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Abstract. Pneumonia is one of the leading causes of illness and death 
worldwide. In clinical practice, Chest X-ray imaging is a common method used 
to diagnose pneumonia. However, traditional pneumonia diagnosis through X-
ray analysis requires manual annotation by healthcare professionals which 
delays diagnosis and treatment. This study aimed to investigate and compare 
three different deep learning methodologies for classifying pneumonia to detect 
the disease in patients. These advanced models have the potential to overcome 
the challenges of reliability and accessibility of diagnostic practices. The 
methodologies evaluated included a custom convolutional neural network 
(CNN), a transfer learning approach using the ResNet152V2 architecture, and a 
fine-tuning strategy also based on ResNet152V2. The models were rigorously 
assessed and compared across various metrics, including testing accuracy, loss, 
precision, F1 score, and recall. The comparative analysis shows that the fine-
tuning strategy outperforms the other methods in terms of operational 
effectiveness, with the custom CNN being the next most effective, and the 
transfer learning method ranking last. The study also highlights that false 
negatives can have more serious consequences than false positives, even 
without specialized medical knowledge.  
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1 Introduction 

Pneumonia, a widespread illness within the medical field, can be provoked by a 
diverse array of microbial agents, such as bacterial, viral, and fungal pathogens. The 
term originates from the Greek 'Pneumon' denoting the lungs, thus highlighting its 
association with pulmonary afflictions. In the medical field, it is recognized as an 
inflammatory condition that affects lung tissues [1-3]. Besides microbial causes, 
pneumonia can also arise from the aspiration of food or exposure to harmful 
chemicals. Alveoli’s fluid or pus accumulation due to pathogen’s infiltration is the 
pathogenesis. This leads to disturbances in the alveoli-bloodstream exchange of gases 
thus subjecting affected individuals to respiratory distress [4-7]. There are various 
clinical features for pneumonia which includes dyspnea and pyrexia, persistent cough 
and chest discomfort. Viral types of this disease are highly infectious; they are usually 
transmitted through close-range droplets and tend to occur in clusters. On time 
diagnosis of pneumonia may therefore be difficult especially when there is limited 
access to medical assistance as well as poor transport networks [8-11]. The etiological 
diagnosis of pediatric pneumonia is further complicated by the low sensitivity of 
microbiological assays and the nonspecific nature of clinical presentations [12]. 
Therefore, chest X-ray imaging has become a crucial diagnostic tool that often 
determines treatment. Conventional diagnostic methods are time-consuming and may 
vary due to different interpretations by radiologists [13-15]. The interpretation of X-
rays is a challenging but important task for radiologists; hence, several computer 
algorithms have been developed by scientists worldwide. In addition to this, some 
computer-aided diagnostics (CAD) tools were developed [16-18] to build on these 
capabilities and improve x-ray interpretation skills for radiologists. Chang's [19-20] 
work has demonstrated the effectiveness of combining advanced Transformer models 
with T-SNE dimensionality reduction techniques to build efficient classifiers for fraud 
detection by effectively capturing complex patterns and dependencies within the data. 
However, as far as supporting clinicians in making diagnostic decisions during 
treatment processes is concerned, the accuracy level of these tools is often 
substandard [21]. 

2 Methodology 

2.1 Dataset 

We divide dataset into three parts: training, testing, and validation. Each part will 
have both positive and negative chestX-ray images. The data we used comprises 
5,856 pediatric chest X-ray images, sourced from a medical facility in China, 
encompassing children within the age range of 1 to 5 years. Subsequently, two 
medical experts conducted a diagnostic assessment of the image samples and assigned 
corresponding labels to each. To address and validate cases with uncertain diagnostic 
outcomes, a third expert was engaged to review the evaluation subset. For the purpose 
of our experiments, we designated 5,232 image samples to the training dataset and set 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.20.24309243doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24309243


 

aside 624 images for the testing dataset. 80% was assigned to training and rest 20% 
for validation. It can be show in table 1. 

Table 1. Numbers of Chest X-Ray Images of dataset. 

Dataset 
data Pneumonia Normal 
Training 3106 1079 
validation 777 270 
testing 396 234 
Total no. of pictures 5856 

2.2 Data pre-processing 

We established two distinct generators: one dedicated to the rescaling of validation 
and test datasets, and another for the training dataset, which incorporates additional 
transformations to augment its size. These generators were then applied to their 
respective datasets. The parameters employed in the preprocessing of images are 
outlined. The rescaling operation refers to the resizing of images during 
enhancement, with the width shift parameter allowing for a 0.1% horizontal 
translation of the image, and the height shift parameter enabling a 0.1% vertical 
translation. Additionally, the zoom range parameter introduces a random scaling of 
the image to a factor of 0.1%.  

2.3 Deep Learning Model-Custom Convolutional Neural Networks (CNN) 

The architecture of the deep learning model designed for classifying pneumonia is 
illustrated below. This model operates by having each layer utilize the output from its 
preceding layer as input for further processing. We initiated the model construction by 
specifying the input parameters to accommodate the dimensions and RGB channels of 
the incoming sample images. Subsequently, we established the first block: a two-
dimensional convolutional layer equipped with 16 filters, each with a 3x3 kernel, 
accompanied by a batch normalization layer to enhance training efficiency and the 
model's generalization capabilities. A two-dimensional max pooling layer was then 
incorporated to condense the feature map and distill the most prominent features, with 
an additional step of randomly eliminating 20% of the neuron outputs to counteract 
overfitting. 

The role of the first block is to identify foundational image features, such as edges 
and corners, which are subsequently passed to the second block. The second block 
mirrors the structure of the first but expands the filter count to 32, funneling its output 
into the third block. The third block is composed of two convolutional layers, each 
deploying 64 filters, to delve into more sophisticated feature extraction. This is 
complemented by batch normalization and max pooling layers, followed by a step that 
randomly drops out 40% of the neuron outputs. The third block is engineered to 
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capture intricate features necessary for task-specific problem-solving by escalating the 
complexity of convolutional operations. 

Following the initial processing stages, the resultant output undergoes 
transformation by a Flatten layer, which simplifies the multi-dimensional image data 
into a streamlined one-dimensional vector. This conversion is crucial for the 
subsequent layers, which are fully connected and consist of a network of 64 neurons. 
The ReLU activation function is employed within these layers to add non-linear 
properties to the model. Additionally, a dropout rate of 50% is implemented on the 
neuron outputs, serving as a regularization technique to mitigate the risk of overfitting 
by randomly silencing a subset of neurons during the training phase. These fully 
connected layers synthesize the extracted features to formulate predictions. The final 
stage of the model is marked by a single neuron in the output layer, which employs a 
sigmoid activation function. This function ensures that the output is scaled to a 
probability value ranging from 0 to 1, which is particularly pertinent for binary 
classification tasks, such as distinguishing between pneumonia and normal conditions 
in medical imaging. The resultant output signifies the likelihood of the image 
indicating a pneumonia-afflicted or normal state. 

2.4 Deep Learning Model- Transfer Learning 

The alternate strategy we employed is the application of the ResNet152V2 
architecture within the paradigm of transfer learning. Transfer learning facilitates the 
migration of knowledge—embodied in the form of parameters—from a seasoned 
model to a nascent one, thereby augmenting the latter's training endeavors. Given the 
commonalities that pervade a multitude of image-centric tasks, this technique enables 
us to equip our new model with the insights garnered from a pre-trained model, 
enhancing the model's learning efficiency and circumventing the initiation of learning 
from an entirely naive state. 

3 Results 

Within the scope of this chapter, an in-depth analysis and comparative assessment of 
the efficacy of three distinct methodologies for the diagnosis and classification of 
pneumonia have been undertaken. The training and evaluation phases are uniformly 
conducted on identical hardware setups. The training procedure encompasses 50 
epochs, with a checkpoint mechanism in place to preserve the most effective 
parameters throughout the training sequence, predicated on the validation loss. 
Training is halted and the model reverts to its optimal state if there is no observed 
reduction in the validation loss over a span of 10 consecutive epochs. Additionally, in 
the event that the validation loss stagnates without improvement for five epochs, the 
learning rate is adjusted downward to 20% of its initial value. This strategic reduction 
aids the model in escaping the confines of a local minimum, thereby facilitating a 
more extensive exploration of the parameter space for potentially superior solutions.. 
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3.1 Performance Analysis 

We have deployed a suite of performance metrics to quantitatively assess the efficacy 
of our deep learning models. Our evaluation encompasses not only the conventional 
metrics of accuracy and loss across the training, validation, and testing datasets but 
also employed a confusion matrix to thoroughly evaluate and assess the efficacy of 
our proposed classification method. 

The confusion matrix stands as a pivotal instrument within the machine learning 
discipline for gauging the proficiency of classification models. It operates as a tabular 
representation that delineates the discrepancies between the predicted classifications 
and the true labels of the samples. The matrix's rows correspond to the actual 
classifications of the samples, while the columns align with the categories as 
predicted by the model. 

Employing the confusion matrix allows us to derive several key indicators that are 
instrumental in assessing the parameters it showed of the classification model, 
including but not limited to accuracy, precision, recall (also known as sensitivity), and 
F1 Score. 

3.2 Custom Convolutional Neural Networks (CNN) 

Our model demonstrated a trend of decreasing loss values within the initial 24 epochs, 
suggesting that it required a relatively shorter duration to attain a good performance of 
accuracy. The model exhibited a high level of accuracy on the validation set, with a 
score of 93.9%, and a relatively low loss score of 13.3%. Upon testing with the 
independent test set, the model achieved an accuracy of 87.8% while incurring a loss 
of 32.6%, as illustrated in figure 1. The confusion matrix, detailed in figure 2, offers a 
granular view of the model's classification performance. Our model's precision was 
calculated at 0.89, with a recall of 0.85 and an F1 score of 0.86, which suggests a 
well-balanced performance across both precision and recall metrics. 

 
Fig. 1. Accuracy and Loss of Custom CNN. 
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Fig. 2. Confusion matrix of Custom CNN. 

3.3 Transfer Learning 

Our model exhibited a reduction in loss values within the span of 16 epochs, 
indicating a more expedited path to achieving high precision. As a result, the model's 
efficiency is enhanced, as it requires less computational time to reach a state of high 
accuracy. In the validation stage, our model delivered a noteworthy accuracy of 
95.5%, while incurring a loss of 12.3%. Subsequent testing further demonstrated the 
model's robustness, with an accuracy of 85.7% and a loss rate of 34%, as shown in 
Figure 3. The confusion matrix, as presented in Figure 4, offers an in-depth analysis 
of the model's classification results. The precision of our model was measured at 0.89, 
the recall at 0.81, and the F1 score at 0.83. This suggests that the model has achieved 
a robust balance between precision and recall, enhancing its overall predictive 
performance. 

 
Fig. 3. Accuracy and Loss of Transfer learning. 

 
Fig. 4. Confusion matrix of Transfer learning. 
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3.4 Fine Tuning 

Our model demonstrated a notable decrease in loss values within just 10 epochs, 
which signifies a more rapid convergence towards high accuracy. Consequently, this 
efficiency enables the model to reach a state of heightened precision in a shorter 
amount of time. During the validation phase, our model achieved a high accuracy rate 
of 95.7%, albeit with a loss score of 19.2%. When the model was subsequently 
applied to the test set, it maintained a strong accuracy of 90%, albeit with a slightly 
higher loss of 20%, as illustrated in Figure 5. The confusion matrix, featured in Figure 
6, provides an exhaustive analysis of the model's classification efficacy. The model's 
precision was recorded at 0.91, with a recall of 0.88 and an F1 score of 0.89, which 
underscores a robust equilibrium between precision and recall in its predictive 
performance. 

 
Fig. 5. Confusion matrix of Transfer learning. 

 
Fig. 6. Confusion matrix of Transfer learning. 

To sum up, the comparative analysis reveals that the three methodologies under 
review exhibit a comparable level of performance. When evaluating the models based 
on parameters such as testing accuracy, testing loss, recall, and the F1 score, the fine 
tuning approach emerges as the most effective. It is closely followed by the custom 
CNN, while the transfer learning method ranks as the least effective. In terms of 
precision, the fine tuning method again stands out as superior, with the custom CNN 
and transfer learning demonstrating equivalent and consistent performance levels. 
These findings are further detailed in table 2. Consequently, based on the evaluated 
criteria, fine-tuning is deemed to be the optimal method when juxtaposed with custom 
CNN and transfer learning approaches. 
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Table 2. Comparison of different approach in terms of performance. 

Approach Testing 
accuracy 

Testing loss Precision Recall F1 Score 

Custom CNN 0.878 0.326 0.89 0.85 0.86 
Transfer 
learning 

0.857 0.34 0.89 0.81 0.83 

Fine tuning 0.9 0.28 0.91 0.88 0.89 

4 Conclusions 

The current work above presents three novel methodologies aimed at enhancing the 
diagnostic accuracy for pneumonia. Our research encompasses three distinct 
methodologies: the creation of a custom Convolutional Neural Network (CNN), the 
utilization of transfer learning techniques, and the execution of fine-tuning strategies. 
Both the transfer learning and fine-tuning methods are formulated by leveraging the 
pre-existing knowledge embedded within the ResNet152V2 model. Our study 
leverages a meticulously selected dataset of 5,232 Chest X-ray images, on which we 
have applied a series of preprocessing techniques and made strategic adjustments to 
the network's layers to refine the model's training process. Among the three strategies, 
fine-tuning has emerged as the most effective, with accuracy rates ranging from 90% 
to 91%, a recall of 0.88, and an F1 score of 0.89 achieved across 10 epochs of 
training, which translates to improved precision, recall, and a reduction in 
computational time. The custom CNN follows in terms of performance, while the 
transfer learning method is the least effective. However, it should be highlighted that 
the differences in performance among the three methods are not markedly distinct. 

We anticipate that through these collaborative technologies, we can attain more 
refined outcomes across various scenarios. A future objective includes assessing the 
model's performance across a spectrum of datasets, with the aim of refining its overall 
accuracy, particularly on datasets pertaining to different pathological conditions. We 
intend to conduct evaluations on datasets that cover not only pulmonary but also other 
respiratory ailments. Such endeavors will yield significant insights into the broader 
utility of our method and its capacity to diagnose a range of related health concerns. 
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