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ABSTRACT

Objective

To develop and validate an Ensemble Long Short-term Memory neural network (ELSTM) that integrates
patients’ longitudinal data to predict the Hospital One-year Mortality Risk using patients’ information
collected routinely at admission. The aim is to identify patients at the end of life who may benefit from
goals of care (GOC) discussions.

Materials and Methods

We evaluated our ELSTM (i) when including only predictors that can be reported upon admission (Ad-
mDemo), and (ii) when adding also diagnoses available later during patients’ stay (AdmDemoDx). We used
records of 82,104 patients admitted between 2011 and 2017 to compare the temporal and non-temporal
strategies. We also quantified the clinical utility of the best strategy on 33,898 patients eligible for GOC
discussions admitted between 2017 and 2021.

Results

Our ELSTM used with AdmDemo and AdmDemoDx predictors demonstrated an increased performance
with AUROCs between 0.73-0.90 and 0.79-0.93, respectively. The ELSTM-based decision-making increased
prediction precision by up to 12.1% compared to the usual decision-making process, but it also reduced
sensitivity by up to 3.8%.

Discussion

The integration of patients’ longitudinal data provides better insights into the severity of illness and the
overall condition of patients, especially when limited information is available during their hospitalization.

Conclusion

The proposed ELSTM is an automated and accurate model able to identify patients at high risk of one-year
mortality, potentially usable in clinical decision support systems to improve end-of-life care.
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1 BACKGROUND AND SIGNIFICANCE

Estimating the life expectancy of patients helps identifying high-risk individuals and improve the quality of
care they receive in hospital settings.1–3 Unlike patients with cancer who receive palliative care in their final
months of life, patients with other less predictable conditions are only referred for these services in their final
weeks or days, if at all.4 In Canada, despite common individual preference for most individuals to die in
community and other home-like settings,5 58% of those who died in 2015 were hospitalized more than once in
their last year of life, and 61% died in hospital.6 An early identification of these high-risk patients would allow
important discussions with healthcare providers regarding end-of-life choices, to align their preferences with
the care they receive.7 Such discussions would enable goals-of-care (GOC) documentation, including Code
Status Orders (CSOs) clarifying essential preferences for life-supporting therapy.8,9 Early identification would
also facilitate communication between clinicians and families regarding patients’ life trajectories, ensuring
informed shared decision-making10 and potentially reduce depression and grief.11 However, a clear and
timely prognostication of high-risk patients in hospital settings is time-consuming and therefore challenging
for workload-burdened clinicians.12 An accurate automated tool not requiring human involvement could
initially flag these patients, lightening the work burden of the clinical team.

Several studies have investigated the ability of data available in Electronic Health Records (EHRs) to
predict the mortality risk of patients, potentially driving an automated clinical decision support system.
van Walraven et al 13,14 introduced the Hospital One-year Mortality Risk (HOMR) score, representing the
probability of death within one year of patient’s admission. The original model consisted of a logistic re-
gression using post-discharge administrative data routinely collected upon admission, evaluated using Area
Under the Receiver Operating Characteristic curve (AUROC). Their goal was to flag high-risk individuals
and initiate end-of-life discussions with them to decide in favor or against potentially aggressive and in-
vasive interventions. To operate in real-time, subsequent versions modified the HOMR score according to
the availability of data in each hospital, and included only variables available immediately when patients
were admitted.15,16 As a result, due to specific EHRs constraints, diagnostic codes were omitted from the
predictors. More recently, Taseen and Ethier 9 explored the clinical utility of models predicting the HOMR
score, in which they developed three random forest models based on variable sets available at different times
during a patient’s admission. The authors compared the discriminative power of such models with previously
established linear regression models and evaluated their clinical utility within their hospital setting.

Nevertheless, these studies did not include valuable longitudinal information present in patients’ records,
as they focus on single visits and do not take into account the patient’s history from previous hospital
admissions. This approach diverges from the clinical reality, where clinicians consistently consider the entire
patient history before making any prognostic prediction for any condition. Another approach has been to
incorporate broader covariates (e.g., medical disease codes, clinicians’ notes, social history) and aggregate
patient information within and across admissions to predict their mortality risk in order to refer them for
end-of-life care.17,18 However, these studies did not explicitly quantify the impact of integrating patient
history in developing more accurate solutions. Moreover, the proposed models are more challenging in terms
of data acquisition and are therefore less likely to be deployed in a clinical decision support system — unlike
HOMR-based models that have already been clinically deployed16 or are in the process of deployment.9

2 OBJECTIVE

In this work, we have evaluated the benefits of integrating patients’ longitudinal data to improve the accuracy
of the HOMR score. We built on the work of Taseen and Ethier 9 by re-analyzing the same data routinely
collected during patients’ admissions, and also integrating additional recent visits. To assess the benefits of
a temporal EHR analysis, we developed and compared a Long Short-Term Memory-based ensemble model
(ELSTM) that leverages patients’ longitudinal data, to baseline models that consider patients’ visits inde-
pendently, without including previous visits. Figure 1 shows an overview of our study. We further analyzed
the predictive power of our model in two different scenarios with different requirements of data access: (i)
including only demographics and admission characteristics available on patient’s admission, and (ii) adding
also admission diagnoses and comorbid diagnoses available during patient’s hospitalization. In an effort to
better inform about the clinical utility of such models, we quantified the gains and losses of our ELSTM in
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terms of true and false positives as compared to standard human decision-making.

Figure 1: Study overview. (a) The ELSTM averages predictions of multiple LSTMs trained using different
cohorts of the same patients. Each cohort includes the patient’s history up to a specific visit. (b) Baseline
models consider patients visits independently.

3 MATERIAL AND METHODS

3.1 Dataset

This retrospective study took place at an integrated university hospital network with 2 sites and 700 acute
care beds in Sherbrooke, Quebec, Canada. Data were obtained from the institutional data warehouse,
combining EHR and administrative information. The cohort included all adult patients admitted to a non-
psychiatric service between July 1, 2011 and June 30, 2021, excluding admissions to infrequently admitting
services (such as genetics) or admissions with a legal context (i.e. court-ordered). Mortality status was also
extracted from the institutional data warehouse, which was sourced from the Quebec vital statistics registry.
Institutional Review Board approval was obtained prior to data acquisition (Institutional Review Board of
the CIUSSS de l’Estrie—CHUS Nagano #2022-4409). We followed the data extraction steps previously
described by Taseen and Ethier 9 as we use the same source of data. Table 1 lists the predictors used for
model comparisons. Comorbid diagnoses from prior visits became accessible in the information system 6
months following the respective visit, or only 2 weeks later for emergency department encounters.
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Table 1: Covariates included in all predictive models as described in Taseen and Ethier.9 AdmDemo predic-
tors include only demographics and admission characteristics while AdmDemoDx predictors include demo-
graphics, admission characteristics and comorbid and admission diagnoses.

Group Variable Description

Demographics
Age Age at admission in full years since birth.
Sex Sex at birth, female or male.

Admission
characteristics

Ambulance admission If the current admission is via ambulance.
Flu season If the current admission is in the month of December,

January, or February.
ICU admission If the current admission is a direct admission to the ICU.
Urgent 30-d readmission If the current admission is an urgent readmission within

30 days of a previous discharge.
Ambulance admissions
count

Number of admissions to the hospital by ambulance in
the year before admission.

ED visits count Number of visits to the emergency department in the year
before admission.

Weeks recently hospital-
ized

Number of full weeks hospitalized in the 90 days before
admission.

Admission service Cardiac surgery, cardiology, critical care, endocrinology,
family medicine, gastroenterology, general surgery, gy-
necology, hematology-oncology, internal medicine, max-
illofacial surgery, nephrology, neurosurgery, neurology,
obstetrics, ophthalmology, orthopedic surgery, otorhino-
laryngology, palliative care, plastic surgery, respirology,
rheumatology, thoracic surgery, trauma, urology, or vas-
cular surgery.

Admission type Urgent, semi-urgent, elective, or obstetric.
Living status Living status at admission: chronic care hospital, nursing

home, home, or unknown.

Comorbidity
diagnoses

84 binary variables ICD-10 codes from previous visits hospital discharge ab-
stracts and emergency department information systems
mapped to 84 binary variables.

Visible comorbidities If a previous hospitalization occurred between 5 years and
6 months before admission or if a previous visit to the
emergency department occurred between 6 months and
2 weeks before admission. This binary variable flags the
availability of comorbid diagnoses.

Admission
diagnoses

147 binary variables Free-text diagnosis on admission order form mapped to
147 binary variables using regular expressions.

Given the potential variations in data availability on admission across different hospital information
systems, we explored the feasibility of early identification of high-risk patients in several scenarios. We
evaluated two strategies with different data requirements: (i) ”AdmDemo”, including only demographics
and admission characteristics and, (ii) ”AdmDemoDx” including demographics, admission characteristics,
comorbid diagnoses and admission diagnoses.

3.2 Ensemble Long Short-Term Memory neural network (ELSTM)

To evaluate the impact of incorporating a patient’s longitudinal health record for improving the HOMR score,
we introduce an Ensemble Long Short-Term Memory neural network (ELSTM) that leverages information
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learned by multiple LSTMs trained at different stages of patients’ admissions to hospital (Figure 1a1a) . We
base our ensemble model on an LSTM architecture19 since recurrent neural networks can handle sequences
of different lengths without extra padding. This is particularly relevant in our case where patients can have
varying numbers of previous visits.

More formally, we define Ck as the temporal cohort including the visits sequence of each patient up to
their kth visit; if a patient has less than k visits, Ck includes all their visits. Clast denotes the cohort including
the visits sequence of each patient up to their last visit available in our dataset. The formal definition of Ck

is given by:

Ck = {{V i
j }

min(k,Mi)
j=1 }Ni=1 (1)

where N ∈ N is the number of patients, M i ∈ N the number of visits for the ith patient and V i
j the jth visit

of the ith patient.
During the training phase, we train multiple LSTMs on temporal cohorts including patients with varying

numbers of visits. The goal is to capture diverse information at different stages of patients’ visit sequence.
Each LSTMk is trained using the temporal cohort Ck to aggregate a patient’s visit sequence and estimate
their mortality risk at their last visit available in Ck, with k ∈ {1, . . . ,K} ∪ {last}. The ensemble model
learns from multiple visits for each patient, while each LSTMk is exclusively trained on a single visit sequence
per patient. This setup guarantees that the training data for each LSTMk are independent and identically
distributed (iid). We set K = 5 given that only 5% of patients have more than 5 visits in our dataset. We
chose not to restrict Ck to patients with only k visits in order to optimize each LSTMk of the ensemble
model on a larger set of data. Here, our assumption is that including patients with a full sequence of visits,
even if the length was less than k, would make the distribution of training data more exhaustive and improve
the model’s predictive performance.

In the testing phase, the ELSTM averages the predictions of all LSTMs trained with patients having at
least m visits to make a prediction at the mth visit of a patient, as follows:

ELSTM(V i
m) = ELSTM({V i

j }mj=1) =

∑
k∈M LSTMk({V i

j }mj=1)

|M |
(2)

with M = {k ∈ {1, . . . ,K} | k ≥ m} ∪ {last}.

3.3 Experimental setup

3.3.1 Baseline models

We conducted a comparative analysis of the ELSTM with two baseline models which do not use longitudinal
data. The first model is the random forest (RF), as employed in prior work,9 using the scikit-learn wrapper20

from skranger library1. The second model is a basic LSTM (BLSTM) which does not consider previous
information when making a prediction for a specific visit. Each LSTM-based model contains one single
hidden layer followed by 2 fully connected layers and was implemented using the PyTorch library.21 For a
fair comparison, we added the visit count at each admission as a predictor to the baseline models.

3.3.2 Experimental design

We used the experimental setup illustrated in Figure 2 to evaluate the ELSTM and baseline models. The
experiments are repeated for each group of predictors AdmDemo and AdmDemoDx. Following a similar
approach to Taseen and Ethier,9 we temporally split the dataset into a learning set, including admissions
from July 1, 2011, to June 30, 2017, and a holdout set, including admissions from July 1, 2017, to June 30,
2021. We excluded patients admitted before June 30, 2017 from the holdout set to prevent data leakage.
This design aimed to simulate the evaluation of a model trained on all available patients data and tested on
subsequently admitted patients. As patients are exclusively in one set at a time, temporal models have only
aggregated previous visits occurring within the last six years prior to the current admission. To evaluate
the final model’s clinical utility on the holdout set, we focused on the same population eligible for GOC
discussions as in previous work.9 Therefore, we excluded hospitalizations without an overnight stay from the

1https://pypi.org/project/skranger/

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.21.24309191doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309191
http://creativecommons.org/licenses/by-nc/4.0/


holdout set, since there would not be enough time for a GOC discussion to occur. Additionally, we omitted
admissions to the obstetrics service, where such discussions are considered inappropriate, and admissions to
the palliative care service, where GOC discussions have already occurred and are therefore unnecessary at
this stage.

T.A: Temporal Analysis

Figure 2: Experimental setup for model comparisons and final evaluation. 1) Temporal division of the
dataset into a learning set and a holdout set. 2) Evaluation of the predictive performance of each model
on 5 testing sets using a 5-fold cross-validation over the patients of the learning set. The same data splits
are used for all models. Baseline models (RF, BLSTM) are trained on all the visits, while each temporal
model LSTMk comprising the ELSTM is trained using a temporal cohort Ck. The scores are reported on
specific patients of the testing sets. The training of each model includes the optimization of hyperparameters,
except for the temporal models, for which we only optimize the hyperparameters of LSTMlast. Details on
hyperparameter optimization are shown in Supplementary Figure 1. 3) Comparison of the temporal and
non-temporal strategy and selection of the best strategy based on performance. The latter is measured using
the mean and standard deviation of the scores on the 5 testing sets. 4) Final evaluation of the selected
strategy on the holdout set. The final model predictions are then compared to usual care to quantify clinical
utility.

3.3.3 Model selection procedure

In the model selection phase, we compare the performance of the ELSTM and baseline models to evaluate the
benefits of incorporating the patients history in predicting their one-year mortality risk. To achieve this, we
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used a nested 5-fold cross-validation scheme. We partitioned the learning set using a 5-fold cross-validation
into distinct training and test sets. Each of the training sets was subsequently separated into distinct inner
training and inner test sets with an inner 5-fold cross-validation. The inner sets were entirely dedicated to
optimize the hyperparameters of the models for each outer training fold. The data splitting was based on
patients rather than visits, ensuring that each patient exclusively belonged to one set at a time.

To train the LSTM-based models, we created an additional validation set (as well as an inner validation
set) for each of the 5 cross-validation splits, enabling us to track model performance through training epochs
and proceed to early stopping if necessary. Each (inner) validation set was created by randomly sampling
10% of patients from the corresponding (inner) training set.

At each (inner) training split, the baseline models are trained using all patients’ visits, while each LSTMk

part of the ELSTM is trained using a temporal cohort Ck.
We assessed the benefits of the longitudinal data at each patient visit including their last visit available

in our dataset, when we considered our patient’s medical trajectory completed. We define Vt as all the tth

visits of patients having at least t visits, and Vt,last as the last visits of patients having exactly t visits.

3.3.4 Final evaluation procedure

To evaluate the clinical utility of the best model selected in the previous phase, we compared its predictions
to the usual care performed by clinicians on patients eligible for a GOC discussion. We aimed to quantify
the gains and losses in terms of true positive and false positive alerts if this automated tool was used in a
clinical decision support system to alert clinicians when a patient is identified as being at risk of one-year
mortality. First, we extracted all CSOs of patients in the holdout set, and considered that a GOC occurred
between a patient and a clinician (and that a patient at high risk of one-year mortality was identified by
the clinical team) if a CSO was documented prior to the patient’s discharge, whether during the current
admission or a previous one. Similarly to Taseen and Ethier,9 we defined:

• True Positives (TPs) as patients with a documented CSO who died within a year.

• False Positives (FPs) as patients with a documented CSO who survived beyond a year.

• False Negatives (FNs) as patients without a documented CSO who died within a year.

• True Negatives (TNs) as patients without a documented CSO who survived beyond a year.

Next, we trained the previously selected model using the entire learning set and compared its predictions,
which would represent the actions suggested by the automated tool, to the usual care the patients from the
holdout set received.

3.3.5 Hyperparameters optimization

We optimized each model’s hyperparameters to find the best set leading to the highest scores. We trained
each LSTM-based model using the Adam optimizer22 with parameters β1 = 0.9 and β2 = 0.999, and a
batch size of 100. We fixed the sizes of the fully connected layers to 2 and 1 respectively. Given that the
ELSTM consists of multiple models, we chose to exclusively optimize the hyperparameters of LSTMlast and
used the selected set to train each LSTMk. This way, we ensured consistent probability scales within the
models constituting the ensemble model. For each optimized model, we sampled 100 sets of hyperparameters
values from predefined search spaces, using a random sampler from the Optuna Python library.23 Each set
of hyperparameters values was evaluated by training the model with the 5 inner training sets and then
measuring the AUROC on their respective inner testing sets. Here, the inner test sets included only the last
visit of each patient. The set associated with the highest AUROC was selected to train the model on the
whole training set of the outer loop. Models’ hyperparameters are provided in Supplementary Tables 1-2.

4 RESULTS

The overall cohort consisted of 123,646 patients and 250,812 hospitalizations, with 15% of patients expe-
riencing mortality within one year of their last admission. The learning set included 82,104 patients and

8

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.21.24309191doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309191
http://creativecommons.org/licenses/by-nc/4.0/


(a) (b)

Figure 3: Distribution of visits across the entire dataset. (a) Proportions of survival and mortality per
number of visits in the dataset. Vt,last represents all the patients with exactly t visits in the dataset and
V>t,last those with more than t visits. The number of patients decreases with the number of visits, in contrast
to the mortality rate. (b) Distribution of visits over time after the first hospital discharge. Vt represents all
the tth visits in the dataset and V>t all the visits after the tth visit.

148,587 hospitalizations, while the holdout set included 33,898 patients and 49,318 hospitalizations. De-
tailed descriptive analyses for each set can be found in Supplementary Tables 3-5. Figure 3a provides an
overview of the proportion of mortality and survival per number of visits across the dataset. Patients who
are frequently admitted to the hospital are generally fewer, but present a higher risk of one-year mortality.
Figure 3b shows the distribution of visits over time after the first hospitalization discharge. The second and
third visits occur mainly in the first months following the first hospital discharge, while subsequent visits
are increasingly scattered across time.

4.1 Model selection on the learning set

In this part of our study, we explored the advantages of integrating patients’ historical data to predict their
HOMR score. We assessed the baselines and the ELSTM on the learning set at various stages of patients’
hospital admissions, to understand the extent to which exploring patients’ history proves beneficial. As
described earlier, we considered two groups of predictors: AdmDemo and AdmDemoDx.

Table 2a presents the performance of the baseline models and ELSTM for the last visit of each patient.
The ELSTM outperforms the non-temporal models with a higher AUROC for all patient groups with both
sets of predictors. Statistical tests revealed a significant overall improvement, except for V5,last and V>5,last,
where we note a higher variance due to fewer patients (∼ 300 and ∼ 500) that can diminish the statistical
power of the test. Notably, even for patients without a historical record V1,last, the temporal model was
effective - emphasizing that absence of recurrent visits serves as valuable insight. Experiments in Table
2b show that the impact of longitudinal data is less pronounced on intermediate visits. We observe non-
statistically significant increases or decreases, especially for AdmDemoDx predictors. Supplementary Figure
2 shows the performances of each individual LSTMk within the ELSTM.

Next, the group of predictors with fewer variables (AdmDemo) achieved acceptable results for all patient
sets with a predictably lower AUROC compared to AdmDemoDx (Tables 2a and 2b). The former seems to
benefit more from the longitudinal data, as we observed a higher AUROC improvement across all patient
sets compared to AdmDemoDx when using the ELSTM. This emphasizes the significance of incorporating
longitudinal data in cases where premorbid variables are not available (e.g., comorbidity diagnoses), and
their ability to provide a more comprehensive understanding of the patients through their history.

In addition, the ELSTM demonstrated an acceptable temporal validity across all patient groups when
tested on patients admitted later in time (Supplementary Table 6). Overall, the ELSTM achieved the best
performance for most patient groups, particularly on their last visits completing their medical trajectory.
These results highlight the gains from integrating longitudinal patient data to predict the HOMR score.
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Table 2: Performance of the baselines and the ELSTM on the testing sets of the learning set using both
AdmDemo and AdmDemoDx predictors. (a) Performance on the last visits of patients. (b) Performance
on the last and intermediate visits of patients. Each testing set from the 5-fold cross-validation was divided
into different groups of patients according to their number of visits to evaluate when temporal modeling is
beneficial. Each group of patients included a patient at most once. The scores correspond to the mean ±
standard deviation of the AUROC over the 5 testing sets. For each group of patients, the highest AUROC
is highlighted in bold. Significant difference was quantified using the one-sided Wilcoxon signed-rank test.24

Each p-value corresponds to the significance of improvement of the ELSTM over the best baseline model for
a specific group of patients.

(a)

AdmDemo AdmDemoDx

Patients group RF BLSTM ELSTM RF BLSTM ELSTM

V1,last 88.1± 0.4 88.2± 0.3 88.7± 0.3** 91.3± 0.2 91.4± 0.2 91.8± 0.3**
V2,last 88.1± 0.5 88.4± 0.4 89.1± 0.5** 92.1± 0.6 92.0± 0.8 92.6± 0.7**
V3,last 84.4± 0.5 85.2± 0.5 86.8± 0.9** 90.2± 0.8 90.4± 1.1 91.1± 1.0**
V4,last 80.3± 1.1 80.6± 1.5 83.3± 0.8** 87.5± 0.9 87.7± 0.6 88.7± 0.9**
V5,last 80.6± 4.1 81.7± 3.9 82.5± 4.4 86.1± 2.4 85.8± 2.3 87.0± 2.6*
V>5,last 75.3± 1.6 75.0± 1.4 75.6± 1.4 81.7± 0.6 81.8± 0.5 82.4± 0.6*

Last visit 89.1± 0.2 89.2± 0.3 89.8± 0.2** 92.2± 0.2 92.3± 0.2 92.6± 0.3**

(b)

AdmDemo AdmDemoDx

Patients group RF BLSTM ELSTM RF BLSTM ELSTM

V1 84.2± 0.4 84.5± 0.3 84.3± 0.4 88.2± 0.2 88.4± 0.2 88.3± 0.3
V2 82.3± 0.4 82.6± 0.2 82.8± 0.4** 87.2± 0.5 87.1± 0.4 87.2± 0.5
V3 77.5± 0.5 78.0± 0.6 79.3± 0.7** 84.4± 0.7 84.6± 0.8 84.7± 0.7**
V4 74.5± 0.5 75.0± 0.8 76.9± 0.6** 81.9± 0.5 81.9± 0.3 82.1± 0.6
V5 73.4± 2.2 73.7± 2.1 74.3± 1.7 79.5± 1.1 79.4± 1.4 79.9± 1.3
V>5 73.0± 1.1 73.7± 0.8 72.9± 0.7 79.9± 0.8 79.6± 0.7 79.1± 1.6

Any visit 86.8± 0.2 87.0± 0.2 87.3± 0.3** 90.3± 0.1 90.3± 0.2 90.6± 0.2**

Vt,last: tth visits of patients having exactly t visits; V>t,last: last visits of patients having more than t visits; Last visit: last

visits of all patients; Vt: tth visits of patients having at least t visits; V>t: one visit selected randomly that occurred after the
tth visit for patients having more than t visits; Any visit: one visit per patient in the testing set selected randomly.
* p-value < 0.1; ** p-value < 0.05

4.2 Final evaluation on patients eligible for a GOC discussion

In this section, we compared the ELSTM using AdmDemo or AdmDemoDx predictors with the usual care
performed by clinicians for each patient in the holdout set. We optimized the decision threshold for consid-
ering a patient at risk of one-year mortality by maximizing the Youden’s J index.25 We set it at 0.34 for
ELSTM-AdmDemo and 0.17 for ELSTM-AdmDemoDx.

Results in Table 3 revealed that the ELSTM with AdmDemo predictors constitutes an automated tool
with similar predictions to the usual care performed by clinicians, with overall good precision and not too
many inappropriate alerts relative to daily clinical practice.
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(a) (b)

FPs: False Positives; TPs: True Positives.

Figure 4: Analyses of the final ELSTM tested on the holdout set with both AdmDemo and AdmDemoDx
predictors. Shaded regions indicate variations within one standard deviation of the mean over 100 bootstraps.
(a) Number of positive predictions by the ELSTM with AdmDemo and AdmDemoDx predictors, and CSOs
documented by clinicians. The ELSTM shows a reduced number of false positives and a slight loss in the
number of true positives. (b) ELSTM calibration curves with AdmDemo and AdmDemoDx predictors. We
used interpolation to unify the predicted risk bins over the 100 bootstraps and generate a mean calibration
curve with its variations. Supplementary Figure 3 shows the 100 calibration curves for each ELSTM in the
bootstrap sampling. The ELSTM-AdmDemoDx is almost identical to a perfectly calibrated model, while
the ELSTM-AdmDemo tends to overestimate the risk of mortality.

We also observe that, although the ELSTM with AdmDemoDx predictors achieved the highest AUROC,
the model is less sensitive and detects slightly fewer patients who actually died within a year of their admission
(Figure 4a). Nevertheless, this model considerably reduced the number of false positive notifications and
increased the precision. The calibration curves in Figure 4b support this result, by showing a tendency of
ELSTM-AdmDemo to overestimate the risk of death compared to ELSTM-AdmDemoDx.

Table 3: Comparisons of the final ELSTM with AdmDemo and AdmDemoDx predictors to the usual care
performed by clinicians on patients of the holdout set. The scores correspond to the mean ± standard
deviation of the metric over 100 bootstraps drawn with replacement. The highest value for each metric is
highlighted in bold.

Any visit Last visit

Clinicians AdmDemo AdmDemoDx Clinicians AdmDemo AdmDemoDx

AUROC N.A 83.0± 0.3 87.2± 0.3 N.A 85.3± 0.3 89.0± 0.3
Sensitivity 74.9± 0.6 75.2± 0.7 73.1± 0.7 81.7± 0.5 80.5± 0.6 77.9± 0.6
Specificity 72.2± 0.2 76.0± 0.2 84.1± 0.2 70.4± 0.3 75.1± 0.2 83.6± 0.2
Precision 24.8± 0.4 27.7± 0.4 36.0± 0.5 28.0± 0.4 31.3± 0.4 40.1± 0.5
NPV 95.9± 0.1 96.2± 0.1 96.2± 0.1 96.5± 0.1 96.5± 0.1 96.4± 0.1

Any visit: one visit per patient in the holdout set selected randomly; Last visit: last visits of all patients.

Finally, we analyzed the evolution of importance for each group of features along with the number of
visits per patient in the ELSTM-AdmDemoDx. Post-hoc analyses of the importance assigned to each feature
by a model provided important insights into their impact on the predicted scores. Figure 5 illustrates that in
patients with fewer visits the model relied mostly on demographics to determine mortality risk. In contrast,
patients with more visits required almost all their predictors, equally from both their current and previous
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Figure 5: Post-hoc analyses of feature importance of the final ELSTM trained with AdmDemoDx predictors.
Importance of each feature is computed using feature permutation26 over 100 bootstraps. Shaded regions
indicate variations within one standard deviation of the mean over 100 bootstraps. Importance of previous
features increases as the size of patients’ history gets longer.

visits. This highlights the importance of using longitudinal data for patients with a long medical history,
and is consistent with clinical reality, where the frequently admitted patients’ prognoses depend more on
their overall health history than on their demographics. Feature importance and the overall performance
of the ELSTM did not vary when we included the time gap between current and previous admissions
(Supplementary Figure 4, Supplementary Table 7), demonstrating that the model was able to learn this
information solely through the content of longitudinal records.

5 DISCUSSION

Recent years have seen efforts dedicated to developing automated models identifying patients at high risk
of mortality, in order to improve end-of-life care and align patient preferences with the provided care.
Recent works have explored the use of machine learning models to integrate patients’ longitudinal data in
several clinical contexts,27–29 and presented interesting improvements over single-visit models. However,
to date, these techniques have not been used for models predicting the HOMR score to enhance palliative
care. This study introduces the Ensemble Long Short-Term Memory (ELSTM), a recurrent neural network-
based ensemble model that integrates both admission and historical patient data to automatically identify
individuals at an elevated risk of one-year mortality. The aim is to prompt the clinical team for end-of-life
interventions, such as GOC discussions.

Firstly, we developed the ELSTM, an ensemble model built upon the LSTM neural network, that leverages
information learned by different LSTMs at various stages of a patient’s admission. We applied the ELSTM
to patients with varying numbers of visits and estimated their HOMR score. We used patient self-reported
predictors available upon admission (AdmDemo), as well as other comorbid diagnoses available in patients’
EHR and admission diagnoses documented later during their stay (AdmDemoDx). A significant improvement
in AUROC, the standard evaluation metric in the literature for measuring the discriminative power of the
HOMR score,13 was observed across the majority of patients groups using both sets of predictors. Within
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the LSTM-based neural network, we believe the longitudinal data contributed to mortality prediction in
two aspects. First, frequent visits to the hospital (i.e., more longitudinal data) likely indicate an increasing
severity of illness, thus a higher risk of death. Second, the characteristics of each previous hospitalization
(i.e., the content of longitudinal data) provide an overview of the patient’s overall condition. Thus, the
importance of previous data grows with the length of patient’s history. These two aspects allow each LSTM
to learn long- and short-term longitudinal patterns to accurately identify patients at high risk of one-year
mortality.

Next, we compared the ELSTM to the usual care provided by clinicians to the population of interest
eligible for end-of-life interventions. Both AdmDemo and AdmDemoDx strategies revealed considerable
benefits as an automated alert prevalence tool of patients at high risk of one-year mortality in a clinical
decision support system. More specifically, the ELSTM using AdmDemo predictors facilitates real-time
data acquisition, as it requires fewer variables, all available immediately upon admission and can be self-
reported. In addition, the model revealed similar results to human decision-making, and is hence useful in
hospitals where diagnoses are encoded post-discharge as in previous studies.15,16 On the other hand, even
though the ELSTM using AdmDemoDx predictors is more challenging in terms of data acquisition, it can
significantly reduce false positive notifications and therefore the risk of an alert fatigue, making it a suitable
candidate for deployment in a clinical decision support system.

We have identified several limitations worth addressing in future studies. Firstly, although the model’s
overall performance seems satisfactory, an examination of population subgroups shows that the oldest pa-
tients, and potentially those with the most complicated medical conditions, are less accurately predicted
(Supplementary Table 8). To better identify patients at high risk of mortality, models used on these patients
should include not only administrative and diagnostic variables routinely collected on admission, but also
admission-specific clinical variables such as vital signs, laboratory and imaging tests. Secondly, our evalua-
tion of clinical utility assumes that a clinician would engage in a GOC discussion and document a CSO for
all and only those patients suspected to be at high risk of death. However, this assumption has limitations.
Not all high-risk patients may have the opportunity for a GOC discussion due to a lack of resources or time.
Additionally, clinicians may document a patient’s CSO not only based on their risk of mortality but also on
the potential need for escalated care requiring intubation or ventilation. Thirdly, although the AUROC is
the main metric in the literature to evaluate models predicting the HOMR score, model selection in clinical
settings should primarily maximize clinical utility, which is extremely context-dependent (based on individ-
ual hospital services and resources, typical patient origin and profile, severity of admissions, length of stay,
etc). Fourthly, although our model demonstrated an acceptable temporal validity, it was not validated using
external datasets. We therefore have no evidence on how our model would translate to other institutions
with different patient origins, characteristics and distributions. Finally, it is important to acknowledge that
predicting a patient at high risk of mortality does not guarantee an effective GOC discussion. Subsequent
research should therefore investigate the actual impact of early detection of these patients on the quality of
their end-of-life care.

6 CONCLUSION

In this work, we developed an ELSTM, an ensemble recurrent neural network-based approach leveraging
information available across different patient hospitalizations. We evaluated our model using data collected
routinely during hospital admissions to predict the Hospital One-year Mortality Risk score and to identify
individuals who might benefit from end-of-life discussions with healthcare providers. Our model outper-
formed existing approaches both when using only admission demographics and administrative variables as
predictors (AdmDemo), and when integrating diagnoses as well (AdmDemoDx). Our study highlights the
rich data potential available in patients’ medical records, emphasizing their ability to generate predictive
models for enhancing patient care, throughout the life spectrum and at the end of life.
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Mahdi Ait Lhaj Loutfi, Master’s student at Université de Sherbrooke, for helpful comments and suggestions
throughout the project.

REFERENCES

1. Yourman LC, Lee SJ, Schonberg MA, et al. Prognostic indices for older adults: a systematic review.
JAMA. 2012;307(2):182–192.

14

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.21.24309191doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309191
http://creativecommons.org/licenses/by-nc/4.0/


2. Clarke M, Kennedy K, MacDonagh R. Development of a clinical prediction model to calculate pa-
tient life expectancy: the measure of actuarial life expectancy (MALE). Medical Decision Making.
2009;29(2):239–246.

3. Kalra S, Basourakos S, Abouassi A, et al. The implications of ageing and life expectancy in prostate
cancer treatment. Nat Rev Urol. 2016;13(5):289–295.

4. Seow H, O’Leary E, Perez R, et al. Access to palliative care by disease trajectory: a population-based
cohort of Ontario decedents. BMJ open. 2018;8(4):e021147.

5. Gomes B, Calanzani N, Gysels M, et al. Heterogeneity and changes in preferences for dying at home: a
systematic review. BMC Palliat Care. 2013;12(1):1–13.

6. Hsu AT, Garner RE. Associations between the receipt of inpatient palliative care and acute care out-
comes: a retrospective study. Health Reports. 2020;31(10):3–13.

7. Brinkman-Stoppelenburg A, Rietjens JA, Heide A. The effects of advance care planning on end-of-life
care: a systematic review. Palliat Med. 2014;28(8):1000–1025.

8. Huber MT, Highland JD, Krishnamoorthi VR, et al. Utilizing the electronic health record to improve
advance care planning: a systematic review. Am J Hosp Palliat Care. 2018;35(3):532–541.

9. Taseen R, Ethier JF. Expected clinical utility of automatable prediction models for improving palliative
and end-of-life care outcomes: Toward routine decision analysis before implementation. JAMIA Open.
2021;28(11):2366–2378.

10. Heyland DK, Allan DE, Rocker G, et al. Discussing prognosis with patients and their families near the
end of life: impact on satisfaction with end-of-life care. Open Medicine. 2009;3(2):e101.

11. Yamaguchi T, Maeda I, Hatano Y, et al. Effects of end-of-life discussions on the mental health of bereaved
family members and quality of patient death and care. J Pain Symptom Manage. 2017;54(1):17–26.

12. Lund S, Richardson A, May C. Barriers to advance care planning at the end of life: an explanatory
systematic review of implementation studies. PloS one. 2015;10(2):e0116629.

13. Walraven C. The Hospital-patient One-year Mortality Risk score accurately predicted long-term death
risk in hospitalized patients. J Clin Epidemiol. 2014;67(9):1025–1034.

14. Walraven C, McAlister FA, Bakal JA, et al. External validation of the Hospital-patient One-year Mor-
tality Risk (HOMR) model for predicting death within 1 year after hospital admission. Can Med Assoc
J. 2015;187(10):725–733.

15. Walraven C, Forster AJ. The HOMR-Now! model accurately predicts 1-year death risk for hospitalized
patients on admission. Am J Med Open. 2017;130(8):991–e9.

16. Wegier P, Koo E, Ansari S, et al. mHOMR: a feasibility study of an automated system for identifying
inpatients having an elevated risk of 1-year mortality. BMJ Qual Saf. 2019;28(12):971–979.

17. Guo A, Foraker R, White P, et al. Using electronic health records and claims data to identify high-risk
patients likely to benefit from palliative care. Am J Manag Care. 2021;27(1).

18. Beeksma M, Verberne S, Bosch A, et al. Predicting life expectancy with a long short-term memory
recurrent neural network using electronic medical records. BMC Med Inform Decis Mak. 2019;19(1):1–
15.

19. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780.

20. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn
Res. 2011;12:2825–2830.

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.21.24309191doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309191
http://creativecommons.org/licenses/by-nc/4.0/


21. Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library.
Adv Neural Inf Process Syst. 2019;32.

22. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014.

23. Akiba T, Sano S, Yanase T, et al. Optuna: A next-generation hyperparameter optimization frame-
work. in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining:2623–2631 2019.

24. Wilcoxon F. Individual comparisons by ranking methods. in Breakthroughs in Statistics: Methodology
and Distribution:196–202Springer 1992.

25. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35.

26. Fisher A, Rudin C, Dominici F. All Models are Wrong, but Many are Useful: Learning a Variable’s
Importance by Studying an Entire Class of Prediction Models Simultaneously. J Mach Learn Res.
2019;20(177):1–81.

27. Herman R, Vanderheyden M, Vavrik B, et al. Utilizing longitudinal data in assessing all-cause mortality
in patients hospitalized with heart failure. ESC Heart Fail. 2022;9(5):3575–3584.

28. Nitski O, Azhie A, Qazi-Arisar FA, et al. Long-term mortality risk stratification of liver transplant
recipients: real-time application of deep learning algorithms on longitudinal data. Lancet Digit Health.
2021;3(5):e295–e305.

29. Yang F, Zhang J, Chen W, et al. DeepMPM: a mortality risk prediction model using longitudinal EHR
data. BMC Bioinformatics. 2022;23(1):423.

16

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.21.24309191doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309191
http://creativecommons.org/licenses/by-nc/4.0/

	BACKGROUND AND SIGNIFICANCE
	OBJECTIVE
	MATERIAL AND METHODS
	Dataset
	Ensemble Long Short-Term Memory neural network (ELSTM)
	Experimental setup
	Baseline models
	Experimental design
	Model selection procedure
	Final evaluation procedure
	Hyperparameters optimization


	RESULTS
	Model selection on the learning set
	Final evaluation on patients eligible for a GOC discussion

	DISCUSSION
	CONCLUSION

