Abstract
There is a growing focus on better understanding the complexity of dietary patterns and how they relate to health and other factors. Approaches that have not traditionally been applied to characterize dietary patterns, such as machine learning algorithms and latent class analysis methods, may offer opportunities to measure and characterize dietary patterns in greater depth than previously considered. However, there has not been a formal examination of how this wide range of approaches has been applied to characterize dietary patterns. This scoping review synthesized literature from 2005-2022 applying methods not traditionally used to characterize dietary patterns, referred to as novel methods. MEDLINE, CINAHL, and Scopus were searched using keywords including machine learning, latent class analysis, and least absolute shrinkage and selection operator (LASSO). Of 5274 records identified, 24 met the inclusion criteria. Twelve of 24 articles were published since 2020. Studies were conducted across 17 countries. Nine studies used approaches that have applications in machine learning to identify dietary patterns. Fourteen studies assessed associations between dietary patterns that were characterized using novel methods and health outcomes, including cancer, cardiovascular disease, and asthma. There was wide variation in the methods applied to characterize dietary patterns and in how these methods were described. The extension of reporting guidelines and quality appraisal tools relevant to nutrition research to consider specific features of novel methods may facilitate complete and consistent reporting and enable evidence synthesis to inform policies and programs aimed at supporting healthy dietary patterns.
Competing Interest Statement
RML is a statistical editor for the British Journal of Nutrition. Other authors have none to declare.
Funding Statement
This review was funded by the Canadian Institutes of Health Research, a University of Waterloo Research Incentive Fund award, an Ontario Ministry of Research and Innovation Early Researcher Award held by SIK, and Microsoft AI for Good. RML is funded by a National Health and Medical Research Council Emerging Leadership Fellowship (APP1175250). LMB was funded by the National Institutes of Health (R01 HD102313, MPI Bodnar LM, Naimi AI).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Author affiliation updated for Dr. Jill Reedy.
Data Availability
Extracted metadata for all articles is available upon reasonable request to the authors.