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Abstract 

People with multiple sclerosis (MS), a chronic neurologic disease, typically undergo brain 

magnetic resonance imaging (MRI) to assess for new disease activity or to evaluate response to 

disease-modifying therapy. The required frequency of these imaging studies has not yet been 

determined, and clinicians rely on expert panel recommendations or intuition to select the 

interval length for their patients. These former recommendations are often broad and lack the 

incorporation of individualized information (i.e., age, presence of recent disease activity, type of 

disease modifying therapy) into the synthesis of their assessment. We developed an algorithm 

that can predict new disease activity (i.e., lesions) on the next MRI scan. Multiple data sources 

from the electronic health records of 1045 patients were used to train and test the algorithm 

which resulted in an accurate solution with an area under the curve (AUC) of 0.8 that minimizes 

missed lesions while accurately identifying two-thirds of patients as not having a new lesion in 

subsequent MRI. We believe that this algorithm can be developed into a clinical decision 

support tool as input into a clinician-patient assessment of the appropriate interval length 

between MRIs for a specific patient. 

Introduction 

Multiple sclerosis (MS) is a relatively common disorder and a major cause of neurologic 

disability in early adults, impacting the ability of many to remain employed or engaged in family 

or personal care. The earliest “relapsing” phase of MS, for the vast majority (85-90%) of people 

with the diagnosis, is characterized by the development of autoimmune-induced focal areas of 

demyelination throughout the central nervous system (CNS) which can be visible as “lesions” on 

brain and spinal cord magnetic resonance imaging. When they develop in regions most relevant 

to daily functioning, they produce new neurological symptoms (e.g., numbness, inability to see 

out of one eye, or trouble walking), which are known as MS exacerbations, relapses, flare-ups, 

or attacks. At onset, patients have this form of MS (relapsing remitting MS [RRMS]), but later in 
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their course they often develop slowly worsening disability (secondary progressive MS [SPMS]), 

which on the average begins at the age of 45 ± 10 years.1 

Early treatments to prevent ongoing accrual of damage to the central nervous system can 

mitigate the risk of MS-related inflammatory activity. There are now more than 20 disease-

modifying therapies (DMTs) that prevent the autoimmune “attacks” of MS. However, the modern 

treatment landscape for MS includes DMTs with a wide range of efficacy, where some have 

greater average likelihoods of suppressing new inflammatory activity than others.2  

Monitoring the treatment response to MS DMT has not yet been optimized, particularly in the 

modern treatment era. Current standard of care recommends imaging patients at routine 

intervals, which results in costs and patient discomfort that may not be necessary. When a 

person with MS begins a DMT, neurologists clinically evaluate that person with some periodicity 

(e.g., every 6 months) to ensure no new clinical exacerbations have occurred; they also repeat 

MRI of the brain and/or spinal cord to evaluate for new lesions that may have formed in the 

absence of new clinical symptoms. The appropriate frequency of such MRIs for specific patients 

or patient subgroups (e.g., older patients, those on higher efficacy DMT) has not been 

determined. Expert panels have suggested recommendations, but these are broad and intended 

for all MS patients, without offering individually tailored algorithms that support specific patients 

by incorporating individual patient characteristics (e.g., stability of disease) or thresholds for 

interval changes changes.3,4 

Statistical and machine-learning approaches allow for a systematic approach to explore various 

classification methods to optimize performance while emphasizing relevance to clinical practice 

(e.g., interpretability). These algorithms can utilize large amounts of patient data (e.g., prior 

imaging results, relapse history, medication information) to use for training of their prediction 

models, with outputs that could potentially be read by providers and used as decision-making 

aids for clinically relevant questions. 

We developed an algorithm to predict the presence of new lesions in a subsequent MRI. We 

designed and implemented an approach that accurately classifies new patient lesions and offers 

an interpretable result that can help to build trust and intuition surrounding these decisions. Our 

logistic model threshold can be adjusted to enable different risk settings and minimize missed 

lesions appropriately. This result can be incorporated into a clinical decision tool framework and 

tested in a randomized clinical trial to prospectively validate the predictions. 
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Methods 

We explain in more detail the data sources that are included as well as the classification 

approach used to develop our model.  

Data Sources 

Our tool development includes readily available data from two sources: the MS Performance 

Test (MSPT) 5 and the MS Smartform6. The MSPT is an iPad-based assessment that patients 

complete when they enter the clinic. This assessment provides insight into a patient’s MS status 

by monitoring physical (e.g., walking speed, dexterity scores) and cognitive (e.g., processing 

speed) metrics known to be overrepresented in, and indicative of disease burden among, 

people with MS.5 We focused on just three fields reflecting common symptoms in MS that may 

reflect disease burden: anxiety, depression, and fatigue also available as a part of the MSPT. 

These measures are readily available (as subscales of NeuroQoL7) and patient-reported, so 

their collection is not only standard of care at Johns Hopkins but can easily be incorporated by 

clinicians (or mapped to other common symptom assessments). This facilitates the sharing of 

this tool at other centers where MSPT itself is not standard of care. 

The MS Smartform is a tool for MS providers that is collected in a standardized data format and 

is also available in the EHR. Data used from this repository included relapses, number of 

lesions on MRI, and DMT category (Figure 1) that are then projected to a viewer so patients and 

clinicians can review it together. The MS Smartform has been widely and freely shared through 

the Epic Foundation and Epic Library and has been adapted to the Cerner EHR, it is in use at 

several major MS centers in the US and will remain accessible to external clinicians who wish to 

use our model.6 

During the data merging process, we excluded patients that had only had one visit, to provide 

enough historical information for the prediction algorithm. We also excluded patients who had 

recently started a higher-efficacy DMT to reduce potential bias; an indication to switch to such 

medication means the patient may reasonably have developed intervening new lesions, and it is 

clinically appropriate to obtain a new “baseline” scan after such a switch. Patients with no 

reported lesions were also excluded. 
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Classification Approach 

The output of our classifier predicts if a new lesion will occur (or not) during the next scan. For 

classification, we use logistic regression to predict the target variable (i.e., new lesion present). 

Logistic regression was chosen for its ease of use and interpretability across a compact feature 

set; these qualities are important to build clinical trust and effectively deploy tools. In our 

development process, we also explored more complex machine learning methods such as 

deep-learning-based classifiers but found the results to be similar with higher computational 

requirements, less explainability, and less robustness. We used a 5-fold stratified cross-

validation technique, which trains and tests the data by iteratively splitting the set into 80%/20% 

training/test groups, resulting in each patient encounter being in the test set exactly once. 

After obtaining our results, we analyzed different decision thresholds for our patient cohort. 

However, the decision threshold can be adjusted, especially in cases where the importance of 

false negatives or false positives may vary for a particular application or pose patient risk. 

During our data analysis, we identified a threshold that was conservative in selecting patients 

who are at high risk of developing new lesions (true positives) and should obtain a follow up 

scan, thus increasing its sensitivity. Because our model is targeted for a future clinical 

application, we wanted to be confident that patients who would benefit from a scan would be 

selected while eliminating unnecessary scans; we chose 8% as a threshold based on the 

distribution of the classification results and expert clinician input (Figure 1). For example, if the 

classifier predicts a new lesion will occur, the model will recommend a follow-up MRI, along with 

information about the features supporting this result.  

Results 

Patient Characteristics  

 

A total of 1045 patients’ data were used for development and testing of the classifier in LESION 

(Table 1). Their average age was 48 years, and there was a 3:1 female-to-male ratio; 807 (77%) 

self-identified as White; 191 (18%) as Black; and 9 (0.9%) as Asian. Within this cohort, average 

time since last relapse was 8.7 (SD 9.5) years, 468 were on a high efficacy DMT, and 445 were 

on a moderate one (Table 2). In aggregate, 95 (9%) had a new lesion on their follow up MRI 

(which served to test the model outcome). 
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Table 1: Baseline characteristics of patient data used for in LESION development. 

 

 

Table 2: Algorithm bins the DMTs into the above traditional (moderate efficacy) and aggressive 

(high efficacy) groups.  

Traditional (moderate efficacy) Aggressive (high efficacy) 

• Glatiramer acetate (Copaxone, Glatopa) • Alemtuzumab (Lemtrada) 

• Interferons (Avonex, Betaseron, Rebif, Plegridy) • Natalizumab (Tysabri) 

• Teriflunomide • Ofatumumab (Kesimpta) 

• Fumarates (Tecfidera, Vumerity, Bafiertam) • Ocrelizumab (Ocrevus) 

• Sphingo-1 phosphate modulators (fingolimod, 

siponimod, ozanimod, ponesimod) 

• Rituximab  

• Cladribine (Mavenclad) 

 

Algorithm Results 

The Area Under the Curve (AUC) for our model is 0.8. With the 8% clinically reviewed threshold 

chosen, we obtained 67 true positives: new lesions predicted on next MRI, correctly chosen; 

252 false positives, corresponding to new lesions being predicted incorrectly; 28 false 

negatives, corresponding to incorrectly missed lesions; and 698 true negatives, indicating an 

Characteristic   

Total Patients, N 1045 

Age yrs, mean (SD)  48.1 (9.6) 

Race, N (%)  

White 807 (77) 

Black 191 (18) 

Asian 9 (0.9) 

Female:Male ratio 3:1 

DMT, N (%)  

Higher Efficacy 468 (44.8) 

Moderate Efficacy 445 (42.6) 

Patients w/ New Lesions, N (%) 95 (9) 

Time since relapse yrs, mean (SD)  8.7 (9.5) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2024. ; https://doi.org/10.1101/2024.06.20.24309267doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24309267
http://creativecommons.org/licenses/by-nc-nd/4.0/


algorithm decision that correctly predicts no new lesion. This corresponds to a sensitivity (i.e.,

recall) of 0.71. The algorithm specificity is 0.73. This operating point was chosen to minimize

missed lesions as this could pose clinical risk. However, different thresholds can be chosen

depending on the needs of the clinical environment (Figure 1).  

Figure 1. Classifier results showing true positive rate vs. false positive rate. The clinician-

reviewed operating point is shown in red. AUC = 0.8. 

 

Because features are normalized, variables with higher-magnitude coefficients can be

interpreted as more strongly driving prediction (Figure 2). We identify several statistically

significant contributors, including higher-efficacy MS DMTs, lower age, and lack of new lesion

on prior MRI. 
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Figure 2: Logistic regression coefficients: We can assess the importance of each feature in

predicting the presence of a new lesion.  

Discussion 

Algorithm 

Results from our predictive model and prototype visualization show promising results in

identifying patients that may be able to choose a longer interval between MRI scans. Because

of the interpretability of the classifier and the relatively low proportion of missed lesions, this can

be straightforwardly integrated into a clinical support tool. We have created an initial mock-up

demonstrating how this might be integrated into an electronic health record system, recognizing

that significant future development will likely be needed to aid a clinician-patient decision

making conversation (Figure 3). 

Figure 3: Visualization tool prototype for an example patient, to illustrate the environment for our

algorithm, as envisioned as a clinical decision support tool supporting clinician-patient

conversations. 

In this initial prototype, we identify patients that should obtain follow up scans as they have a

high risk of demonstrating new lesions on the next MRI. But, also as important, we identified a
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large number of patients that could skip their next MRI with a low risk of missing a new lesion. If 

the clinician has already been considering extending the interval between MRI scans, this result 

may provide additional reassurance or a “second opinion” to support the clinician’s assessment.  

While not every patient will decide to skip the MRI, the patient burden and health system cost 

may be substantially reduced at an individual and health system level (e.g., a typical brain MRI 

might cost as much as $3500 per scan). In addition to the cost savings, this can target 

resources for those who need more frequent monitoring. Access to MRI scans can be limited, 

especially in certain geographic areas, both in the United States and in other countries; 

furthermore, even when MRIs are available, patients often must wait months to obtain an 

appointment. It is also important to emphasize the benefit to the patients who can forego 

frequent scans, especially those with claustrophobia, limited mobility, or chronic back pain, for 

whom an MRI scan can be a difficult ordeal, or for whom copay burden posits substantial 

resource strain. 

Developing this model allowed us to study strong predictors of future MRI lesions. Our 

significant features were congruent with findings from previous studies - patients using higher 

efficacy DMTs were less likely to have new disease activity on follow up MRI as were patients 

with stable disease (no recent relapses or lesions) and older age. Other features included in the 

model did not show significance and may warrant further study, especially as sample sizes 

increase. More complex models that consider these predictions could be used in addition to or 

instead of simple logistic regression. During our design process, we explored the use of more 

complex traditional models (e.g., Random Forest, support vector machines), as well as deep 

learning and emerging methods but found that they were either inappropriate (e.g., due to 

volume of available data), or achieved similar performance with a loss of interpretability, which 

can be a major concern for gaining clinician and patient trust. Although we prioritize care for 

patients from minoritized backgrounds, we chose to not explicitly encode race as a classifier 

variable to enhance robustness. We plan to carefully monitor the effect of the model on relevant 

subgroups throughout the deployment process. Furthermore, we hope that future versions will 

also make use of other data types, including biomarkers (e.g. serum neurofilament light chain8), 

to improve the accuracy of model predictions. We validated the stability of our approach by 

adding an updated tranche of patient data (approximately a year of visits), which resulted in 

similar output performance of the model after retraining. Further validation may be performed by 

replicating our approach in another clinical population such as MS PATHS5, DISCO9, 

VIDAMS10, and CombiRx11. 
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Implementation Considerations 

Our implementation design needs to consider real-life implementation into the EHR and the 

values that are reported to the clinician. User-center design concepts such as transparency of 

information need to be considered. For example, a clinician may need access not only to the 

recommendation but also the reasons behind the recommendation from the model perspective. 

This would allow the provider to assess if those aspects are consistent with the patient history 

and evidence. 

Our initial design needs further validation with larger data sets and prospective studies. The 

threshold that was chosen was based on data from this study and could be different once it is 

studied prospectively. One component of our approach is to consider both algorithmic and 

implementation bias as tool implementation is studied. Sociodemographic information is 

available in the EHR to support these analyses, including patient sex at birth and gender, race, 

insurance data, and geocode-based determinants of health. A limitation worth considering is 

that the system relies on data availability from sources that need to be manually entered by a 

clinician. If the MS Smartform is incomplete, algorithm training is affected and results may not 

be as meaningful, or a result may not be available for a particular patient.  

In conclusion, our approach produced a pilot algorithm to help clinicians triage patients that 

would benefit from a subsequent surveillance MRI versus those could be good candidates for 

decreased frequency of imaging. Once refined into a clinical decision-support tool, this 

approach may help support clinician-patient conversations regarding the value of image 

monitoring based on their individual patient characteristics.  
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