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Abstract
The natural language text in electronic health records (EHRs), such as clinical notes, often 
contains information that is not captured elsewhere (e.g., degree of disease progression and 
responsiveness to treatment) and, thus, is invaluable for downstream clinical analysis. However, 
to make such data available for broader research purposes, in the United States, personally 
identifiable information (PII) is typically removed from the EHR in accordance with the Privacy 
Rule of the Health Insurance Portability and Accountability Act (HIPAA). Automated 
de-identification systems that mimic human accuracy in identifier detection can enable access, 
at scale, to more diverse de-identified data sets thereby fostering  robust findings in medical 
research to advance patient care.

The best performing of such systems employ language models that require time and effort for 
retraining or fine tuning for newer datasets to achieve consistent results and revalidation on 
older datasets. Hence, there is a need to adapt text de-identification methods to datasets across 
health institutions. Given the success of foundational large language models (LLMs), such as 
ChatGPT, in a wide array of natural language processing (NLP) tasks, they seem a natural fit for 
identifying PII across varied datasets.

In this paper, we introduce locally augmented ensembles, which adapt an existing PII detection 
ensemble method trained at one health institution to others by using institution-specific 
dictionaries to capture location specific PII and recover medically relevant information that was 
previously misclassified as PII. We augment an ensemble model created at Mayo Clinic and test 
it on a dataset of 15,716 clinical notes at Duke University Health System. We further compare 
the task specific fine tuned ensemble against LLM based prompt engineering solutions on the 
2014 i2b2 and 2003 CoNLL NER datasets for prediction accuracy, speed and cost.
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On the Duke notes, our approach achieves increased recall and precision of 0.996 and 0.982 
respectively compared to 0.989 and 0.979 respectively without the augmentation. Our results 
indicate that LLMs may require significant prompt engineering effort to reach the levels attained 
by ensemble approaches. Further, given the current state of technology, they are at least 3 
times slower and 5 times more expensive to operate than the ensemble approach. 

Introduction
The free text clinical narratives from Electronic Health Records (EHRs) can cover a wide variety  
of patient histories, testing and imaging assessments, diagnoses, treatment plans, and other 
important medical information. Under the Health Insurance Portability and Accountability Act of 
1996 (HIPAA), EHR data can be shared when it is considered to be de-identified1. Access to 
de-identified datasets across multiple healthcare institutions supports various clinical research 
applications including, but not limited to, creation of patient cohorts2, tracking patient journeys3 
and the development of predictive algorithms4,5 (Figure 1A).

The Safe Harbor approach to de-identification under the HIPAA Privacy Rule requires the 
elimination of 18 categories of identifiers (e.g., patient names, dates of birth, addresses). 
Various approaches to Safe Harbor de-identification have been developed, including rule-based, 
traditional machine-learning, deep-learning, and hybrid or ensemble systems6–9. Ensemble 
methods incorporating the transformer architecture, in particular, have demonstrated improved 
accuracy and robustness in de-identifying data by combining the strengths of multiple 
approaches10,11. These approaches typically leverage regular expressions, heuristics, and the 
contextual understanding of attention-based deep-learning models to effectively identify PII 
(personally identifiable information) in unstructured clinical text. 

Despite their state-of-the-art performance on public benchmarks and proprietary clinical 
datasets10, ensemble de-identification methods offer ample opportunity for improvement. Even 
solutions using best performing deep learning models pre-trained on large public corpora may 
fail to detect out of distribution terms like uncommon names12. These pre-trained models may 
also struggle to identify health institution-specific PII terminology. For instance, satellite clinics 
affiliated with a major hospital are usually referred to using custom abbreviations which are not 
released publicly. Another significant challenge arises when de-identification systems, designed 
to maximize PII detection, inadvertently classify useful information as PII. This issue is 
non-negligible in medical literature due to the presence of  clinical eponyms (e.g., New York 
Heart Association Class, Bruce protocol, Tuohy needle, and Kawasaki disease)13. Such 
misclassifications compromise the accuracy and reliability of medical data, ultimately reducing 
its value for research and clinical purposes. 

Large language models (LLMs) provide a promising opportunity for tackling the intricacies of  
clinical text de-identification14. Instruction-tuned LLMs are particularly versatile in complex 
applications, and have demonstrated surprising capabilities across a wide variety of domains 
and tasks15. These models, especially in informal settings, have demonstrated a proficiency in 
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identifying and classifying various entities (such as names, locations and dates) embedded in 
free text. However, when subjected to established Named Entity Recognition (NER) or 
information extraction (IE) benchmarks, the current state-of-the-art LLMs fail to outperform 
supervised fine-tuned models16–18. The utilization of LLMs in specialized documents for clinical 
NER and financial NER have also revealed limitations in its ability to handle domain-specific 
knowledge and terminology17,19. Moreover, throughput is a crucial factor when deploying LLMs, 
as models with billions of parameters demand increased computational resources and 
processing time to generate responses for a given input. This poses challenges for their 
practical application in real-time or resource-constrained environments. LLMs, however, are 
evolving at a rapid pace with new models, open as well as closed source, being released every 
month with improved performance. We, therefore, evaluate LLMs on the de-identification task to 
characterize their performance and understand their capabilities.

In this work, we present the “locally augmented ensemble” approach to address the challenges 
of text de-identification in a two-step process. First, we introduce an automated framework to 
create health institution-specific dictionaries of PII as well as medical terminology (Figure 1B). 
Secondly, we discuss the integration of these dictionaries into existing ensemble 
de-identification systems to detect rare PII elements and institution-specific identifiers and to 
recover medical vocabulary that has been mis-classified as PII (Figure 1C). We demonstrate 
that our proposed approach enhances the accuracy of clinical text de-identification in real-world 
clinical datasets from Duke University Health System and Mayo Clinic using a base ensemble 
fine-tuned using notes from Mayo Clinic10. In particular, the ensemble comprises transformer 
neural networks which are supported by regular expressions and heuristics. Finally, we evaluate 
LLMs on the de-identification task using the i2b2 2014 De-identification Challenge and the 
CoNLL 2003 NER dataset and compare these LLMs’ capabilities with our approach20,21. We also 
provide an analysis of inference throughput times and cost estimates.
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Figure 1. Locally augmented ensemble for de-identification of unstructured text: (A) De-identified datasets from 
multiple health institutions support various clinical research applications. (B) Automated framework to create PII 

dictionaries from health institution specific patient and provider data. (C) Runtime application of local dictionaries. (1) 
The fine-tuned transformer models and regular expressions are run on notes to capture baseline PII (2) any residual 
PII is detected using the PII dictionaries (e.g. MEMPLCPC - which is an abbreviation of the fictional “Memorial Place 

Primary Care”). (3) The usage of medical dictionaries helps in untagging “Bruce” in “Bruce protocol” - which was 
previously incorrectly detected as PII by the fine-tuned models. Overall, the locally augmented ensemble improves 
the detection of PII and reduces the misclassification of medically relevant terminology. The fine-tuned models and 

RegEx heuristics module is presented in greater detail in Figure 2 of Best-in-class de-identification paper 
(Murugadoss et al.)10. 
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Results

Datasets, evaluation metrics and models
We evaluated the performance of the locally augmented ensemble on data from two 
geographically distinct healthcare systems. The first is from Duke University Health System and 
is composed of 15,716 clinical notes. These notes are sampled from a corpus of over 100 
million clinical notes corresponding to 250,000 unique patients. The second is composed of 
10,000 clinical notes from Mayo Clinic and sampled from over 250 million clinical notes 
corresponding to 700,000 unique patients. These datasets are referred to as the Duke and 
Mayo test sets, respectively. They were created using stratified sampling, such that notes were 
partitioned into groups by type and creation date and sufficient representation from each group 
was ensured (see Methods). As a result, the datasets consisted of various different types of 
notes such as progress notes, H&P notes, pathology reports, telephone encounters, treatment 
summaries, etc. spanning from 1990 to 2024. The datasets were manually annotated to create 
ground truth labels for PII. Each sentence was initially annotated by two different people and 
conflicting annotations were adjudicated by a third person. Consequently, these datasets are 
regarded as the gold standard for our evaluation.

De-identification performance was measured using precision, recall and F1-score. Here, 
precision refers to the proportion of correctly identified PII entities out of all the entities the 
model identified as PII. Recall refers to the proportion of actual PII entities in the data that the 
model successfully identified and from a regulatory perspective, high recall must be achieved. 
The F1-score is the harmonic mean of the precision and recall. Also, we include entities beyond 
the standard PII identifiers defined by HIPAA (e.g.,  doctor’s names and clinic locations) as part 
of our evaluation (see the List of PII entities section in the Supplementary Information) given 
that many healthcare organizations aim to protect the privacy of their care providers as well. 
Additionally, the reported precision and recall are calculated by distinguishing only between PII 
and non-PII entities, thereby not penalizing misclassifications within PII categories, such as 
mistaking organizations for locations (see the Evaluation metrics section in the Supplementary 
Information). In addition to these core performance metrics, we also evaluated the latency and 
cost of execution.

Finally, we performed comparisons against the best performing22 publicly-available open-source 
Language Learning Models (LLMs) and ChatGPT using two publicly-available datasets. For our 
analysis, we select the instruction-tuned variants of Llama-3 (Llama-3-8B, Llama-3-70B)23 and 
Mixtral 8x7B24, which match GPT-3.5 across various Natural Language Understanding (NLU) 
and reasoning benchmarks. In addition to open-source LLMs, we also evaluate GPT-3.5 and 
GPT-4 given their state-of-the-art capabilities and widespread adoption25. 

We evaluated the LLMs on the i2b2 2014 and the CoNLL 2003 datasets. The i2b2 2014 dataset 
is a publicly available dataset of clinical documents with annotated PII20. This dataset consists of 
a training set of 792 clinical notes and a test set of 515 clinical notes. The CoNLL 2003 dataset 
is a benchmark collection for Named Entity Recognition (NER), featuring annotated texts with 
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entities like names and locations, and comprises a training set of 946 news articles and a test 
set of 217 news articles21,26.

The source code to run the large language models on the CONLL 2003 and the I2B2 dataset is 
available at https://github.com/lumenbiomics/udeid_llm.

Locally augmented ensembles achieve best-in-class performance on 
real-world clinical datasets
We evaluated the end-to-end de-identification system on both the Duke and Mayo test sets (see 
Table 1). For the Duke test set, the precision was 0.982 (95% CI: 0.981, 0.982), recall was 
0.996 (95% CI: 0.996, 0.996), and the F1-score was 0.989 (95% CI: 0.989, 0.989). For the 
Mayo test set, our approach achieved a precision of 0.979 (95% CI: 0.978, 0.980), a recall of 
0.995 (95% CI: 0.995, 0.995), and an F1-score of 0.987 (95% CI: 0.987, 0.987). As can be 
seen, the overall levels of precision and recall between the two healthcare systems are similar. 
A deeper analysis of the types of false negatives is presented in Supplementary Table 1. 
Additionally, we assessed the performance of our system in the absence of specific components 
namely, patient and provider dictionaries that are derived from the EHR and clinical 
terminologies. We discuss these components in greater detail in the following sections. 

Method 
Configuration

Duke Mayo 

Precision Recall F1-Score Precision Recall F1-Score

Ensemble without 
local augmentation 
(Baseline)

0.971 0.989 0.980 0.972 0.995 0.983

Baseline with 
Structured PII 
dictionaries

0.971 0.996 0.983 0.972 0.996 0.984

Baseline with 
medical dictionaries

0.982 0.989 0.985 0.979 0.995 0.983

Locally augmented  
ensemble

0.982 0.996 0.989 0.979 0.996 0.987

Table 1. An evaluation of de-identification models on the Duke and Mayo test sets. 

Using dictionaries for PII detection
Our ensemble approach uses dictionaries of PII terms from patient and provider topics in the 
EHR to detect PII in clinical text, including multi-word terms like clinic names and locations, as 
well as full names of physicians and patients. Additionally, a patient-specific dictionary is 
created, mapping patient IDs to names and unique identifiers. The incorporation of these 
dictionaries primarily aims to enhance the performance of the existing transformer models, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.20.24308896doi: medRxiv preprint 

https://paperpile.com/c/nuZ4eN/QgHB+B24v
https://github.com/lumenbiomics/udeid_llm
https://doi.org/10.1101/2024.06.20.24308896


especially by capturing health institution-specific PII terms and rare patient or physician names, 
which are less likely to appear in public literature that inform pre-trained language models. 

When the structured PII dictionaries are utilized, we observe an increase in recall from 0.989 to 
0.996 on the Duke test set and from 0.995 to 0.996 on the Mayo test set (see Table 1). Of note, 
the baseline recall in the Mayo test set is higher than the Duke test set since the models were 
fine-tuned with samples from Mayo. As expected, the precision remains unaffected because of 
the quality (i.e no ambiguous terms) of the PII dictionaries. We also provide several examples of 
the kinds of entities that were missed by the ensemble but were correctly captured using the PII 
dictionaries (see Table 2). In the absence of structured PII support for the evaluation on the 
Duke test set, it is noteworthy that the transformer models, trained exclusively using Mayo Clinic 
documents, were able to generalize to the language and structure of clinical notes from Duke 
and achieve a high recall. 

PII Entity Type Example Sentence with PII (fictional) term 

Patient Name Born denies any PND or claudication symptomatology.

Provider Name GH8715 Sylvia Ayonghe Ndu MD 05/13/2018

Patient Address Transfer: 40 CROSSBEAK RD, ROCHESTER, MN

Clinic Location Answer: 2000 Stardust Dr. / Order Specific Question:

Organization Referral Case 00-0012 MSHJ HEALTH CARE, Minneapolis

Organization 3/17/2019 4:00 PM John B. Smith, MD DURPLCPC DUKE 
CHILD Patient Instructions Increase Amlodipine to 10 mg once 
daily

Table 2. Examples of (fictional) sentences with PII detected using structured PII dictionaries: Sentences from 
the Duke and Mayo test sets with PII (underlined) that were not detected by the ensemble but were captured through 

the PII dictionaries..  

Recovery of medically relevant false positives
The ensemble approach occasionally misclassifies medically relevant terms as PII. To address 
this issue, we established a dictionary of medical terminology harvested from public datasets 
and clinical text. Using this medical dictionary, we observed that the precision of the 
unstructured de-identification software increased from 0.971 to 0.982 on the Duke test set and 
from 0.972 to 0.979 on the Mayo test set while the recall remains the same (see Table 1). 
Although we observed an increase in precision on the test sets, it is important to note that these 
test sets were created primarily for measuring the de-identification recall. More specifically, the 
selection of documents for the test sets was optimized for high PII content (see Methods). 
Therefore, to better quantify the impact of medical term recovery, we measured the number of 
recovered terms, words detected as PII that also appeared in the medical dictionary, in a 
random sample of 10M clinical notes from both the Duke and Mayo corpora. We found that 
3.5% of terms which were originally labeled as PII in the Duke test set are recovered and while 
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0.7% of terms in the Mayo test set are recovered (see Table 3). The percentage of recovered 
entities in the Mayo test set is lower than that of Duke since the models were fine-tuned on the 
Mayo test set. We present examples of commonly occurring medical terms across various entity 
types that were correctly captured using the medical dictionary (see Table 4).

PII Entity Type Duke Mayo 

Words detected 
as PII

Recovered Words 
(%)

Words 
detected as 

PII

Recovered 
Words (%)

Age 5,572,744 9,627 (0.2%) 2,608,541 11,495 (0.44%)

Alphanumeric 
Identifier 2,505,651 37,902 (1.5%)

66,226,790 5,027 (0.007%)

Date 44,117,044 693,847 (1.5%) 47,810,849 98,188 (0.21%)

Email 17,819 0 (0.0%) 4 0 (0.0%)

IP Address 48 0 (0.0%) 376,083 0 (0.0%)

Location 9,244,820 1,207,556 (13.1%) 6,983,875 373,765 (5.3%)

Name 31,785,298 531,716 (1.7%) 56,515,604 286,800 (0.5%)

Organization 8,260,065 1,191,949 (14.4%) 4,708,642 609,347 (12.9%)

Pager 136,491 20,966 (15.4%) 294,881 420 (0.1%)

Phone number 1,799,581 6,364 (0.3%)  3,894,765 606 (0.015%)

Vehicle Plate 2,899 0 (0.0%) 29,327 0 (0.0%)

Website 41,673 1 (<0.1%) 120,816 0 (0.0%)

Zip Code 660,947 7 (<0.1%) 564,874 1 (<0.1%)

All 104,145,080 3,699,935 (3.5%) 190,199,105 1,385,649 (0.7%)
Table 3. Number of recovered terms: Across the Duke and Mayo 10M notes dataset, we determine the number of 

recovered words for each entity type amongst the total number of words detected as PII. 
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Medical 
Term 
(Type)

Instances 
Recovered 
(across Duke 
and Mayo sets)

PII Entity Type Example Sentence with recovered 
medical term (medical term is underlined, words 
originally detected as PII are in bold)

3/16” needle 
(surgical 
instrument)

8,404 Date • BD INSULIN PEN NEEDLE UF MINI 31 
gauge x 3/16" needle USE UTD QID

AAP Clinical 
Practice 
Guideline
(Clinical 
practice)

11,736 Organization Blood pressure percentiles are 90 % 
systolic and 53 % diastolic based on the 
2017 AAP Clinical Practice Guideline.

BASAGLAR 
KWIKPEN 
(injection)

2,986 Name • [DISCONTINUED] BASAGLAR 
KWIKPEN U-100 INSULIN pen injector 
(concentration 100 units/mL)

Bruce 
Protocol 
(clinical test)

845 Name The patient exercised on standard Bruce 
protocol for 5 minutes and 10 seconds and 
Achieved target heart rate.

FK506 (drug) 16,713 Alphanumeric 
Identifier

No results for input(s): FK506 in the last 168 
hours.

NAD (clinical  
state; “No 
Apparent 
Distress”)

4,970 Location General: Patient sitting up in bed in NAD.

St. Jude 
(surgical 
device)

2,632 Location Severe MR and mod TR s/p MVR (29mm 
St. Jude) and TV repair 1/8

MyChart 
(software 
application)

45,439 Organization She is to contact the clinic through MyChart 
with major concerns. 

0630 (time) 19,281 Pager Inpatient Schedule: Breakfast (0630)
Table 4. Examples of highly prevalent false positives that are recovered using the medical dictionaries: 

Medical terms and example sentences from the Duke and Mayo 1M notes datasets that were originally detected to be 
PII. “# Instances Recovered” represents the number of times that the medical term was labeled as PII and 

subsequently recovered using the medical DB.

Locally augmented ensembles outperform large language models on public 
datasets
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Our evaluation involved zero-shot and one-shot prompting techniques for the LLMs27. For the 
I2B2 2014 test set, we found that the Llama-3-70B model is the best performing method among 
the LLMs, with a precision of 0.89, recall of 0.83 and F1-score of 0.85 (see Table 5). By 
contrast, for the CONLL 2003 test set, the best performing LLM approach was the one shot 
prompting strategy with GPT-4, which has a lower precision of 0.79, a recall of 0.96, and an 
F1-score of 0.87. We observed a total of 298 false negative errors with one shot prompting with 
GPT-4. Locations were the most prevalent entity type with 117 errors (50.6%). Examples of 
locations that were missed are the abbreviation “U.S.” and the continent “Europe”. Following 
locations, names constituted the second most significant error category comprising 98 false 
negatives (32.9%). Personal names that occurred as part of tables were frequently missed as 
well as infrequent names, such as “Suharto” and “Xue”. False negatives in organizations 
occurred in 83 instances (27.8%) with errors in terms such as “Reuters” and “Newsroom” (see 
the Examples of ChatGPT-4 errors section in the Supplementary Information for examples of 
notes and their outputs from GPT-4). On both the I2B2 and CONLL datasets, the ensemble  
achieves the best performance among all LLMs with a precision of 0.96, recall of 0.99 and 
F1-score of 0.97 on the I2B2 test set, and a precision of 0.95, a recall of 0.97, and an F1-score 
of 0.96 on the CONLL 2003 test set.

I2B2 CONLL 

Method Precision Recall F1-Score Precision Recall F1-Score

Llama-3-8B 0.79 0.75 0.77 0.88 0.81 0.84

Llama-3-70B 0.89 0.83 0.85 0.87 0.85 0.86

Mixtral 8x7B 0.72 0.60 0.65 0.76 0.72 0.74

GPT-3.5 Zero Shot N/A N/A N/A 0.86 0.81 0.83

GPT-3.5 One Shot N/A N/A N/A 0.88 0.76 0.81

GPT-4 Zero Shot N/A N/A N/A 0.81 0.95 0.87

GPT-4 One Shot N/A N/A N/A 0.79 0.96 0.87

Locally augmented 
ensemble (ours)

0.96 0.99 0.97 0.95 0.97 0.96

Table 5: Performance of de-identification methods on the i2b2 2014 test set and the 
CONLL 2003 test set. The precision, recall and F1-score for each LLM/method is described. 

We did not evaluate GPT-3.5 and GPT-4 on the I2B2 dataset due to data use restrictions.

Next, we evaluated the runtime processing throughput of different LLM methods in comparison 
with our system. We performed this evaluation on the 217 documents present in the CONLL 
2003 test set. We observed that our approach requires 0.10 seconds per document while the 
Llama-3-8B is the second fastest approach with 0.29 seconds per document (Table 6). We also 
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provided cost estimates per document for each method. We calculated the runtime cost of open 
source LLMs using the per hour rates of the 8 x L4 GPU VM (Graphical Processing Unit Virtual 
Machine) on the Google Cloud Platform, while the exact GPT costs were determined using 
OpenAI’s pricing rates (See the Cost estimation section in the Supplementary Information for 
more details). For zero shot and one shot prompting in GPT-3.5 and GPT-4, the time elapsed is 
inclusive of the network latency in the round trip API call. We observed that the per-document 
time for one shot is lower than zero shot despite the one shot prompt being longer than the 
zero-shot prompt. However, the longer one shot prompt results in increased costs as compared 
to zero shot prompting - $299 vs $196 per 10,000 documents for GPT-4. 

Method Hardware 
Requirements

Total time 
elapsed for 217 
documents (s)

GPU-Time 
(s)

Time per 
document 

(s)

Estimate of 
compute 

cost per 10K 
documents

Llama-3-8B 8 x L4 GPU 
VMs

63.21 505.68 0.29# $7

Llama-3-70B 8 x L4 GPU 
VMs

311.72 2493.76 1.43 $32

Mixtral 8 x 
7B

8 x L4 GPU 
VMs

106.22 849.76 0.49 $10

GPT-3.5 
Zero Shot

1 CPU VM 1323.78 N/A 4.75 $5*+

GPT-3.5 
One Shot

1 CPU VM 668.36 N/A 3.08 $5*+

GPT-4 Zero 
Shot

1 CPU VM 2778.06 N/A 12.80 $196*

GPT-4 One 
Shot

1 CPU VM 1725.97 N/A 7.95 $299*

Locally 
augmented 
ensemble 
(ours)

1 x L4 GPU 
VM

21.70 21.70 0.10 < $1

Table 6: Time elapsed for different methods on the CONLL 2003 test set. The total time for returning the named 
entities for 217 documents in the test set is provided along with the time in seconds per document. * Costs for 

GPT-3.5 and GPT-4 are computing using OpenAI’s pricing rates. # The fastest running LLM is the Llama-3-8B model, 
which is 3 times slower than the locally augmented ensemble + The cheapest LLM is the GPT-3.5, which is 5 times 

more expensive than our approach
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Methods
In this section, we outline the methodology employed for creating the gold standard test sets 
which are used to assess the de-identification performance improvements due to PII dictionaries 
and recovery of medical terms. We then detail the development and implementation of PII 
dictionaries and also describe the process for compiling a comprehensive dictionary of medical 
terms. Lastly, we discuss the testing of unstructured text de-identification using large language 
models (LLMs).

Sampling process and creation of gold standard test sets
The Duke and Mayo test sets comprise diverse document types that represent the 
heterogeneity of clinical notes present in the respective EHR systems. We performed stratified 
sampling across different types as well as across time to ensure diversity. Specifically, we 
created multiple document groups with each group representing a unique pair of temporal range 
and document type. For example, one such group is Progress Notes in the time range 2018 to 
2021. 

We considered a minimum sample size of the test set to be 10,000 documents (satisfying a 95% 
confidence level and 1% margin of error in representing all clinical notes). For each <temporal 
range,type> group, we computed the average number of words. We then determined the 
adjusted number of documents for each group by multiplying the number of documents with the 
average number of words. This increases the sampling weight for groups that contain longer 
documents. Furthermore, highly prevalent document types, such as appointments and 
medication comments, that contain short strings are suppressed. As an example, in the Duke 
corpus, there are 12.7M questionnaire responses (answers provided by patients to sets of 
predefined questions from the health system) from 2021-2022 with 1.99 words per response. In 
comparison, there are only 3.7M progress notes written in the same time period. However, the 
progress notes are much longer, with 794 words per note. As a result, progress notes were 
assigned a higher adjusted count than questionnaire responses (10.8M vs 4.0M) and sampled 
at a higher rate in the test set. 

where i refers to a year-type group.

We then determined the number of documents to sample for each group:

where si is the number of documents to sample in the ith group, S is the minimum sample size 
(in our case, S=10,000), and k is the minimum number of documents to sample for each group. 
We set k to 10, such that every group is comprised of no less than 10 documents unless the 
bucket itself has fewer than 10 documents. The latter situation can occur for specific (rare) note 
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type-year combinations (e.g. in the Duke corpus, there are only 3 nursing notes present written 
between 1994-1997, and all 3 notes are included in the test set).  

Given the required number of documents to sample per group, the sampling process was 
guided by the two additional criteria. First, documents from distinct patients were prioritized 
documents from the same patient. Secondly, documents that contain PII are preferred. A 
document is deemed to contain PII if it contains either the patient name, address, phone 
number or email address of the associated patient (taken from the demographics table). Based 
on this criteria, we observed that approximately 96% of all sampled notes contained instances 
of PII.

Using dictionaries for PII detection
To support the ensemble of models, we used dictionaries of PII terms created from the available 
patient and provider EHR topics as an additional PII detector. Specifically, we created 
dictionaries of clinic names, clinic locations, physician names, patient names and patient 
addresses. To support the removal of generic or ambiguous terminology from our dictionaries, 
we curated a large corpus (referred to as “scientific corpus”) comprising 46 million documents 
from Pubmed, Clinical Case Reports and the Directory of Open Access Journals (DOAJ). 
Phrases with an occurrence count greater than 1 million in the scientific corpus (e.g., “Primary 
Care” or “Radiology Department”) were removed from the PII dictionaries. 

In addition to the aforementioned PII dictionaries, we also created a patient specific dictionary of 
names and unique identifiers. From the patient EHR topic, we created a mapping from each 
unique patient ID to the first, middle and last name as well as any unique identifiers of the 
corresponding patient (e.g., patient ID or medical record number) . Patient names that 
correspond to common words (e.g., “Max”, “Will”, or “Green”) were removed if their occurrence 
count in the scientific corpus exceeded 1 million. We note that this exclusion rule has the side 
effect of dropping very common names such as “John” or “Mike”. However, these common 
names are consistently detected by the neural network components of our ensemble and their 
exclusion from the patient specific dictionaries does not impact overall de-identification 
performance. On the other hand, a rare name such as “Ndu” may not be detected by the models 
and its inclusion in the dictionaries improved the overall detection capability. 

Recovery of medically relevant terms
Medically relevant terms, in particular clinical eponyms, may be incorrectly classified as PII (e.g., 
the word “Bruce” in Mr. Smith exercised for 4 minutes on the Bruce protocol). The subsequent 
transformation of these terms  can impact downstream interpretability and analysis (e.g., When 
replaced by random surrogate values, the sentence becomes Mr. Johnson exercised for 4 
minutes on the Conley protocol which is incorrect and misleading). We addressed this problem 
by creating a dictionary of medical terminology from the Duke University Health System and 
Mayo Clinic corpora. If a term detected as PII is present in this dictionary, then it is deemed 
medically relevant and is retained as is without any transformation (i.e. it is treated as non-PII). 
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The dictionary leverages publicly available datasets from the SNOMED1,28, Food and Drug 
Administration (FDA)29, and National Cancer Institute (NCI)30 databases. Additionally, we 
developed an approach to harvest medically relevant entities from unstructured clinical text, 
thereby augmenting the public databases (Figure 2). Specifically, we selected multi-gram 
phrases from clinical text that are also present in public scientific literature (e.g. “Bruce protocol” 
vs “Bruce jumped”) and are present in a minimum of 10 patients. Additionally, we checked 
against the structured PII dictionaries (i.e. patient demographics and provider information) to 
ensure that the entire multigram phrase itself is not PII (e.g. physicians who are prolific 
publishers). Taken together, a total 460,000 medically/biologically meaningful terms comprised 
the final medical dictionary used as part of the de-identification system.

Figure 2. Expanding the medical dictionary: An overview of the process for expanding the dictionary of medically 
relevant terms that are retained in the unstructured data. 

In addition to creating a medical dictionary, we also employed regular expressions to identify 
potential false positive terms that are mentioned in a consistent and well-defined syntax. For 
instance, genetic variations are typically represented with a "g." followed by a number and the 
actual nucleotide change (e.g. g.7578395G>C). Therefore, we can employ a specific regular 
expression ("g\.[0-9_+-]{5,}[TGCA]+(>)?[TGCA]+") to detect such instances as part of false 
positive recovery. Words that are detected as PII by unstructured de-identification will be 
compared with these regular expressions. If such words match the regular expressions in a 
case insensitive manner, they will be deemed as non-PII. The overall process for recovery of 
medically relevant terms is shown in Figure 3. 

1  “SNOMED” is a registered trademark of the International Health Terminology Standards Development 
Organisation (IHTSDO).
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Figure 3. Recovery of false positives during unstructured de-identification: A combination of dictionaries and 
regular expressions are employed to identify words incorrectly detected as PII. “Recovery” here refers to the process 

of labeling words that were originally PII as non-PII. 

Unstructured De-identification using Large Language Models
LLMs were evaluated using zero-shot and one-shot prompting. In both scenarios, we instructed 
the LLMs to return output as a JSON dictionary with keys as entity types and a list of values for 
each corresponding PII term (Figure 4). The raw clinical text from each input document was 
included as part of the LLM prompt without any modifications. We applied different instruction 
prompts for different LLMs and included special tokens in the prompt string in accordance with 
the instructing tuning dataset of each LLM (Supplementary Table 2). For GPT-3.5 and GPT-4, 
each request to the LLM was performed as a separate session to ensure that PII prediction 
occurs independently on each note. The temperature is an important hyperparameter in natural 
language generation tasks that controls the creativity of language models and the randomness 
of the generated text31. We set the temperature to zero so that queries were reproducible. After 
obtaining the response of the language model, a case-insensitive search for performed to 
identify PII terms in the original text (e.g., if both “John” and “john” occur in the text, only one of 
them is likely to be returned in the JSON response of the LLM). 
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Figure 4. A comparison of de-identification using LLMs and our framework: Depiction of (A) zero-shot and (B) 
one-shot prompting for de-identification using LLMs. (C) Our methodology. The prompt provided for zero shot and 

one shot prompting is an example. The actual prompt used in our experiments is provided in Supplementary Table 3. 

Discussion
There is an emerging trend in clinical studies to substitute fine-tuned models with LLMs32–37. 
LLMs can improve patient care by assisting in patient communication through translations and 
summaries, and simplifying documentation tasks by converting between unstructured and 
structured information. In medical research, LLMs can distill and summarize research findings, 
potentially accelerating the integration of new knowledge into clinical practice. Furthermore, in 
medical education, LLMs are expected to shift the focus towards critical thinking and reasoning, 
complementing traditional methods of learning. These diverse workflows are supported by the 
development of numerous open-source LLMs and low-latency API providers. Despite these 
promising applications and rapid development, the ability of LLMs to detect PII (in zero-shot or 
one-shot setting) with low false negative rates remains to be demonstrated. Furthermore, even if 
a highly performant LLM were developed, its compute and cost requirements would be 
challenging to overcome, especially since processes like de-identification require secure and 
controlled compute environments (preventing the use of public APIs). One avenue worth 
considering is the prospect of fine-tuning LLMs, which can help refine their capabilities for 
specific downstream tasks such as information extraction or de-identification. However, 
fine-tuning a billion-plus parameter model requires substantial compute requirements. Although 
compute-friendly implementations such as Parameter Efficient Fine-Tuning (PEFT) may offer a 
path forward, the benefit of fine-tuning an LLM versus a simpler model (such as BERT or 
RoBERTa) is still unclear38,39.
 
Beyond new model architectures, another opportunity to improve de-identification performance 
is by leveraging the syntactic structure and formatting present in clinical documentation. In 
particular, unstructured text in EHR is increasingly integrated with semi-structured templates 
(e.g., tables, forms etc.) for consistency and uniformity in clinical documentation. These 
templates are inherently complex due to inconsistent formatting, vast variability in template 
designs, and the constant evolution of templates used, which can lead to complications in data 
retrieval. Despite these challenges, leveraging templatized content from clinical notes offers 
significant benefits, such as reduced annotation needs for NER models and greater efficiency in 
model development and validation. Additionally, isolating templatized content reduces the 
amount of unstructured text processed by deep neural networks, thereby speeding up the 
overall runtime of tasks like NER and information extraction. 

Overall, our investigation demonstrates that a locally augmented ensemble framework for text 
de-identification achieves best-in-class performance against large and diverse real-world clinical 
datasets from Duke University Health System and Mayo Clinic. The integration of local 
dictionaries enhances both the precision and recall of the de-identification system without 
having to fine-tune the neural network components of the ensemble. Our work also highlights 
that transformer models fine-tuned at one health institution (Mayo Clinic) can be deployed at 
another (Duke University Health System) with minimal effort of local dictionary creation. This 
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paves the way for rapid adaptation of the ensemble to clinical datasets from previously unseen 
health institutions. Moreover, fine-tuning using institutional data for the specific task of entity 
recognition (personal identifier entities) only updates the weights of the pre-trained/fine-tuned 
discriminative models40. Transferring these models between health institutions does not carry 
the risk of outputting memorized data associated with generative/autoregressive models. Lastly, 
the locally augmented ensemble supports configurability, deployment on commodity hardware 
and scalability across multiple GPUs. Taken together, our framework enables faster access to 
diverse federated de-identified datasets hence improving the robustness of medical findings and 
accelerating medical research and advancement.   

Data Availability
● The 2014 i2b2 dataset and the CONLL 2003 dataset are publicly available datasets 

subject to signed safe usage for research purposes. 
● The Duke and Mayo clinical notes are not publicly available at this time. 

Code Availability
● The source code to run both the open-source large language models as well as the 

GPT-3.5/GPT-4 API on the CONLL 2003 and the I2B2 dataset is available at 
https://github.com/lumenbiomics/udeid_llm. 

● The source code for the locally augmented ensemble implementation is not available. 
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Supplementary Information

List of entities considered as PII
1. Age over 89
2. Phone/fax numbers
3. Email addresses
4. Websites and URLs
5. IP addresses
6. Dates
7. Social Security Number
8. Medical Record Numbers
9. Vehicle/device numbers
10. Account/certificate/license numbers
11. Health plan number
12. Street address
13. City
14. Zip Code
15. Employer name
16. Personal names of patients and family members
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17. Provider (doctor/nurse) names *
18. User IDs (of care providers) *
19. Health care organization/facility names *
20. Country *
21. State *

* - Considered as PII for our analysis but not included in HIPAA.

Evaluation Metrics
To evaluate model performance on the de-identification task, we computed the precision, recall 
and F1 scores. These were computed as follows:

Precision = TP / (TP+FP)

Recall = TP / (TP+FN)

F1 = 2*Precision*Recall / (Precision+Recall)

Where,
● TP is the true positive count, the number of words that the ensemble correctly classified 

as PII, 
● FP is the false positive count, the number of words that the ensemble wrongly classified 

as PII, and 
● FN is the false negative count, the number of words that the ensemble failed to classify 

as PII  

Precision refers to the proportion of correctly identified PII entities out of all the entities the 
model determined to be PII.
 
Recall refers to the proportion of actual PII entities in the data that the model successfully 
identified. From a de-identification and patient privacy perspective, maximizing the recall is most 
important. 
The F1 score is the harmonic mean of precision and recall. F1 score is particularly useful when 
there is an imbalance between precision and recall, providing a single metric that combines both 
into a balanced evaluation. This is essential for NER systems, which might struggle to balance 
both precision and recall.

We recognize that alternative performance measures could be utilized, such as specificity, 
which measures the proportion of true negatives correctly identified. However, specificity is most 
useful in contexts where both false positives and false negatives have significant consequences 
and are less relevant for NER systems, such as medical diagnostics. However, in NER, the 
primary focus is on identifying and classifying entities accurately rather than on recognizing 
non-entity text as non-entities.

For the precision, recall and F1-Score, 95% confidence intervals were computed using 
bootstrap resampling with 100 samples.
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Analysis of false negative errors in the Duke Test Set
We analyze the false negative errors based on their risk level for the Duke test set 
(Supplementary Table 1). Here, the first column in this table represents the PII category and 
the second shows the corresponding risk level for the category while the third column 
represents the contribution of each category to the false negative error (which corresponds to 
the residual 0.004 of recall). The error analysis for the Mayo test set is similar to that of Duke 
and has been presented in our previous publication (See Table 4 of Best-in-Class 
de-identification paper: https://www.sciencedirect.com/science/article/pii/S2666389921000817). 

There are several key findings from this analysis. First, there were six instances of patient 
names that were not detected by the de-identification system. These were  initials, a misspelt 
name, a nickname and first names that are also common English words (e.g. Will). Taken 
across 14,631 unique patients, this suggests that the likelihood of leak of patient name is 
6/14,631 or 0.0004. There were 10 instances of a leak of the name of a patient’s relative.

Second, there were 56 false negative instances of an alphanumeric identifier. However, upon 
further analysis, we found that these instances corresponded to slide IDs, accession numbers 
and physician identifiers that are specific to internal dictionaries and not typically available to the 
public. None of the instances corresponded to the medical record number, SSN, or account 
number of a patient. 

Third, we found 57 instances of a false negative with dates. Our analysis revealed that none of 
these dates corresponded to life altering events and were commonly related to date of treatment 
or procedure. 

Fourth, the majority of the false negatives come from clinic location (226 instances) and 
healthcare organizations (234 instances). These cases typically refer to the site of treatment, 
physician’s address, etc. 

Additionally, we did not come across any false negatives in ages, ZIP codes, websites or email 
addresses.

Category Risk 
Level

Contribution to False 
Negative Error (Count)

Example (Not 
real PII)

Comments

Patient Name High 0.0026% (6) CK is feeling 
better today after 
the treatment.

Initials used - 1 
case
Nick name - 1 case
Misspelt name - 1 
case
Common English 
word (e.g. “Will”) - 3

Note: 6 out of 
14,631 patients had 
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a first name leak 
(likelihood of 
0.0004)

Patient 
Relative Name

High 0.0043% (10) Dad- jay smith 
or brother scott 
adams

Doctor/Nurse 
name or initial

Moderate 0.1181% (272) (AB) SUSAN 
LIGHT 
CONSTANT, PA 
Duke Medicine

Dates Moderate 0.0248% (57) Four cycles of 
adjuvant AC 
chemotherapy 
323/19

No leaks related to 
birth or death date

Doctor Phone 
Number / 
Pager Number

Moderate 0.0078% (18) For night and 
weekend 
coverage call 
617-922-124

No leaks in patient’s 
phone number

Location 
(Partial 
address)

Moderate
/High

0.0061% (14) 1749 Memorial 
Drive, Apt G 101

Clinic Location Moderate 0.0982% (226) Duke Primary 
Care-Mebane 
Follow up

Other 
Alphanumeric 
identifier

Moderate 0.0243% (56) Study Date: 
02/03/2020 2D 
Tape Number: 
N-132-93

No leaks related to 
Medical Record 
Number, SSN, or 
patient identifiers

Pharmacy 
Name

Moderate 0.0022% (5) RITE AID-302 N 
MAIN ST

Healthcare 
organization

Moderate 0.1016% (234) Provider: Dr. 
Smith, Maternal 
Fetal Medicine 
cc: Westside 
Obstetrics & 
Gynecology

Organization/
Company

Moderate 0.0100% (23) He has been 
transferred to 
North Carolina 
with Google.

Supplementary Table 1. Summary of false negative errors for each entity type: The number of individual false 
negatives is presented for each entity type along with its percentage contribution to the overall false negative rate of 

0.4% (corresponding to a recall of 0.996). Examples are provided for each PII category. 
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For false negatives in dates, we find that 34 of 57 words were missed due to a typo (e.g. “EKG 
from 323/20 showed QTc”), 18 words were month and year without the day (e.g. “Chemotherapy 
was started - 11/93”) while the remaining 5 errors were standalone days (e.g. “He was 
hospitalized till the 9th.”). 

Evaluating LLMs

Datasets

We downloaded the CONLL 2003 dataset from the Huggingface Datasets portal 
(https://huggingface.co/datasets/tner/conll2003). The mapping between the entity indices and 
the entity types were obtained from https://github.com/asahi417/tner. We excluded tags labeled 
as MISC in our evaluation. The final test set is composed of 217 documents. For our one-shot 
prompting experiments with GPT-3.5 and GPT-4, we select a single document from the CONLL 
2003 training set along with the labels and use this as our one-shot example. 

The i2b2 2014 de-identification challenge test corpus is composed of 514 notes. In accordance 
with our previous work (https://www.sciencedirect.com/science/article/pii/S2666389921000817; 
see Table 1 and Table 2), we consider HIPAA entities along with provider names and user IDs 
as relevant entity types for evaluation. In particular, we exclude seasons (e.g., winter and 
spring) and days of the week from our evaluation. 

Instruction prompt templates

We use different instruction prompts for different LLMs (Supplementary Table 2). Specifically, 
for the instruction-tuned LLMs (LLama3 and Mixtral), we include special tokens in our prompts 
so as to mimic the dataset used for fine-tuning. In these templates, only <system_prompt>, 
<instruction> and <input_text> are placeholders. Also, for GPT-3.5 and GPT-4, we specify the 
role of the <system_prompt> as “system”. The remaining instruction in the prompt has the “user” 
role. Terms such as “<|begin_of_text|>”, “<|start_header_id|>”, “[INST]”, etc.  act as markers that 
indicate where the system prompt and instructions begin or end during the model’s inference 
process. . The same markers were used while instruction-tuning the models and are therefore 
required at inference time as well.

Model Instruction Prompt Template

Llama3 (8B and 70B)
<|begin_of_text|><|start_header_id|>
user<|end_header_id|>
<system_prompt>
<instruction>
Input text:
<input_text>
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<|eot_id|><|start_header_id|>assista
nt<|end_header_id|>

Output JSON Response:

Mixtral 8x7B <s> [INST]
<system_prompt>
<instruction>
Input text:
<input_text>
[/INST]
Output JSON Response:

GPT-3.5/GPT-4 Zero shot <system_prompt> 
<instruction>
Input text:
<input_text>
Output JSON Response:

GPT-3.5/GPT-4 One shot <system_prompt> 
<instruction>
Input text:
<one_shot_example_input_text>
Output JSON Response:
<one_shot_example_response>
Input text:
<input_text>
Output JSON Response:

Supplementary Table 2. Instruction prompt templates used for different LLMs

Prompt engineering

In this section, we present the different prompt strings used for testing the LLMs. The results 
presented in the paper correspond to the best performing prompt on GPT-4 (Prompt #4 in 
Supplementary Table 3).

Of note, we used the same system prompt in all our experiments:
“You are a highly intelligent and accurate medical domain named-entity recognition (NER) 
system.”

We experimented with the above system prompt and 4 different variations of the instruction 
string. For each instruction string, we computed the performance on the CONLL 2003 dataset 
(Supplementary Table 3). In our earlier iterations of the instruction string we requested the 
model to return medical entities in addition to PII entities. We expected this to improve the 
precision (e.g. drug “names” would fall under the medical category and would not be 
misclassified as a person’s name). However, this improvement was beneficial anecdotally in the 
earlier versions of GPT-3.5 and not for GPT-4. It was therefore discontinued.
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Prompt Number Instruction String Precision Recall F1-Score

#1 In the following text, extract all 
substrings containing the first 
names of people (key 
"FIRST_NAME"), last names of 
people (key "LAST_NAME"), middle 
names and initials of people (key 
"MIDDLE_NAME"), human ages (key 
"AGE"), IDs of medical records 
(key "MED_ID"), IDs of documents 
(key "DOC_ID"), calendar dates 
(key "DATE"), cities (key "CITY"), 
states (key "STATE"), street 
addresses (key "STREET") and 
countries (key "COUNTRY") as a 
JSON. Return substrings such as 
dates in every format in which 
they appear in the text.

0.96 0.75 0.84

#2 In the following text, extract all 
substrings containing the first 
names of people (key 
"FIRST_NAME"), last names of 
people (key "LAST_NAME"), middle 
names and initials of people (key 
"MIDDLE_NAME"), email addresses 
(key "EMAIL"), human ages (key 
"AGE"), IDs of medical records 
(key "MED_ID"), IDs of documents 
(key "DOC_ID"), other alphanumeric 
IDs (key "ID"), calendar dates 
(key "DATE"), contracted or full 
names of days of the week (key 
"DAY"), contracted or full names 
of months (key "MONTH"), years 
(key "YEAR"), phone numbers (key 
"PHONE"), cities (key "CITY"), 
states (key "STATE"), street 
addresses (key "STREET"), 
countries (key "COUNTRY"), zip 
codes (key "ZIP"), names of 
hospitals (key "HOSPITAL"), drugs 
(key "DRUG"), diseases (key 
"DISEASE"), procedures (key 
"PROCEDURE"), and professions (key 
"PROFESSION") as a JSON. Return 
substrings in every format in 
which they appear in the text.

0.91 0.79 0.85

#3 Following is a specification to 0.77 0.97 0.86
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list all medical terms and 
personal identifiers from provided 
text into JSON format where each 
key corresponds to an array of all 
terms from the text that are 
assigned the key. Medical terms 
like drugs(e.g sitagliptin), 
diseases and conditions(e.g NSCLC 
or non small cell lung cancer), 
procedures (e.g ACL knee 
reconstruction), lab tests(e.g 
Potassium levels) , medical 
devices, ICD, CPT, LOINC codes 
should be listed under a "MEDICAL" 
key. Names of people including 
doctors, nurses, and medical 
professionals should be listed 
under a "NAME" key. Dates, months, 
years, time and timestamp 
formatted text should be listed 
under a "DATE" key. Addresses, 
street names, zip codes, 
countries, counties and cities 
should be listed under a 
"Location" key. Organizations like 
hospital names, clubs, 
corporations, company names should 
all be listed under an 
"ORGANIZATION" key. Phone numbers 
, medical IDs, document IDs, 
database IDs, any numerical 
pattern that looks like an ID 
should be listed under an "ID" 
key.  Email addresses should be 
listed under an "EMAIL" key. 
Similarly urls should be listed 
under a "URL" key. People's ages 
should be listed under an "AGE" 
key. Please use the preceding 
specification to apply on the 
following text:

#4 In the following text, extract all 
substrings containing the 
following entity types as a JSON:
- First names of people (key 
"FIRST_NAME") 
- Last names of people (key 
"LAST_NAME")
- Middle names and initials of 
people (key "MIDDLE_NAME")

0.81 0.95 0.87
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- Human ages (key "AGE")
- IDs of medical records (key 
"MED_ID")
- IDs of documents (key "DOC_ID")
- Calendar dates (key "DATE")
- Cities (key "CITY")
- States (key "STATE")
- Street addresses (key "STREET")
- Countries (key "COUNTRY")
- Zip codes (key "ZIPCODE")
- Names of hospitals and other 
organizations (key "ORGANIZATION")
- Email addresses (key "EMAIL")
- Phone numbers (key "PHONE") 
Return substrings such as dates in 
every format in which they appear 
in the text.

Supplementary Table 3. Different variations of the instruction prompt attempted: We experimented with 4 
different instruction prompts. “Prompt  #4” is our best-performing prompt string on the CONLL 2003 dataset with an 

F1-Score of 0.87. 

Link to GitHub repo

https://github.com/lumenbiomics/udeid_llm

Deployment and Execution of Open-Source LLMs and GPT-3.5/GPT-4

1. Model Download Links:
● Meta-Llama-3-8b-Instruct: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
● Meta-Llama-3-70b-Instruct: 

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
● Mixtral-8x7B-Instruct-v0.1: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

2. Infrastructure for Llama and Mixtral Models:
● Utilized Google Cloud Platform, specifically the G2 series:

○ Specifications: 96 cores, 384 GB RAM, and 8 x Nvidia L4 GPUs.
○ Approximately 1TB of disk space was allocated for storing the model files.

● Environment Setup:
○ Python version 3.8.10.
○ Deployed models using the vLLM library (Version 0.2.7).
○ Additional configuration:

■ Set tensor_parallel_size as 8 for all models.
■ For LLama3 70B, gpu_memory_utilization was set to 0.80 to avoid Out of 

Memory (OOM) errors.

3. Infrastructure for GPT-3.5 and GPT-4:
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● Utilized Google Cloud Platform, E2 Series machine:
○ Specifications: 2 cores and 4GB RAM.

● Environment Setup:
○ Python version 3.8.10.
○ Deployed using the OpenAI Python library (Version 1.3.8) for GPT-3.5 and GPT-4 

API calls.
● Specifically, the “gpt-3.5-turbo” and “gpt-4” model labels were used 

(https://platform.openai.com/docs/models/). The evaluation on the CONLL-2003 dataset 
was performed on 7th May 2024. 

Number of failed documents for each LLM

Our evaluation requires a JSON output. It is possible that the generated output may not comply 
with the JSON schema for a given input document. We consider these documents to have failed 
and do not include them in our evaluation. The number of failed documents for the different 
models and datasets is summarized below. 

Method # failed documents
(I2B2 2014 Test 

Set; N=514)

# failed documents
(CONLL 2003 Test 

Set; N=217)

Llama-3-8B 409 26

Llama-3-70B 0 1

Mixtral 8 x 7B 191 56

GPT-3.5 Zero Shot N/A 11

GPT-3.5 One Shot N/A 2

GPT-4 Zero Shot N/A 0

GPT-4 One Shot N/A 0

Locally augmented 
ensemble

0 0

Supplementary Table 4. Number of failed documents for each methodology: Our method 
is not a generative model and therefore does not produce unformatted output. We also find 

that GPT-4 produces consistently formatted JSON for all documents in the CONLL 2003 test 
set

Examples of ChatGPT-4 errors
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In this section, we provide an example input submitted to ChatGPT along with the prompt string 
to showcase false negatives errors (i.e. terms that are labeled as PII but not detected by 
ChatGPT). This example highlights how ChatGPT may underperform in structured evaluations 
with real-world examples while performing well anecdotally. 

The following query was made using the OpenAI ChatGPT web application 
(https://chat.openai.com/) on March 6th, 2024. 

Complete one-shot input string to ChatGPT-4:
In the following text, extract all substrings containing the following entity 

types as a JSON:

- First names of people (key "FIRST_NAME") 

- Last names of people (key "LAST_NAME")

- Middle names and initials of people (key "MIDDLE_NAME")

- Human ages (key "AGE")

- IDs of medical records (key "MED_ID")

- IDs of documents (key "DOC_ID")

- Calendar dates (key "DATE")

- Cities (key "CITY")

- States (key "STATE")

- Street addresses (key "STREET")

- Countries (key "COUNTRY")

- Zip codes (key "ZIPCODE")

- Names of hospitals and other organizations (key "ORGANIZATION")

- Email addresses (key "EMAIL")

- Phone numbers (key "PHONE") 

Return substrings such as dates in every format in which they appear in the 

text.

Input text: 

EU rejects German call to boycott British lamb . Peter Blackburn BRUSSELS 

1996-08-22 The European Commission said on Thursday it disagreed with German 

advice to consumers to shun British lamb until scientists determine whether 

mad cow disease can be transmitted to sheep . Germany 's representative to 

the European Union 's veterinary committee Werner Zwingmann said on Wednesday 

consumers should buy sheepmeat from countries other than Britain until the 

scientific advice was clearer . " We do n't support any such recommendation 

because we do n't see any grounds for it , " the Commission 's chief 

spokesman Nikolaus van der Pas told a news briefing . He said further 

scientific study was required and if it was found that action was needed it 

should be taken by the European Union . He said a proposal last month by EU 

Farm Commissioner Franz Fischler to ban sheep brains , spleens and spinal 

cords from the human and animal food chains was a highly specific and 

precautionary move to protect human health . Fischler proposed EU-wide 
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measures after reports from Britain and France that under laboratory 

conditions sheep could contract Bovine Spongiform Encephalopathy -LPR- BSE 

-RPR- -- mad cow disease . But Fischler agreed to review his proposal after 

the EU 's standing veterinary committee , mational animal health officials , 

questioned if such action was justified as there was only a slight risk to 

human health . Spanish Farm Minister Loyola de Palacio had earlier accused 

Fischler at an EU farm ministers ' meeting of causing unjustified alarm 

through " dangerous generalisation . " "

Output JSON Response: 

{"ORGANIZATION": ["EU", "European", "Commission", "Union"], "FIRST_NAME": 

["Peter", "Werner", "Nikolaus", "Franz", "Fischler", "Loyola"], "LAST_NAME": 

["Blackburn", "Zwingmann", "van", "der", "Pas", "Fischler", "de", "Palacio"], 

"CITY": ["BRUSSELS"], "COUNTRY": ["Britain", "France", "Germany"], "DATE": 

["1996-08-22"]} 

Input text:

JAKARTA 1996-12-06 Canada 's Bre-X Minerals Ltd and Barrick Gold Corp are to 

continue negotiations to hammer out a partnership agreement to develop the 

spectacular Busang gold find in Indonesia , sources close to the talks said 

on Friday . " The negotiations will be held both in Toronto and in Jakarta , 

" one source , speaking on condition of anonymity , told Reuters . Another 

source said most of the key negotiators from both Bre-X and Barrick had 

returned to Toronto , but declined to say if there had been any progress in 

their negotiations . Both sources said Bre-X and Barrick did not hold talks 

on Thursday with Mines and Energy Ministry Secretary-General Umar Said , who 

is coordinating the negotiations over the Busang find in East Kalimantan . 

The first source also said Bre-X had until December 21 to submit to the 

Indonesian Mines and Energy Ministry a feasibility study on the central 

region of the Busang property , estimated to contain 2.6 million ounces of 

gold . The richest parts of the property to the north and south of the 

central region have been estimated by Bre-X to contain 57 million ounces of 

gold . " Bre-X is expected to complete the feasibility report by December 16 

and submit it to the government before the December 21 deadline , " the 

source said . He said Bre-X would then formally seek the permission of the 

Indonesian government to begin construction to develop Busang 's central 

region , which might take up to two years . The source declined to say if 

there had been any progress in the talks between Bre-X and Barrick . " This 

is a huge project ... we are not selling furniture , and Bre-X has 13,000 

shareholders to answer to , " the source said . " While there has been some 

agreement in principle on some issues , there are still others such as 

procedures and mechanisms that needed to be sorted out , " he added . The 

source said no new deadline had been set by the Mines and Energy Ministry for 
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Bre-X and Barrick to strike a deal . The Ministry had given the companies 

until December 4 to complete a partnership deal , and advised Bre-X to take a 

25 percent stake and Barrick 75 percent to develop the property . " As far as 

I am aware , there 's been no new deadline , " the source said . The Ministry 

's Umar said on Thursday that both Bre-X and Barrick had responded positively 

to a government letter recommending a 25-75 split in the Busang gold property 

. The government also wants 10 percent of the property . Umar said the 

government had yet to receive a formal reply from the companies . He had said 

earlier that if the two companies failed to reach a partnership agreement , 

the government would explore other ways to expedite development of the Busang 

find . Bre-X has a partnership deal with PT Panutan Duta of the Panutan Group 

run by President Suharto 's eldest son , Sigit Harjojudanto , under which 

Panutan would receive $ 40 million over 40 months plus a 10 percent stake 

Busang 's richest parts . Barrick has teamed up with a construction company 

in the Citra Group of Suharto 's eldest daughter , Siti Hardianti Rukmana , 

in what Barrick had said was a partnership " to prepare us for a potential 

mining development project " . Honda RV exceeds sales target .

Output JSON Response:

Output response from ChatGPT4:
{

  "ORGANIZATION": ["Bre-X Minerals Ltd", "Barrick Gold Corp", "Mines and 

Energy Ministry", "PT Panutan Duta", "Panutan Group", "Citra Group"],

  "FIRST_NAME": ["Umar", "Sigit", "Siti"],

  "LAST_NAME": ["Said", "Harjojudanto", "Hardianti", "Rukmana"],

  "CITY": ["JAKARTA", "Toronto"],

  "COUNTRY": ["Canada", "Indonesia"],

  "DATE": ["1996-12-06", "December 21", "December 16", "December 4"],

  "STATE": ["East Kalimantan"]

}

In the above response, the following terms are not returned in the ChatGPT-4 response (False 
Negatives): 

1. Names: “Suharto” (2 instances present in the document)
2. Organization: “Indonesian Mines”, “Reuters”  (1 instance each in the document)
3. Location: “Busang” (7 instances present in the document)

Note: (1) CONLL 2003 has an additional entity type (MISC) which was not considered for our 
analysis. 
          (2) There were no false positives in this example. 

Cost Estimation
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1. G2 Series Machine Costs (Google Cloud):
● Configuration with 8 L4 GPUs: $8/hr.
● Configuration with a single GPU: $0.71/hr.

2. E2 Series CPU Machine Costs (for GPT-3.5 and GPT-4 API Calls):
● Rate: $0.03/hr.
● We used the tiktoken Python library (https://github.com/openai/tiktoken) to calculate 

costs incurred for GPT-3.5 and GPT-4, based on OpenAI’s pricing 
(https://openai.com/pricing).

○ GPT-3.5: $0.0005/1K tokens (Input) & $0.0015/1K tokens (Output)
○ GPT-4: $0.03/1K tokens (Input) & $0.06/1K tokens (Output)

● Server costs for E2 during the usage of GPT-3.5 and GPT-4 APIs were minimal.

3. Exclusions:
● We did not include data storage and data transfer costs in our estimate. 
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