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27 Abstract

28

29 Q fever (QF) and Rift Valley fever (RVF) are endemic zoonotic diseases in African countries, causing 

30 significant health and economic burdens. Accurate prevalence estimates, crucial for disease control, rely 

31 on robust diagnostic tests. While enzyme-linked immunosorbent assays (ELISA) are not the gold 

32 standard, they offer rapid, cost-effective, and practical alternatives. However, varying results from 

33 different tests and laboratories can complicate comparing epidemiological studies. This study aimed to 

34 assess the agreement of test results for QF and RVF in humans and livestock across different laboratory 

35 conditions and, for humans, different types of diagnostic tests.

36 We measured inter-laboratory agreement using concordance, Cohen's kappa, and prevalence and bias-

37 adjusted kappa (PABAK) on 91 human and 102 livestock samples collected from rural regions in Chad. 

38 The samples were tested using ELISA in Chad, and indirect immunofluorescence assay (IFA) (for 

39 human QF and RVF) and ELISA (for livestock QF and RVF) in Switzerland and Germany. Additionally, 

40 we examined demographic factors influencing test agreement, including district, setting (village vs. 

41 camp), sex, age, and livestock species of the sampled individuals.

42 The inter-laboratory agreement ranged from fair to moderate. For humans, QF concordance was 62.5%, 

43 Cohen's kappa was 0.31, RVF concordance was 81.1%, and Cohen's kappa was 0.52. For livestock, QF 

44 concordance was 92.3%, Cohen's kappa was 0.59, RVF concordance was 94.0%, and Cohen's kappa 

45 was 0.59. Multivariable analysis revealed that QF test agreement is significantly higher in younger 

46 humans and people living in villages compared to camps and tends to be higher in livestock from 

47 Danamadji compared to Yao, and in small ruminants compared to cattle. Additionally, RVF agreement 

48 was found to be higher in younger humans.

49 Our findings emphasize the need to consider sample conditions, test performance, and influencing 

50 factors when conducting and interpreting epidemiological seroprevalence studies.

51

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.20.24309222doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24309222
http://creativecommons.org/licenses/by/4.0/


3

52 Author Summary

53

54 Q fever (QF) and Rift Valley fever (RVF) are zoonotic diseases that can be transmitted from animals to 

55 humans, causing health problems and economic losses in African countries. While various diagnostic 

56 tests for these diseases are available, they can be impractical, especially in resource-limited settings.

57 For this study, human and livestock samples from Chad were first tested in a local laboratory using a 

58 routine test. The same samples were then sent to laboratories in Germany or Switzerland for retesting, 

59 using the same test type for livestock and a different test type for human samples.

60 We analysed the agreement between the test results and investigated the influence of the demographic 

61 characteristics of the sampled individual on this agreement. Our findings are crucial as they reveal 

62 discrepancies in test results, even though the samples originated from the same individuals. Additionally, 

63 we found that factors such as the age of the sampled individual influenced test agreement.

64 This study underscores the importance of considering sample conditions, test performance, and 

65 influencing factors when conducting and interpreting disease prevalence studies. Enhancing diagnostic 

66 procedures will aid in more effective disease control management, benefiting local communities and 

67 global health efforts.

68
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69 1. Introduction

70

71 Q Fever (QF) and Rift Valley fever (RVF) are zoonotic diseases prevalent in several African countries. 

72 Reported prevalence rates range from 7.8% to 39% for QF and 9.5% to 44.2% for RVF in livestock, and 

73 from 27% to 49.2% for QF and 13.2% to 28.4% for RVF in humans [1–4]. QF and RVF impact human 

74 health by causing a flu-like syndrome that can lead to a range of severe manifestations. QF and RVF 

75 also result in significant production losses in animals due to abortions [5,6].

76 High-quality samples and robust diagnostic tests are essential for obtaining accurate prevalence 

77 estimates. Epidemiological studies play a critical role in generating the necessary data, subsequently 

78 influencing government prioritization of health interventions [7,8]. This prioritization is fundamental to 

79 effective disease control. 

80 For QF diagnostics, the indirect immunofluorescence assay (IFA) can differentiate between acute and 

81 chronic infections and is regarded as the gold standard test for humans [9,10]. Commercial kits are not 

82 available for veterinary use [11]. The enzyme-linked immunosorbent assay (ELISA) is the most widely 

83 used test and is recommended by the WOAH (World Organisation for Animal Health) for rapid routine 

84 screening and large-scale epidemiological studies in ruminant populations [8]. For RVF, the virus 

85 neutralisation test (VNT) is the most specific diagnostic serological test, but it can only be performed 

86 with live viruses and is not recommended for use in laboratories without appropriate biosecurity 

87 facilities and vaccinated personnel [6,7]. For both diseases, ELISAs offer a rapid, cost-effective, and 

88 practical alternative with less stringent biosafety requirements, making them suitable for routine use in 

89 low- and middle-income countries (LMIC) [7,8].

90 The use of ELISA in some studies and the gold standard test, which may differ between countries, in 

91 others can lead to discrepancies in estimated prevalence, making comparisons challenging; thus, 

92 harmonized monitoring and reporting schemes for QF and RVF have been proposed to enable consistent 

93 comparisons over time and across countries [12–14].

94 Several studies have assessed the inter-test agreement of ELISA for QF and RVF compared to other 

95 diagnostic tests, reporting variable agreement ranging from poor to good for QF and from good to 

96 excellent for RVF [15–21]. Diagnostic test validation can be achieved through various methods, 
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97 including assessing the agreement between different tests without assuming one as the gold standard 

98 [22]. Concordance, the proportion of test results in agreement over the number of all tests performed, is 

99 a straightforward measure but does not account for agreement beyond chance. Therefore, Cohen's kappa 

100 statistic, which adjusts for random matches, is often used to measure the agreement between two test 

101 results [22]. Cohen’s kappa values range from zero (agreement is equal to that expected by chance) to 

102 one (complete agreement beyond chance), with benchmarks between agreement categories varying 

103 among authors [23–25]. Although Cohen's kappa is a standard measure, it has limitations such as 

104 prevalence and bias effects. Prevalence effects arise when the proportion of positive results deviates 

105 significantly from 50% [26]. The effect of prevalence depends on the method of modeling agreement 

106 and can substantially reduce kappa values [26]. Bias effects occur when there is a disparity in the 

107 proportion of positive results between the two tests, which leads to reduced kappa values [26]. To 

108 address these effects, the prevalence- and bias-adjusted kappa (PABAK) can be calculated [27,28].

109 The reasons for disagreement between diagnostic tests have rarely been thoroughly investigated. 

110 Potential factors include poor sample quality, variability in tests used, and discrepancies arising from 

111 the same test being conducted in different laboratories [17,21,29]. Additionally, biological factors such 

112 as age, sex, other diseases, and species may influence the consistency of test results for the same sample. 

113 Previous studies have suggested associations between test performance and variables such as region, 

114 age, and livestock species [30–32]. However, these studies have not provided conclusive evidence or 

115 statistical significance.

116 The objective of this study was to assess the inter-laboratory agreement, measured by the concordance, 

117 Cohen's kappa, and PABAK, of results obtained from commercial ELISA tests conducted in a laboratory 

118 in Chad and results obtained from ELISA and indirect IFA tests for livestock and human samples 

119 respectively, performed in laboratories in Germany and Switzerland. Additionally, we evaluated the 

120 influence of demographic factors on the agreement between the two test results. The study enhances our 

121 understanding of the inter-laboratory agreement of diagnostic test results across laboratory conditions 

122 and, for humans, test types, which is crucial for accurately interpreting results from epidemiological 

123 seroprevalence studies.
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124 2. Material and Methods

125

126 2.1 Ethics statement

127 The study has been submitted to and approved by the Ethics Committee of Northwest and Central 

128 Switzerland (EKNZ) (project id 2017-00884) and by the Comité National de Bioéthique du Tchad 

129 (CNB-Tchad) (project id 134/PR/MESRS/CNBT/2018). Formal written consent was obtained from 

130 study participants and animal owners after we presented our study to the community and before data 

131 collection occurred.

132

133 2.2 Sample collection and laboratory analysis in Chad

134 The samples analysed in this study were collected between January and February 2018 [4]. In brief, a 

135 cross-sectional study in livestock (cattle, sheep, goats, horses, and donkeys) and human populations was 

136 conducted in the two rural health districts, Yao and Danamadji, in Chad. Multistage cluster sampling 

137 was used, with villages and nomadic camps serving as cluster units. In Danamadji and Yao, respectively, 

138 blood samples were collected from apparently healthy 571 and 389 humans and 560 and 483 livestock. 

139 The samples were subsequently analysed at the Institut de Recherche en Élevage pour le Développement 

140 (IRED) in N'Djamena, Chad. Livestock and human samples were analysed using different indirect 

141 ELISAs: ID Screen® Q Fever Indirect Multi-species ELISA from IDvet for livestock and the Panbio® 

142 Coxiella burnetii IgG ELISA from Abbott for humans. For RVF, a competitive ELISA (ID Screen® 

143 Rift Valley Fever Competition Multi-species from IDvet) was used for human and livestock samples. 

144 The diagnostic test procedure and thresholds were applied according to the manufacturer’s protocols 

145 without modification (Table S1 – Table S3). Equivocal samples were retested once.

146

147 2.3 Diagnostic testing in Switzerland and Germany

148 Following the initial diagnostic analysis at IRED, 10% of the human and livestock samples from each 

149 region were randomly selected and sent to laboratories in Switzerland and Germany in 2021 for repeated 

150 diagnostic analysis for QF and RVF, respectively. In Switzerland, two indirect ELISAs (IDEXX Q Fever 

151 IgG Antibody and ID Screen® Q Fever Indirect Multispecies from IDvet) were used at the Center for 
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152 Zoonoses, Animal Bacterial Diseases, and Antimicrobial Resistance (ZOBA) for QF diagnostics in 

153 livestock samples (ruminants and equids, respectively). At the Institute for Infectious Diseases (IFIK) 

154 of the University of Bern, an indirect IFA (Q Fever IFA IgG assay from Focus Diagnostics, US) was 

155 used for QF diagnostics in human samples. For RVF, livestock samples were analysed using a 

156 competitive ELISA (ID Screen® Rift Valley Fever Competition Multi-species ELISA from IDvet) at 

157 the Federal Research Institute for Animal Health (FLI), and human samples were analysed using an 

158 indirect IFA (Anti-Rift-Tal-Fieber-Viren-IIFT [IgG] from EUROIMMUN) at the Robert Koch Institute 

159 (RKI). The diagnostic test procedure and thresholds were applied according to the manufacturer’s 

160 protocols without modification (Table S1, Table S3, Table S4 – Table S6). Equivocal samples were not 

161 retested.

162

163

164 Fig 1: Sample collection and laboratory analysis at IRED in Chad and diagnostic testing in Switzerland and 

165 Germany. The numbers of samples at each stage are indicated.

166

167 2.4 Statistical analysis
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168 The inter-laboratory agreement of the test results from Chad and Switzerland or Germany was evaluated 

169 using concordance, Cohen’s Kappa, and PABAK for each of the four datasets: QF results in human 

170 samples, QF results in livestock samples, RVF results in human samples, and RVF results in livestock 

171 samples. Cohen's kappa and PABAK values were interpreted according to the standard scale: 'fair' 

172 agreement (kappa = 0.21–0.40), 'moderate' agreement (kappa = 0.41–0.60), 'substantial' agreement 

173 (kappa = 0.61–0.80), and 'almost perfect' agreement (kappa > 0.80) [25]. 

174 In addition, we investigated factors associated with test agreement by assigning to each sample a value 

175 of 0 if there was disagreement between the two test results (i.e., negative in Chad and positive in 

176 Switzerland/Germany, or the opposite) and 1 if the test results were consistent (i.e., both positive or both 

177 negative). This binary outcome was used as the dependent variable in logistic regression models to 

178 identify the statistical association between test agreement and demographic factors, including the district 

179 (Yao versus Danamadji) and setting (village versus camp) where the sample was collected, and sex, age, 

180 and livestock species (cattle, small ruminants, and equids) of the sampled individual. The variable age 

181 was analysed in two ways, as a continuous and as a categorical variable. For the continuous variable, a 

182 unit of 1 year was used for livestock and of 10 years for humans. For the categorical variable, samples 

183 were stratified as < 2 years (age group 1), 2–3 years (age group 2), 4 years and older (age group 3) for 

184 livestock, and < 30 years (age group 1), 30–39 years (age group 2), 40–60 years (age group 3), 61 years 

185 and older (age group 4) for humans. 

186 Univariable logistic regressions were initially performed to assess individual predictors. In cases where 

187 the univariable model was infeasible due to perfect agreement in one group, Chi-square tests were 

188 applied. Odds ratios (OR) and their corresponding 95% confidence intervals were calculated for these 

189 analyses. To consider potential interdependencies between the variables, we applied multivariable 

190 logistic regressions to estimate adjusted coefficients and OR. We included all variables and selected age 

191 as categorical variable.

192 Statistical calculations, modeling, and data visualization were conducted in R (version 4.2.2). The 

193 package “irr” was used to calculate the concordance and Cohen’s kappa. The package “vcd” was used 

194 to obtain confidence intervals of Cohen’s kappa, computed using the standard method based on normal 

195 approximation [33]. The epi.kappa() function from the “epiR” package was used to calculate PABAK 
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196 and corresponding confidence intervals. The confidence intervals for the OR were calculated using the 

197 output values of the associated regression model and the functions exp(coefficients(model)) for the 

198 upper CI and exp(confint.default(model)) for the lower CI was used. 

199
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200 3. Results

201

202 3.1 Study population and samples

203 From 103 livestock and 96 human samples sent to Switzerland and Germany, not all of them could be 

204 used for statistical analysis. Reasons for excluding them include unsuccessful matching of test identity 

205 due to labelling errors, missing serum upon arrival at the laboratory, and equivocal results (Table1). 

206 Finally, 91 human and 102 livestock samples were tested for either one of both tests, depending on the 

207 availability of serum (Table S7 and Table 1, Fig. 1). 

208

209 Table 1: Overview of diagnostic tests from Chad and Switzerland (CH) or Germany (GE).

Disease QF1 RVF2

Samples Livestock Humans Livestock Humans

Laboratory, Chad IRED3 IRED3 IRED3 IRED3

Test 1, Chad ID Screen® Q Fever 

Indirect Multi-

Species 

Panbio® Coxiella   

burnetii IgG ELISA

ID Screen® Rift Valley 

Fever Competition 

Multi-species

ID Screen® Rift Valley 

Fever Competition 

Multi-species

Laboratory, CH/GE ZOBA (CH)4 IFIK (CH)5 FLI (GE)6 RKI (GE)7

Test 2, CH/GE IDEXX Q Fever Ab 

Test and the ID 

Screen® Q Fever 

Indirect Multispecies 

Focus Diagnostics Q 

Fever IFA IgG assay

ID Screen® Rift Valley 

Fever Competition 

Multi-species

Indirect 

immunofluorescence 

test (IIFT) 

Initial number of 

samples shipped to 

CH/GE

103 96 103 96

Excluded samples 

from test 2 due to 

missing serum

2 8 0 4 

Equivocal results 

during test 2

8 14 2 0

Non-matchable 2 2 1 2

Number of samples 

used for agreement 

testing

91 72 100 90

210 1Q Fever
211 2Rift Valley Fever
212 3Institut de Recherche en Elevage pour le Développement, Chad
213 4Center for Zoonoses, Animal Bacterial Diseases and Antimicrobial, Switzerland (CH)
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214 5Institute for Infectious Diseases, Switzerland (CH)
215 6Friedrich-Loeffler-Institut, Germany (GE)
216 7Robert Koch Institut, Germany (GE)
217

218 Of the 91 human and 102 livestock samples that were used to perform the intra-laboratory test agreement 

219 analysis, most samples were collected in Danamadji, with 62% of human samples and 57% of livestock 

220 samples originating from this region (Table S7). Fifty-six percent of human samples and 58% of 

221 livestock samples were collected from camps. The sex distribution was uneven, with 70% of human 

222 samples being men and 70% of livestock samples being females. Among humans, age groups 1-3 were 

223 evenly represented (30%, 28%, 33%), while only 9% belonged to age group 4. In livestock, 50% of the 

224 samples were from age group 2, with 17% and 33% from age groups 1 and 3, respectively. Most 

225 livestock samples were from cattle (46%), followed by small ruminants (41%) and equids (13%).

226

227 3.2 Diagnostic tests agreement

228 3.2.1 Level of inter-laboratory test agreement

229 Concordance values ranged from 62.5% to 94% (Table 2). Cohen's kappa values, which ranged from 

230 0.31 to 0.59, indicated that livestock QF and RVF, and human RVF tests had 'moderate' agreement, 

231 while human QF tests had 'fair' agreement (Table 2). PABAK values showed that the livestock QF and 

232 RVF tests had 'almost perfect' agreement, the human RVF test had 'substantial' agreement, and the 

233 human QF tests had 'fair' agreement (Table 2).

234

235 Table 2: Analyses of test agreement (concordance and Cohen's kappa) of samples tested in an inter-

236 laboratory test agreement study.

Switzerland Germany

QF livestock QF humans RVF livestock RVF humans

Chad Pos Neg Pos Neg Pos Neg Pos Neg

Pos 6 3 22 3 5 4 16 9

Neg 4 78 24 23 2 89 8 57

Concordance 

(%)

92.3 62.5 94.0 81.1

Cohen's kappa 

value (95% CI)

0.59 (0.31, 0.86) 0.31 (0.13, 0.49) 0.59 (0.30, 0.89) 0.52 (0.33, 0.72)
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PABAK value 

(95% CI)

0.846 (0.696, 0.937) 0.25 (0.006, 0.473) 0.88 (0.748, 0.955) 0.622 (0.43, 0.771)

237

238

239 3.2.1 Influence of factors on inter-laboratory test agreement

240 For QF in livestock, none of the investigated demographic factors significantly impacted the agreement 

241 between the two test results in both univariable and multivariable analyses (Table S8 and Table 3). 

242 However, some notable trends (p < 0.15) emerged: small ruminants tended to show better agreement 

243 than cattle, and samples from Yao showed lower agreement compared to those from Danamadji (Table 

244 3). For QF in humans, samples from villages had significantly higher agreement compared to those from 

245 camps, with odds of agreement being 13.4 times higher (Table 3). Additionally, older age groups had 

246 significantly lower agreement compared to the youngest age group (Table 3).

247 For RVF in humans and livestock, none of the demographic factors significantly influenced test 

248 agreement. However, some trends were observed for RVF test agreement in humans, with older age 

249 groups showing lower agreement compared to the youngest age group (Table 3).

250 Across diseases and populations, there was a consistent trend of lower agreement with increasing age, 

251 which was significant for human QF and almost reached significance for human RVF (Table 3, Fig. 2). 

252 For livestock RVF tests, the odds ratio for agreement was also lower in older age groups, although the 

253 p-value was 0.26 (Table 3). 

254 Table 3: Results of multivariable logistic regression models investigating the effect of demographic factors 

255 as independent variables on the inter-laboratory test agreement of Q fever (QF) and Rift Valley Fever 

256 (RVF) in humans and livestock. Goodness of fit of the models are presented as pseudo-R-squared (R2). 

257 Bold p-values indicate significance based on a threshold of 0.05.

Switzerland Germany

QF livestock QF humans RVF livestock RVF humans

Independent variable (OR and 95% CI)

P-value (P)

District

(Reference: 

Danamadji)

Yao:

0.14 (0.01, 1.74)

P = 0.13

Yao:

1.38 (0.38, 4.99)

P = 0.63

Yao:

4.99 (0.41, 60.49)

P = 0.21

Yao:

1.37 (0.37, 5.04)

P = 0.64
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Setting

(Reference: camp)

Village:

0.34 (0.05, 2.06)

P = 0.24

Village:

13.35 (3.20, 55.86)

P = 0.0004

Village:

0.32 (0.04, 2.43)

P = 0.27

Village:

1.85 (0.58, 5.93)

P = 0.30

Species

(Reference: cattle)

Equids:

5.51 (0.29, 103.21)

P = 0.25

Small ruminants:

6.26 (0.59, 65.76)

P = 0.13

- Equids: 

Inf (perfect 

agreement)

Small ruminants:

0.65 (0.09, 4.78)

P = 0.67

-

Age group 

(Reference: age 

group 1/group 2*)

Group 2:

1.30 (0.10, 17.39)

P = 0.84

Group 3:

0.93 (0.06, 14.38)

P = 0.96

Group 2: 

0.67 (0.15, 3.07)

P = 0.61

Group 3: 

0.14 (0.03, 0.82)

P = 0.03

Group 4: 

0.09 (0.01, 0.83)

P = 0.03

Group 1*:

Inf (perfect 

agreement)

Group 3*:

0.30 (0.04, 2.41)

P = 0.26

Group 2:

0.62 (0.12, 3.16)

P = 0.57

Group 3:

0.32 (0.07, 1.47)

P = 0.14

Group 4:

0.16 (0.02, 1.14)

P = 0.07

Sex

(Reference: male)

Female: 

0.38 (0.03, 4.61)

P = 0.45

Female: 

0.82 (0.20, 3.38)

P = 0.78

Female:

0 (perfect agreement 

in males)

Female:

1.01 (0.27, 3.86)

P = 0.99

R2 0.23 0.35 0.28 0.09

258

259

260
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261

262

263 Fig. 2: In the mosaic plot illustrating the association between age groups and inter-laboratory test 

264 agreement, the widths of the adjacent rectangles represent the proportion of individuals within each age 

265 group. The heights of the rectangles represent the proportion of individuals within each age group who 

266 exhibit a specific test agreement outcome (concordant or discrepant).

267
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268 4. Discussion

269

270 QF and RVF are important zoonotic diseases in sub-Saharan Africa, for which several epidemiological 

271 questions remain open. Reliable diagnostics are highly relevant for generating prevalence data, and it 

272 has been emphasized that there is a need for cost-effective surveillance tools for low and middle-income 

273 countries [5,34]. 

274 Our study revealed varying levels of test agreement, ranging from fair to moderate (Cohen’s kappa) or 

275 almost perfect when considering PABAK. The good inter-laboratory agreement of livestock test results 

276 for RVF was in line with other studies on RVF test agreement, although it is important to note that 

277 literature is scarce [19,20]. The inter-laboratory agreement for livestock QF was slightly better than 

278 expected, based on previous studies that assessed ELISA's agreement with different test types 

279 [15,17,18]. We observed a notably lower agreement for human tests for both diseases that can be 

280 attributed to using two different tests for human samples, ELISA in Chad and indirect IFA in 

281 Switzerland or Germany. Previous studies have shown varying sensitivities and specificities of the 

282 commercial diagnostic test for QF used in this study (Panbio®), ranging from 71% to 100% [10,35–37]. 

283 In these studies, indirect IFA was used as a reference method to evaluate the ELISA, revealing varying 

284 agreement between the results of the two tests. The variability in sensitivity for the same test raises the 

285 question of whether it is due to the scope for interpretation in indirect IFA, which is considered a 

286 challenge, even though indirect IFA is regarded as the gold standard for human QF diagnostics [5,8]. A 

287 study that compared QF indirect IFA results from different reference centres in three countries (United 

288 Kingdom, France, and Australia) found a concordance between the indirect IFA results of only 35% 

289 [38]. Our results presented here reflect this uncertainty and underline the complexity of QF diagnostics 

290 [5,8,39]. In addition, commercial QF ELISA kits, unlike indirect IFA, cannot distinguish between acute 

291 or chronic infection and vaccination, which can sometimes lead to misinterpretation and discordant test 

292 results, even between different ELISA kits [21,40]. For RVF, lower inter-laboratory agreement for 

293 human tests compared to livestock tests can also be attributed to using different tests in Chad (ELISA) 

294 and Germany (indirect IFA). The literature on RVF test agreement, particularly for human diagnostics, 

295 is notably scarce.
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296 A possible reason for disagreement between test results could be the hemolytic quality of some of our 

297 samples. Although we lack quantitative information on the quality of the individual samples in our study, 

298 laboratory staff in Switzerland and Germany indicated that haemolysis was a concern. In recent 

299 literature, haemolysis in specimens was reported to be the most common cause of test result 

300 discrepancies in clinical laboratories [41]. There are many in vitro causes of haemolysis, mostly pre-

301 analytical problems such as incorrect procedures and/or materials used in blood collection, while 

302 transport, processing, and storage account for only a minority of cases [42]. This limitation shows the 

303 importance of careful planning and execution of the pre-analytical phase, especially in prevalence 

304 studies where the outcome can be influenced by the quality of the sample material. Nevertheless, it is 

305 crucial to recognize the challenges associated with collecting samples under difficult field conditions, 

306 where access to centrifuges may be limited until several days after blood sampling. In addition, the 

307 samples in our study were stored for 2.5 years with repeated freeze-thaw cycles between the performance 

308 of the two tests for some of the samples, which probably affected sample quality. Therefore, extended 

309 transport to secondary laboratories for subsequent analysis can additionally adversely affect sample 

310 quality. We emphasize the importance of considering these challenges when discussing the outcomes of 

311 epidemiological prevalence studies or diagnostic test evaluation studies.

312 Our results demonstrate a statistical relationship between test agreement and age of the sampled 

313 individuals, with higher agreement observed in younger individuals for both diseases and in humans and 

314 livestock. This finding aligns with a study by de Bronsvoort et al. (2019), which suggested that lower 

315 agreement in older individuals may be due to their higher likelihood of previous exposure to other 

316 pathogens over their lifetime [30]. This may result in cross-reactivity in serological tests, making 

317 serological differentiation between diseases more difficult [39]. Cross-reactions caused by antibodies 

318 provoked by other pathogens, such as C. burnetii antigens, the agent causing QF, with antibodies 

319 produced against Bartonella spp., Legionella spp., and Chlamydiae spp. has been reported [43–45], or 

320 RVF virus antigens with antibodies produced against Rio Grande virus [46–48]. Furthermore, with 

321 increasing age, the likelihood of exposure to the causative agent of QF and RVF increases [49,50], as 

322 does the chance of having residual antibodies titres against these diseases in the blood [6,51–53].In 

323 addition in QF, antigen-lipopolysaccharide complexes remaining in the host after infection with C. 
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324 burnetii can trigger humoral and cell-mediated immune responses, producing interfering antibodies 

325 [54,55]. Such antibody titres can potentially produce ambiguous results that are neither clearly positive 

326 nor negative, leading to misinterpretation and discordant test results. These findings underscore the need 

327 for further research to develop age-specific diagnostic protocols and improve test accuracy across 

328 diverse populations. 

329 The district-level analysis showed a trend toward higher agreement for livestock QF tests in samples 

330 from Danamadji compared to Yao. This regional variation may be influenced by varying local 

331 environmental conditions, disease prevalence, or livestock management practices. However, we did not 

332 capture such information, so we were not able to identify a potential latent factor that can explain the 

333 difference in test agreement detected for the two regions. Continuing with the focus on sampling 

334 location, the sample collection setting (village versus camp) was identified as a significant factor in the 

335 multivariable model for human QF test agreement. One hypothesis for this finding is that villages 

336 generally have shorter distances from the sampling location to the laboratory, allowing for more 

337 appropriate storage conditions compared to remote camps. This shorter travel time likely preserves 

338 sample integrity, resulting in higher test agreement. The significant role of the setting variable suggests 

339 that environmental and logistical factors may be crucial for diagnostic test result interpretation, although 

340 we did not observe the influence of the setting for RVF in humans nor for livestock species. Future 

341 studies should investigate the impact of environmental and logistical factors on test results and gather 

342 detailed data on local conditions and practices that affect sample quality and test agreement. 

343 Small ruminants exhibited a trend towards higher agreement in QF test results compared to cattle. In a 

344 different type of QF ELISA, Stellfeld et al. (2020) observed significant differences in the ranges of 

345 OD450 values obtained from sera of sheep, goats, and cattle [56]. Sheep exhibited a large range of OD450 

346 values, whereas cattle showed a smaller range [56]. Greater distribution between OD450 values allows 

347 for more precise grading of ELISA results, which may explain the better inter-test agreement for small 

348 ruminants compared to cattle. These differences in OD450 ranges are likely due to species-specific 

349 immune responses to C. burnetii, suggesting varying immune reactions among ruminant species [56].

350 Although females showed lower inter-laboratory test agreement compared to males for both diseases 

351 and populations, the high p-values and wide confidence intervals of OR indicate that these results are 
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352 not statistically robust and should be interpreted with caution. Epidemiological studies suggest similar 

353 QF exposure rates between genders, but symptoms are 2.5 times more common in men [5]. This 

354 variability in inflammatory immune response between genders [57–60] could lead to less clear antibody 

355 titers in samples from females, a hypothesis that should be tested by further studies investigating the 

356 influence of demographic factors on diagnostic test agreement.
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357 Conclusion

358 Our study highlights the variability in inter-laboratory diagnostic test agreement for QF and RVF 

359 serology in humans and livestock based on samples collected in Chad. Despite differences in 

360 laboratories, personnel, and test types, test agreements ranged from fair to moderate (Cohen’s kappa) or 

361 almost perfect considering PABAK. Given the reliance on serological profiles for QF and RVF 

362 epidemiological studies, it is crucial to consider factors that may complicate accurate diagnosis. We 

363 identified that human QF test agreement was significantly higher in individuals living in villages and 

364 younger individuals, with the latter trend also observed in human RVF tests.  Our findings emphasize 

365 the need to recognize that diagnostic tests may yield varying results, impacting the outcome and 

366 interpretation of disease prevalence studies.

367
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