order to optimize
each LSTMk of the ensemble model on a larger
set of data. Here, our assumption is that including
patients with a full sequence of visits, even if the
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Fig. 1 Study overview. (a) The ELSTM averages predictions of multiple LSTMs trained using different
cohorts of the same patients. Each cohort includes the patient’s history up to a specific visit. (b) Baseline
models consider patients visits independently

length was less than k, would make the distribu-
tion of training data more exhaustive and improve
the model’s predictive performance.

In the testing phase, the ELSTM averages the
predictions of all LSTMs trained with patients
having at least m visits to make a prediction at
the mth visit of a patient, as follows:

ELSTM(V i
m) = ELSTM({V i

j }mj=1)

=

∑
k∈M LSTMk({V i

j }mj=1)

|M |

2.3 Experimental setup

2.3.1 Baseline models

We conducted a comparative analysis of the
ELSTM with two baseline models which do not
use longitudinal data. The first model is the ran-
dom forest (RF), as employed in prior work [9],
using the scikit-learn wrapper [20] from skranger
library1. The second model is a Basic LSTM
(BLSTM) which does not consider previous infor-
mation when making a prediction for a specific
visit. Each LSTM-based model contains one single
hidden layer followed by 2 fully connected layers

1https://pypi.org/project/skranger/
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Table 1: Covariates included in all predictive models as described in Taseen and Ethier [9]. AdmDemo
predictors include only demographics and admission characteristics while AdmDemoDx predictors include
demographics, admission characteristics and comorbidity and admission diagnoses.

Group Variable Description

Demographics
Age Age at admission in full years since birth.
Sex Sex at birth, female or male.

Admission
characteristics

Ambulance admission If the current admission is via ambulance.
Flu season If the current admission is in the month of December,

January, or February.
ICU admission If the current admission is a direct admission to the ICU.
Urgent 30-d readmission If the current admission is an urgent readmission within

30 days of a previous discharge.
Ambulance admissions
count

Number of admissions to the hospital by ambulance in
the year before admission.

ED visits count Number of visits to the emergency department in the year
before admission.

Weeks recently hospital-
ized

Number of full weeks hospitalized in the 90 days before
admission.

Admission service Cardiac surgery, cardiology, critical care, endocrinology,
family medicine, gastroenterology, general surgery, gyne-
cology, hematology-oncology, internal medicine, max-
illofacial surgery, nephrology, neurosurgery, neurology,
obstetrics, ophthalmology, orthopedic surgery, otorhino-
laryngology, palliative care, plastic surgery, respirology,
rheumatology, thoracic surgery, trauma, urology, or vas-
cular surgery.

Admission type Urgent, semi-urgent, elective, or obstetric.
Living status Living status at admission: chronic care hospital, nursing

home, home, or unknown.

Comorbidity
diagnoses

84 binary variables ICD-10 codes from previous visits hospital discharge
abstracts and emergency department information sys-
tems mapped to 84 binary variables.

Visible comorbidities If a previous hospitalization occurred between 5 years and
6 months before admission or if a previous visit to the
emergency department occurred between 6 months and
2 weeks before admission. This binary variable flags the
availability of comorbidity diagnoses.

Admission
diagnoses

147 binary variables Free-text diagnosis on admission order form mapped to
147 binary variables using regular expressions.

and was implemented using the PyTorch library
[21]. For a fair comparison, we added the previous
visit count at each admission as a predictor to the
baseline models.

2.3.2 Experimental design

We used the experimental setup illustrated in
Fig. 2 to evaluate the ELSTM and baseline mod-
els. The experiments are repeated for each group
of predictors AdmDemo and AdmDemoDx. Fol-
lowing a similar approach to Taseen and Ethier
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[9], we temporally split the dataset into a learn-
ing set, including admissions from July 1, 2011,
to June 30, 2017, and a holdout set, including
admissions from July 1, 2017, to June 30, 2021.
We excluded patients admitted before June 30,
2017 from the holdout set to prevent data leak-
age. This design aimed to simulate the evaluation
of a model trained on all available patients data
and tested on subsequently admitted patients. As
patients are exclusively in one set at a time, tem-
poral models have only aggregated previous visits
occurring within the last six years prior to the
current admission. To evaluate the final model’s
clinical utility on the holdout set, we focused on
the same population eligible for GOC discussions
as in previous work [9]. Therefore, we excluded
hospitalizations without an overnight stay from
the holdout set, since there would not be enough
time for a GOC discussion to occur. Additionally,
we omitted admissions to the obstetrics service,
where such discussions are considered inappropri-
ate, and admissions to the palliative care service,
where GOC discussions have already occurred and
are therefore unnecessary at this stage.

2.3.3 Model selection procedure

In the model selection phase, we compare the per-
formance of the ELSTM and baseline models to
evaluate the benefits of incorporating the patients
history in predicting their one-year mortality risk.
To achieve this, we used a nested 5-fold cross-
validation scheme. We partitioned the learning set
using a 5-fold cross-validation into distinct train-
ing and test sets. Each of the training sets was
subsequently separated into distinct inner training
and inner test sets with an inner 5-fold cross-
validation. The inner sets were entirely dedicated
to optimize the hyperparameters of the models for
each outer training fold. The data splitting was
based on patients rather than visits, ensuring that
each patient exclusively belonged to one set at a
time.

To train the LSTM-based models, we created
an additional validation set (as well as an inner
validation set) for each of the 5 cross-validation
splits, enabling us to track model performance
through training epochs and proceed to early stop-
ping if necessary. Each (inner) validation set was
created by randomly sampling 10% of patients
from the corresponding (inner) training set. At

each (inner) training split, the baseline models
were trained using all patients’ visits, while each
LSTMk part of the ELSTM was trained using a
temporal cohort Ck.

We assessed the benefits of the longitudinal
data at each patient visit including their last visit
available in our dataset, when we considered our
patient’s medical trajectory completed. We define
Vt as all the tth visits of patients having at least
t visits, and Vt,last as the last visits of patients
having exactly t visits.

2.3.4 Hyperparameters optimization

We optimized each model’s hyperparameters to
find the best set leading to the highest scores.
We trained each LSTM-based model using the
Adam optimizer [22] with parameters β1 = 0.9
and β2 = 0.999, and a batch size of 100. We fixed
the sizes of the fully connected layers to 2 and
1 respectively. Given that the ELSTM consists
of multiple models, we chose to exclusively opti-
mize the hyperparameters of LSTMlast and used
the selected set to train each LSTMk. This way,
we ensured consistent probability scales within
the models constituting the ensemble model. For
each optimized model, we sampled 100 sets of
hyperparameters values from predefined search
spaces, using a random sampler from the Optuna
Python library [23]. Each set of hyperparameters
values was evaluated by training the model with
the 5 inner training sets and then measuring the
AUROC on their respective inner testing sets.
Here, the inner test sets included only the last visit
of each patient. The set associated with the high-
est AUROC was selected to train the model on
the whole training set of the outer loop. Models’
hyperparameters are provided in Appendix A.

2.3.5 Final evaluation procedure

To evaluate the clinical utility of the best model
selected in the previous phase, we compared its
predictions to the usual care performed by clini-
cians on patients eligible for a GOC discussion. We
aimed to quantify the gains and losses in terms of
true positive and false positive alerts if this auto-
mated tool was used in a clinical decision support
system to alert clinicians when a patient is iden-
tified as being at risk of one-year mortality. First,
we extracted all CSOs of patients in the holdout
set, and considered that a GOC occurred between

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 26, 2024. ; https://doi.org/10.1101/2024.06.21.24309191doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309191
http://creativecommons.org/licenses/by-nc/4.0/


T.A: Temporal Analysis

Fig. 2 Experimental setup for model comparisons and final evaluation. 1) Temporal division of the
dataset into a learning set and a holdout set. 2) Evaluation of the predictive performance of each model
on 5 testing sets using a 5-fold cross-validation over the patients of the learning set. The same data
splits are used for all models. Baseline models (RF, BLSTM) are trained on all the visits, while each
temporal model LSTMk comprising the ELSTM is trained using a temporal cohort Ck. The scores are
reported on specific patients of the testing sets. The training of each model includes the optimization
of hyperparameters, except for the temporal models, for which we only optimize the hyperparameters
of LSTMlast. Details on hyperparameter optimization are shown in Appendix A. 3) Comparison of the
temporal and non-temporal strategy and selection of the best strategy based on performance. The latter
is measured using the mean and standard deviation of the scores on the 5 testing sets. 4) Final evaluation
of the selected strategy on the holdout set. The final model predictions are then compared to usual care
to quantify clinical utility

a patient and a clinician (and that a patient at
high risk of one-year mortality was identified by
the clinical team) if a CSO was documented prior
to the patient’s discharge, whether during the cur-
rent admission or a previous one. Similarly to
Taseen and Ethier [9], we defined:

• True Positives (TPs) as patients with a docu-
mented CSO who died within a year.

• False Positives (FPs) as patients with a docu-
mented CSO who survived beyond a year.

• False Negatives (FNs) as patients without a
documented CSO who died within a year.

• True Negatives (TNs) as patients without a
documented CSO who survived beyond a year.
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Next, we trained the previously selected model
using the entire learning set and compared its
predictions, which would represent the actions
suggested by the automated tool, to the usual care
the patients from the holdout set received.

3 Results

The overall cohort consisted of 123,646 patients
and 250,812 hospitalizations, with 15% of patients
experiencing mortality within one year of their
last admission. The learning set included 82,104
patients and 148,587 hospitalizations. For the
holdout set, we excluded 40,915 hospitaliza-
tions belonging to previously admitted patients
between 2011-2017, along with 7,644 patients and
11,992 hospitalizations ineligible for GOC discus-
sions. Ultimately, the holdout set included 33,898
patients and 49,318 hospitalizations. Detailed
descriptive analyses for each set can be found in
Appendix B. Fig. 3a provides an overview of the
proportion of mortality and survival per num-
ber of visits across the dataset. Patients who are
frequently admitted to the hospital are generally
fewer, but present a higher risk of one-year mor-
tality. Fig. 3b shows the distribution of visits over
time after the first hospitalization discharge. The
second and third visits occur mainly in the first
months following the first hospital discharge, while
subsequent visits are increasingly scattered across
time.

3.1 Model selection on the learning
set

In this part of our study, we explored the benefits
of integrating patients’ historical data to predict
their HOMR score. We assessed the baselines and
the ELSTM on the learning set at various stages
of patients’ hospital admissions, to understand
the extent to which exploring patients’ history
proves beneficial. As described earlier, we con-
sidered two groups of predictors: AdmDemo and
AdmDemoDx.

Table 2a presents the performance of the base-
line models and ELSTM for the last visit of
each patient. The ELSTM outperforms the non-
temporal models with a higher AUROC for all
patient groups with both sets of predictors. Sta-
tistical tests revealed a significant overall improve-
ment, except for V5,last and V>5,last, where we

(a)

(b)

Fig. 3 Distribution of visits across the entire
dataset. (a) Proportions of survival and mortality
per number of visits in the dataset. Vt,last repre-
sents all the patients with exactly t visits in the
dataset and V>t,last those with more than t visits.
The number of patients decreases with the num-
ber of visits, in contrast to the mortality rate. (b)
Distribution of visits over time after the first hos-
pital discharge. Vt represents all the tth visits in
the dataset and V>t all the visits after the t

th visit

note a higher variance due to fewer patients (∼300
and ∼500) that can diminish the statistical power
of the test. Notably, even for patients without a
historical record V1,last, the temporal model was
effective – emphasizing that absence of recurrent
visits serves as valuable insight. Experiments in
Table 2b show that the impact of longitudinal data
is less pronounced on intermediate visits, with
non-statistically significant increases or decreases
across multiple groups of patients, especially for
AdmDemoDx predictors. Appendix C shows the
performances of each individual LSTMk within
the ELSTM.

Next, the group of predictors with fewer vari-
ables (AdmDemo) achieved acceptable results for
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Table 2: Performance of the baseline models and the ELSTM on the testing sets of the learning set
using both AdmDemo and AdmDemoDx predictors. RF: Random Forest; BLSTM: Basic LSTM; ELSTM:
Ensemble LSTM. (a) Performance on the last visits of patients. (b) Performance on the last and inter-
mediate visits of patients. Each testing set from the 5-fold cross-validation was divided into different
groups of patients according to their number of visits to evaluate when temporal modeling is beneficial.
Each group of patients included a patient at most once. The scores correspond to the mean ± standard
deviation of the AUROC over the 5 testing sets. For each group of patients, the highest AUROC is high-
lighted in bold. Significant difference was quantified using the one-sided Wilcoxon signed-rank test [24].
Each p-value corresponds to the significance of improvement of the ELSTM over the best baseline model
(RF or BLSTM) for a specific group of patients. Vt,last represents the t

th visits of patients having exactly
t visits, V>t,last the last visits of patients having more than t visits, Vt the tth visits of patients having
at least t visits, and V>t one visit selected randomly that occurred after the tth visit for patients having
more than t visits.

(a)

AdmDemo AdmDemoDx

Patients group RF BLSTM ELSTM RF BLSTM ELSTM

V1,last 88.1± 0.4 88.2± 0.3 88.7± 0.3** 91.3± 0.2 91.4± 0.2 91.8± 0.3**
V2,last 88.1± 0.5 88.4± 0.4 89.1± 0.5** 92.1± 0.6 92.0± 0.8 92.6± 0.7**
V3,last 84.4± 0.5 85.2± 0.5 86.8± 0.9** 90.2± 0.8 90.4± 1.1 91.1± 1.0**
V4,last 80.3± 1.1 80.6± 1.5 83.3± 0.8** 87.5± 0.9 87.7± 0.6 88.7± 0.9**
V5,last 80.6± 4.1 81.7± 3.9 82.5± 4.4 86.1± 2.4 85.8± 2.3 87.0± 2.6*
V>5,last 75.3± 1.6 75.0± 1.4 75.6± 1.4 81.7± 0.6 81.8± 0.5 82.4± 0.6*

Last visita 89.1± 0.2 89.2± 0.3 89.8± 0.2** 92.2± 0.2 92.3± 0.2 92.6± 0.3**

(b)

AdmDemo AdmDemoDx

Patients group RF BLSTM ELSTM RF BLSTM ELSTM

V1 84.2± 0.4 84.5± 0.3 84.3± 0.4 88.2± 0.2 88.4± 0.2 88.3± 0.3
V2 82.3± 0.4 82.6± 0.2 82.8± 0.4** 87.2± 0.5 87.1± 0.4 87.2± 0.5
V3 77.5± 0.5 78.0± 0.6 79.3± 0.7** 84.4± 0.7 84.6± 0.8 84.7± 0.7**
V4 74.5± 0.5 75.0± 0.8 76.9± 0.6** 81.9± 0.5 81.9± 0.3 82.1± 0.6
V5 73.4± 2.2 73.7± 2.1 74.3± 1.7 79.5± 1.1 79.4± 1.4 79.9± 1.3
V>5 73.0± 1.1 73.7± 0.8 72.9± 0.7 79.9± 0.8 79.6± 0.7 79.1± 1.6

Any visitb 86.8± 0.2 87.0± 0.2 87.3± 0.3** 90.3± 0.1 90.3± 0.2 90.6± 0.2**
aLast visit: last visits of all patients.
bAny visit: one visit per patient in the testing set selected randomly.
* p-value < 0.1.
** p-value < 0.05.

all patient sets with a predictably lower AUROC
compared to AdmDemoDx (Tables 2a and 2b).
The AdmDemo feature set seems to benefit more

from the longitudinal data, as we observed a
higher AUROC improvement across all patient
sets compared to the AdmDemoDx feature set
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when using the ELSTM. This emphasizes the
importance of incorporating longitudinal data in
cases where variables about the patient’s precon-
dition are not available (e.g., comorbidity diag-
noses), and the ability of such longitudinal data
to provide a more comprehensive understanding
of the patients through their history.

In addition, the ELSTM revealed comparable
AUROCs on patients admitted later in time to
the AUROCs observed in the learning set (see
Appendix D), thereby demonstrating its tempo-
ral validity. Overall, the ELSTM achieved the best
performance for most patient groups, particularly
on their last visits completing their medical tra-
jectory. These results highlight the gains from
integrating longitudinal patient data to predict
the HOMR score.

3.2 Final evaluation on patients
eligible for a GOC discussion

In this section, we compared the ELSTM using
AdmDemo or AdmDemoDx predictors with the
usual care performed by clinicians for each patient
in the holdout set. We optimized the decision
threshold for considering a patient at risk of
one-year mortality by maximizing the Youden’s
J -index [25]. We set it at 0.34 for ELSTM-
AdmDemo and 0.17 for ELSTM-AdmDemoDx.

Results in Table 3 revealed that the ELSTM
with AdmDemo predictors constitutes an auto-
mated tool with similar predictions to the usual
care performed by clinicians, with overall good
precision and a low rate of inappropriate alerts
relative to daily clinical practice. We also observe
that, although the ELSTM with AdmDemoDx
predictors achieved the highest AUROC, the
model is less sensitive and detects slightly fewer
patients who actually died within a year of their
admission (Fig. 4a). Nevertheless, this model con-
siderably reduced the number of false positive
notifications and increased the precision. The cal-
ibration curves in Fig. 4b support this result,
by showing a tendency of ELSTM-AdmDemo
to overestimate the risk of death compared to
ELSTM-AdmDemoDx.

Finally, we analyzed the evolution of impor-
tance for each group of features along with the
number of visits per patient in the ELSTM-
AdmDemoDx. Post-hoc analyses of the impor-
tance assigned to each feature by a model provided

(a)

(b)

FPs: False Positives; TPs: True Positives.

Fig. 4 Analyses of the final ELSTM tested
on the holdout set with both AdmDemo and
AdmDemoDx predictors. Shaded regions indicate
variations within one standard deviation of the
mean over 100 bootstraps. (a) Number of positive
predictions by the ELSTM with AdmDemo and
AdmDemoDx predictors, and CSOs documented
by clinicians. The ELSTM shows a reduced num-
ber of false positives and a slight loss in the
number of true positives. (b) ELSTM calibra-
tion curves with AdmDemo and AdmDemoDx
predictors. We used interpolation to unify the
predicted risk bins over the 100 bootstraps and
generate a mean calibration curve with its varia-
tions. We show in Appendix C the 100 calibration
curves for each ELSTM in the bootstrap sampling.
The ELSTM-AdmDemoDx is almost identical to
a perfectly calibrated model, while the ELSTM-
AdmDemo tends to overestimate the risk of mor-
tality

important insights into their impact on the pre-
dicted scores. Fig. 5 illustrates that as the number
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Table 3: Comparisons of the final ELSTM with AdmDemo and AdmDemoDx predictors to the usual
care performed by clinicians on patients of the holdout set. The scores correspond to the mean ± standard
deviation of the metric over 100 bootstraps drawn with replacement. The highest value for each metric
is highlighted in bold.

Any visita Last visitb

Clinicians AdmDemo AdmDemoDx Clinicians AdmDemo AdmDemoDx

AUROC N.A 83.0± 0.3 87.2± 0.3 N.A 85.3± 0.3 89.0± 0.3
Sensitivity 74.9± 0.6 75.2± 0.7 73.1± 0.7 81.7± 0.5 80.5± 0.6 77.9± 0.6
Specificity 72.2± 0.2 76.0± 0.2 84.1± 0.2 70.4± 0.3 75.1± 0.2 83.6± 0.2
Precision 24.8± 0.4 27.7± 0.4 36.0± 0.5 28.0± 0.4 31.3± 0.4 40.1± 0.5
NPV 95.9± 0.1 96.2± 0.1 96.2± 0.1 96.5± 0.1 96.5± 0.1 96.4± 0.1

aAny visit: one visit per patient in the holdout set selected randomly.
bLast visit: last visits of all patients.

of patient visits increases, the importance of lon-
gitudinal information grows, and the model relies
on predictors from both current and previous
admissions to predict mortality risk. Conversely,
as the number of visits decreases, the model relies
more heavily on demographic information to make
its predictions. This highlights the importance of
using longitudinal data for patients with a long
medical history, and is consistent with clinical
reality, where the frequently admitted patients’
prognoses have a higher dependence on their over-
all health history than on their demographics.
Feature importance and the overall performance
of the ELSTM did not vary when we included the
time gap between current and previous admissions
(see Appendix E), demonstrating that the model
was able to learn this information solely through
the content of longitudinal records.

4 Discussion

Recent years have seen efforts dedicated to devel-
oping automated models identifying patients at
high risk of mortality, in order to improve end-
of-life care and align patient preferences with the
provided care. Recent works have explored the use
of machine learning models to integrate patients’
longitudinal data in several clinical contexts [27–
29], and presented interesting improvements over
single-visit models. However, to date, these tech-
niques have not been used for models predicting
the HOMR score to enhance palliative care. This
study introduces the Ensemble Long Short-Term

Memory (ELSTM), a recurrent neural network-
based ensemble model that integrates both admis-
sion and historical patient data to automatically
identify individuals at an elevated risk of one-
year mortality. The aim is to prompt the clinical
team for end-of-life interventions, such as GOC
discussions.

Firstly, we developed the ELSTM, an ensem-
ble model built upon the LSTM neural network,
that leverages information learned by different
LSTMs at various stages of a patient’s admission.
We applied the ELSTM to patients with vary-
ing numbers of visits and estimated their HOMR
score. We used patient self-reported predictors
available upon admission (AdmDemo), as well as
other comorbidity diagnoses available in patients’
EHR and admission diagnoses documented later
during their stay (AdmDemoDx). A significant
improvement in AUROC, the standard evaluation
metric in the literature for measuring the dis-
criminative power of the HOMR score [13], was
observed across the majority of patients groups
using both sets of predictors. Within the LSTM-
based neural network, we believe the longitudinal
data contributed to mortality prediction in two
aspects. First, frequent visits to the hospital (i.e.,
more longitudinal data) likely indicate an increas-
ing severity of illness, thus a higher risk of death.
Second, the characteristics of each previous hos-
pitalization (i.e., the content of longitudinal data)
provide a superior holistic view of the patient’s
overall condition. Thus, the importance of pre-
vious data grows with the length of a patient’s
history. These two aspects allow each LSTM to
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Fig. 5 Post-hoc analyses of feature importance of the final ELSTM trained with AdmDemoDx predictors.
Importance of each feature is computed using feature permutation [26] over 100 bootstraps. Shaded
regions indicate variations within one standard deviation of the mean over 100 bootstraps. Importance
of previous features increases as the size of patients’ history gets longer

learn long- and short-term longitudinal patterns
to accurately identify patients at high risk of
one-year mortality.

Next, we compared the ELSTM to the usual
care provided by clinicians to the population of
interest eligible for end-of-life interventions. Both
AdmDemo and AdmDemoDx strategies revealed
considerable benefits as an automated alert preva-
lence tool of patients at high risk of one-year mor-
tality in a clinical decision support system. More
specifically, the ELSTM using AdmDemo predic-
tors facilitates real-time data acquisition, as it
requires fewer variables, all available immediately
upon admission and can be self-reported. In addi-
tion, the model revealed similar results to human
decision-making, and is hence useful in hospi-
tals where diagnoses are encoded post-discharge
as in previous studies [15, 16]. On the other
hand, even though the ELSTM using AdmDe-
moDx predictors is more challenging in terms of
data acquisition, it can significantly reduce false
positive notifications and therefore the risk of an
alert fatigue, making it a suitable candidate for
deployment in a clinical decision support system.

We have identified several limitations worth
addressing in future studies. Firstly, while the
overall AUROC of the ELSTM with the AdmDe-
moDx feature set ranges between 0.87-0.89, an
examination of population subgroups shows that
the oldest patients, and potentially those with
the most complicated medical conditions, are less
accurately predicted (see Appendix E). To better
identify patients at high risk of mortality, mod-
els used on these patients should include not only
administrative and diagnostic variables routinely
collected on admission, but also admission-specific
clinical variables such as vital signs, laboratory
and imaging tests. Secondly, our evaluation of clin-
ical utility assumes that a clinician would engage
in a GOC discussion and document a CSO for all
and only those patients suspected to be at high
risk of death. However, this assumption has lim-
itations. Not all high-risk patients may have the
opportunity for a GOC discussion due to a lack
of resources or time. Additionally, clinicians may
document a patient’s CSO not only based on their
risk of mortality but also on the potential need
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for escalated care requiring intubation or ventila-
tion. Thirdly, although the AUROC is the main
metric in the literature to evaluate models predict-
ing the HOMR score, model selection in clinical
settings should primarily maximize clinical utility,
which is extremely context-dependent (based on
individual hospital services and resources, typical
patient origin and profile, severity of admissions,
length of stay, etc). Fourthly, although our model
demonstrated an acceptable temporal validity, it
was not validated using external datasets. Let us
however note that the HOMR prediction score has
been externally validated in a previous study [14].
Finally, it is important to acknowledge that pre-
dicting a patient at high risk of mortality does
not guarantee an effective GOC discussion. Future
research should therefore investigate the actual
impact of early detection of these patients on the
quality of their end-of-life care.

5 Conclusion

In this work, we developed an ELSTM, an ensem-
ble recurrent neural network-based approach
leveraging information available across different
patient hospitalizations. We evaluated our model
using data collected routinely during hospital
admissions to predict the Hospital One-year Mor-
tality Risk (HOMR) score and to identify individ-
uals who might benefit from end-of-life discussions
with healthcare providers. Our model outper-
formed existing approaches both when using only
admission demographics and administrative vari-
ables as predictors (AdmDemo), and when inte-
grating diagnoses as well (AdmDemoDx). Our
study highlights the rich data potential available
in patients’ medical records, emphasizing their
ability to generate predictive models for enhanc-
ing patient care, throughout the life spectrum and
at the end of life.
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Appendix A.
Hyperparameters

This section provides further information on the
hyperparameter optimization process (Fig. 6),
including the hyperparameters of the models and
their respective search spaces (Table 4 and 5).

Table 4: Random Forest’ hyper-
parameters. The hyperparameters
that are not mentioned were set as
the default ones from the scikit-
learn wrapper interface of version
0.8.0 of the skranger library3. The
weight hyperparameter represents
the weight of the positive class.

Hyperparameter Search space

n estimators {128, 256, ..1024}
mtry {10, 15, 20}

min node size {10, 20, ..80}
weight [0.1, 0.9]

T.A: Temporal Analysis

Fig. 6 Hyperparameter optimization for each
model. The process is performed automatically
using a random sampler from predefined search
spaces for each hyperparameter, within the frame-
work of the Optuna [23] Python library. The
training patients are divided using a 5-fold cross-
validation into inner training patients and inner
testing patients. Temporal models are trained
using the temporal cohort Clast. All models are
tested on the last visits of patients. A total of 100
sets of hyperparameter values are sampled sequen-
tially and evaluated on the same inner testing
patients. The performance is measured using the
mean of the AUROC on the 5 inner testing sets.
The set of hyperparameters associated with the
highest AUROC is used to train the model on the
outer training patients

Appendix B. Descriptive
analyses

This section provides detailed descriptive analyses
of the demographic and admission characteris-
tic features, as well as four major comorbidities,
across the full dataset (Table 6), the learning set
(Table 7), and the holdout set (Table 8). We

3https://pypi.org/project/skranger/
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Table 5: Hyperparameters of
LSTM-based models (BLSTM
and LSTMk). The weight decay
refers to the coefficient multi-
plying the L2 penalty in the
cross entropy loss. The learning
rate refers to the initial learn-
ing rate given to the Adam
optimizer [22] at the beginning
of the training. The hidden size
refers to the number of neurons
in the hidden layer. The weight
hyperparameter represents the
weight of the positive class.

Hyperparameter Search space

weight decay
[
0, 10−4

]
learning rate

[
10−5, 10−3

]
hidden size {16, 32, 48, 64}

weight [0.1, 0.9]

present the mode of each categorical feature along
with its proportion in the dataset, and the mean
of each continuous feature along with its standard
deviation. The p-values are computed using the
Welch’s t-test [31] for continuous features (age,
ambulance admission count, ED visit count, and
weeks recently hospitalized) and the Pearson’s
chi-squared test [32] for categorical and binary
features, using the scipy [33] Python library.

Appendix C. Detailed
performance of the ELSTM

We present the performance of each LSTMk con-
stituting the ELSTM on patients of the learning
set in Fig. 7.

Additionally, we provide the calibration curves
of the final ELSTM, tested on 100 bootstraps of
the holdout set, at each bootstrap in Fig. 8.

Appendix D. Temporal
validity

We train the ELSTM with patients admitted
between July 1, 2011 and June 30, 2017 and tested
it on patients who are only admitted between July
1, 2017 and June 30, 2021, without excluding those
ineligible for a GOC discussion. The testing set

included 41,542 patients and 61,310 hospitaliza-
tions. The goal is to evaluate the ELSTM when
using the same rules for excluding visits for train-
ing and testing, but with data from different time
periods. Results in Table 9 reveal an acceptable
temporal validity, with AUROCs comparable to
those observed in the learning set (Table 2).

Appendix E. Additional
experimental results

We trained the ELSTM model with the time gap
between current and previous admissions included
as an additional predictor to assess its impact on
predicting patient mortality risk. The overall per-
formance (Table 10) and feature importance (Fig.
9) remained consistent with the results obtained
using the original set of predictors.

We also evaluated the performance of the final
ELSTM on various population subgroups within
the holdout set. The model performed similarly
across patients of different biological sexes (Table
11), but its accuracy varied among age subgroups,
with the oldest patients being the least accurately
predicted (Table 12).
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Table 6: Descriptive analysis of the demographics and admission characteristics features along with four
major comorbidities on the full dataset.

Variable All Survivors Deceased p-value
(n=250,812) (n=214,095) (n=36,717)

Demographics
Age 61.12± 20.07 58.98± 20.18 73.62± 13.93 < 0.001
Sex Female (54 %) Female (55 %) Male (54 %) < 0.001
Admission characteristics
Ambulance admission 0 (71 %) 0 (74 %) 1 (51 %) < 0.001
Flu season 0 (75 %) 0 (75 %) 0 (74 %) < 0.001
ICU admission 0 (97 %) 0 (97 %) 0 (95 %) < 0.001
Urgent 30-d readmission 0 (90 %) 0 (92 %) 0 (79 %) < 0.001
Ambulance admissions count 0.23± 0.75 0.17± 0.64 0.56± 1.19 < 0.001
ED visits count 0.8± 1.52 0.7± 1.42 1.38± 1.89 < 0.001
Weeks recently hospitalized 0.29± 0.99 0.21± 0.85 0.71± 1.5 < 0.001
Living status Home (48 %) Unknown (50 %) Home (59 %) < 0.001
Admission service Cardiology (13 %) Obstetrics (15 %) I.Ma (14 %) < 0.001
Admission type Urgent (65 %) Urgent (60 %) Urgent (89 %) < 0.001
Major comorbidities
Dementia 0 (97 %) 0 (98 %) 0 (93 %) < 0.001
Congestive heart failure 0 (94 %) 0 (95 %) 0 (86 %) < 0.001
Metastatic solid cancer 0 (98 %) 0 (99 %) 0 (91 %) < 0.001
Asthma 0 (97 %) 0 (97 %) 0 (96 %) < 0.001

aI.M: Internal Medicine.

Table 7: Descriptive analysis of the demographics and admission characteristics features along with four
major comorbidities on the learning set.

Variable All Survivors Deceased p-value
(n=148,587) (n=127,996) (n=20,591)

Demographics
Age 60.52± 20.27 58.45± 20.36 73.34± 13.99 < 0.001
Sex Female (54 %) Female (56 %) Male (54 %) < 0.001
Admission characteristics
Ambulance admission 0 (70 %) 0 (74 %) 1 (52 %) < 0.001
Flu season 0 (75 %) 0 (75 %) 0 (74 %) 0.003
ICU admission 0 (97 %) 0 (97 %) 0 (95 %) < 0.001
Urgent 30-d readmission 0 (91 %) 0 (92 %) 0 (79 %) < 0.001
Ambulance admissions count 0.24± 0.78 0.18± 0.66 0.59± 1.26 < 0.001
ED visits count 0.86± 1.57 0.75± 1.47 1.52± 1.99 < 0.001
Weeks recently hospitalized 0.29± 0.98 0.22± 0.86 0.73± 1.47 < 0.001
Living status Unknown (49 %) Unknown (52 %) Home (61 %) < 0.001
Admission service Obstetrics (13 %) Obstetrics (15 %) F.Ma (16 %) < 0.001
Admission type Urgent (64 %) Urgent (60 %) Urgent (89 %) < 0.001
Major comorbidities
Dementia 0 (97 %) 0 (98 %) 0 (93 %) < 0.001
Congestive heart failure 0 (94 %) 0 (95 %) 0 (85 %) < 0.001
Metastatic solid cancer 0 (98 %) 0 (99 %) 0 (91 %) < 0.001
Asthma 0 (97 %) 0 (97 %) 0 (96 %) < 0.001

aF.M: Family Medicine.
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Table 8: Descriptive analysis of the demographics and admission characteristics features along with four
major comorbidities on the holdout set.

Variable All Survivors Deceased p-value
(n=49,318) (n=42,285) (n=7,033)

Demographics
Age 64.07± 16.54 62.85± 16.61 71.35± 14.02 < 0.001
Sex Male (53 %) Male (53 %) Male (56 %) < 0.001
Admission characteristics
Ambulance admission 0 (73 %) 0 (75 %) 0 (61 %) < 0.001
Flu season 0 (75 %) 0 (75 %) 0 (73 %) 0.002
ICU admission 0 (96 %) 0 (96 %) 0 (93 %) < 0.001
Urgent 30-d readmission 0 (91 %) 0 (92 %) 0 (81 %) < 0.001
Ambulance admissions count 0.11± 0.41 0.08± 0.36 0.24± 0.64 < 0.001
ED visits count 0.48± 1.07 0.42± 1.01 0.8± 1.35 < 0.001
Weeks recently hospitalized 0.22± 0.86 0.17± 0.75 0.56± 1.32 < 0.001
Living status Unknown (72 %) Unknown (75 %) Unknown (59 %) < 0.001
Admission service Cardiology (15 %) Cardiology (17 %) H/Oa (17 %) < 0.001
Admission type Urgent (71 %) Urgent (68 %) Urgent (88 %) < 0.001
Major comorbidities
Dementia 0 (99 %) 0 (99 %) 0 (97 %) < 0.001
Congestive heart failure 0 (98 %) 0 (99 %) 0 (96 %) < 0.001
Metastatic solid cancer 0 (98 %) 0 (99 %) 0 (92 %) < 0.001
Asthma 0 (99 %) 0 (99 %) 0 (98 %) < 0.001

aH/O: Hematology / Oncology

Table 9: Temporal validity of the ELSTM without excluding patients not eligible for GOC discussions.
(a) Performance on the last visits of patients. (b) Performance on the last and intermediate visits of
patients. The scores correspond to the mean ± standard deviation of the AUROC over 100 bootstraps.

(a)

Patients group AdmDemo AdmDemoDx

V1,last 86.3± 0.4 89.6± 0.3
V2,last 88.3± 0.5 91.6± 0.4
V3,last 85.8± 0.9 88.7± 0.9
V4,last 84.0± 1.4 88.9± 1.1
V5,last 86.1± 1.8 90.4± 1.6
V>5,last 81.5± 1.7 85.4± 1.5

Last visit 88.2± 0.2 91.1± 0.2

(b)

Patients group AdmDemo AdmDemoDx

V1 84.0± 0.3 87.8± 0.3
V2 84.4± 0.4 88.1± 0.4
V3 81.5± 0.8 85.6± 0.7
V4 79.0± 1.0 84.7± 1.0
V5 78.8± 1.5 84.3± 1.4
V>5 79.0± 1.8 83.4± 1.5

Any visit 86.3± 0.3 89.5± 0.2
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a) b)

c) d)

AdmDemo AdmDemoDx

Fig. 7 Performance of each LSTMk trained with a cohort Ck on different groups of patients. (a) and (b)
Performance on the last visits of patients. (c) and (d) Performance on the last and intermediate visits
of patients. The rows represent the testing patients and the columns represent the training cohorts. The
scores in the intersection of a row and a column correspond to the mean of the AUROC over the 5 folds
of cross-validation of an LSTM trained with the corresponding cohort and tested on the corresponding
patients
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(a)

(b)

(c)

(d)

Fig. 8 Calibration curves of the ELSTM with
AdmDemo and AdmDemoDx predictors for each
of the 100 bootstraps on the holdout set

Table 10: Performance of the
ELSTM with AdmDemoDx pre-
dictors when including the time
gap between current and previ-
ous admissions as a predictor. The
scores correspond to the mean ±
standard deviation of the metric
over 100 bootstraps.

Any visit Last visit

AUROC 87.1± 0.3 88.9± 0.3
Sensitivity 75.3± 0.6 79.5± 0.6
Specificity 82.2± 0.2 82.0± 0.2
Precision 34.1± 0.5 38.4± 0.5
NPV 96.5± 0.1 96.6± 0.1

Table 11: Performance of the
ELSTM on subpopulations of
males and females. The scores
correspond to the mean ± stan-
dard deviation of the AUROC
over 100 bootstraps.

Any visit Last visit

Males 87.0± 0.4 88.7± 0.4
Females 87.6± 0.4 89.4± 0.4

Table 12: Performance of the
ELSTM on subpopulations of differ-
ent age groups. The scores correspond
to the mean ± standard deviation of
the AUROC over 100 bootstraps.

Any visit Last visit

Age ≤ 50 89.8± 1.0 91.5± 0.9
50 < Age < 65 88.5± 0.7 90.3± 0.6

Age ≥ 65 82.8± 0.4 84.9± 0.4
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Fig. 9 Post-hoc analyses of feature importance of the ELSTM trained with AdmDemoDx predictors
when including the time gap between current and previous admissions as a predictor. Importance of
each feature is computed using feature permutation [26] over 100 bootstraps. Shaded regions indicate
variations within one standard deviation of the mean over 100 bootstraps
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