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 34 

Abstract 35 

Background: Neutrophil–lymphocyte Ratio (NLR) is a biomarker of inflammation and was 36 

associated with diabetic retinopathy (DR) in earlier studies.  37 

Objective: To investigate the genetic loci influencing NLR and to estimate the heritability and 38 

causality of DR with the NLR polygenic risk score (PRS).  39 

Design: Genome-wide association study, conditional analysis, Fine and Gray model (FGR), 40 

Mendelian Randomization (MR) 41 

Setting: Scottish and South Indian populations drawn from population cohorts and electronic medical 42 

records. 43 

Participants: 29,317 individuals, with a considerable proportion diagnosed with diabetes. 44 

Measurements: Effect estimates from GWAS to compute PRS and causal association with DR. 45 

Results: Heritability estimates for the Scottish and Indian cohorts were 35.3% and 8.7% respectively. 46 

The top Single Nucleotide Polymorphisms (SNPs) in the multi-ancestry analysis (n=29,317) were 47 

intergenic: rs1825819 (Chr4:T/C) (Beta=-0.05, p=2.00x10-9), rs2980871 (Chr8:A/G) (Beta=0.04, 48 

p=4.64x10-8), rs2227322 (Chr17:C/G) (Beta=0.07, p=4.12x10-20) and rs4808047 (Chr19:T/C) (Beta= -49 
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0.07, p=5.93x10-12). For the construction of best-fit PRS, we used 74,377 of 55,333,12 variants. There 50 

was a dose-response relationship between the PRS and NLR. The subhazard ratio (sHR) for NLR PRS 51 

association with DR was not statistically significant sHR=1.01 (95% CI: 0.97, 1.06, p=0.48). Null 52 

associations were observed in both cross-sectional and time-based MR analyses for PRS with DR. 53 

Limitations: A substantial proportion of the dataset was used for training the PRS algorithm. Due to 54 

trans-ancestry differences, PRS and subsequent analysis were conducted only in the Scottish cohorts.  55 

Conclusions: Multiple novel intergenic SNP associations were discovered, complementing those 56 

previously identified. Of these, some SNPs were also associated with genes known to regulate white 57 

blood cells, but not specifically NLR. More studies are required to confirm the causality between 58 

systemic inflammation and DR.  59 

Primary Funding Source: 60 

National Institute for Health Research, Pioneer and Leading Goose R&D Program of Zhejiang 2023, 61 

and the Ningbo International Collaboration Program 2023.  62 

 63 

Introduction 64 

Microvascular abnormalities are not observed in certain individuals despite having long-term diabetes 65 

but the exact reasons for this are ill understood.1–4 In complex diseases, the genetic liability of an 66 

individual, can be summarised into an informative risk score that can be used in disease prediction 67 

models.5,6 Diabetes and inflammation share overlapping biological mechanisms.7 The global burden 68 

of diabetic retinopathy (DR) was close to 23% and more than 6%  experience vision problems.8 69 

Increased  concentrations of several inflammatory molecules were noted in tissues and vitreous fluids 70 

of  individuals with DR.9 Genetic modification of specific inflammatory pathways was shown to 71 

arrest the progress of DR.10 Leukocyte recruitment in DR was found to prolong the inflammatory 72 

activity.11 Neutrophil–Lymphocyte Ratio (NLR) was shown to be more clinically informative for 73 

several clinical conditions, than a more established marker of inflammation such as C-reactive protein 74 
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(CRP) in interferonopathies.12 Hence, modeling the joint variations in neutrophils and lymphocytes 75 

could be more informative than using them individually as markers of inflammation.13–17 Indeed, the 76 

NLR has been shown to be  associated with diabetes and its complications.18–21 However, no studies 77 

have directly investigated the genetic causality of the observed associations.  We aimed to identify 78 

new genetic loci for NLR with a strict phenotype definition. An allele score for NLR could be more 79 

powerful as it entails comprehensive information from multiple genetic loci. We hypothesized that the 80 

weighted NLR allele score could be used as an ideal instrumental variable to represent the genetic 81 

propensity for a heightened inflammatory response. We therefore performed a genome-wide 82 

association study (GWAS) for NLR and used the resulting PRS, both as an exposure and instrument 83 

variable to predict and find causal association with DR. 84 

Methods 85 

Cohort description and sample selection 86 

The India-Scotland Partnership for Precision Medicine in Diabetes (INSPIRED) is a collaboration 87 

between Dr. Mohan’s Diabetes Specialties Centre (DMDSC), and the associated Madras Diabetes 88 

Research Foundation (MDRF) at Chennai in South India and the University of Dundee, Scotland.In 89 

the discovery phase, we meta-analyzed 3 Scottish cohorts: Genetics of Diabetes Audit and Research 90 

in Tayside Scotland (GoDARTS-T2D), Scottish Health Research Register (SHARE), and GoDARTS 91 

non-type 2 diabetes controls (GoDARTS controls . However, a small proportion of GoDARTS 92 

controls developed diabetes after enrollment. These Scottish cohorts consist of individuals of 93 

predominantly white European ancestry. These cohorts and the data linkage strategies used for 94 

research have been described previously.22,23 The findings were replicated in the DMDSC cohort 1 95 

and cohort 2. The main difference between the DMDSC cohorts was the sampling strategy employed 96 

for genotyping. The participants were selected retrospectively in DMDSC cohort 1. NLR PRS was 97 

computed in SHARE using GWAS estimates from the GoDARTS T2D and controls.  98 

 99 

 100 
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Genotyping 101 

Genotyping methods for the Scottish and Indian cohorts have been described previously.24  The DNA 102 

was extracted from the stored blood plasma. A trained bioinformatician performed the quality control 103 

using standard protocols. For all the cohorts, Haplotype Reference Consortium (HRC) was used to 104 

infer the missing genotypes. We utilized the GRCh37 assembly (Genome Research Consortium 105 

human build 37) to locate SNPs. Affymetrix 6.0, Illumina Human Omni Express, and Broad Institute 106 

platforms were used for genotyping GoDARTS. Both, DMDSC and SHARE participants were 107 

assayed using the Illumina GSA platform. Alleles with a minimum allele frequency (MAF) greater 108 

than 0.05 were considered for GWAS. Additionally, we excluded single nucleotide polymorphism 109 

(SNPs) with an info score >0.70 and Hardy-Weinberg equilibrium (HWE) <1x10-10. Principal 110 

components were computed using Plink Version 1.9.25,26 We have used STREGA guidelines to report 111 

our findings.27  112 

 113 

Definition of NLR and DR phenotypes 114 

The Scottish diabetic retinopathy grading scheme was used to ascertain DR status (yes/no) in the 115 

Scottish cohort.28 Details of retinal screening in Tayside were described previously.29 For the time-116 

based Mendelian Randomization  (MR) analysis, the first reported DR (any grade from R1 to R4) was 117 

considered. For non-DR individuals, the maximum follow-up date was considered as the censoring 118 

date. NLR was calculated as the absolute count of neutrophils divided by the absolute count of 119 

lymphocytes from the hematology dataset. All values of neutrophils and lymphocytes above and 120 

below 5 standard deviations (SD) were removed. The change in NLR above 2.5 from the previous 121 

reading was considered and hence excluded. For, individuals having a single NLR reading, values 122 

above 5 were excluded. NLR values after diagnosis or treatment for malignancies or within a window 123 

period of 31 days after the diagnosis of infectious diseases were discarded. We also did not retain an 124 

NLR reading within 28 days after the first reading, assuming that as a case of possible visit for a 125 

disease condition.  126 
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Ethics Approval 127 

Tayside, Scotland UK: Ethical approval for the study was provided by the Tayside Medical Ethics 128 

Committee (REF:053/04) and the study has been carried out in accordance with the Declaration of 129 

Helsinki. 130 

SHARE, Scotland UK: Ethical approval of the study was provided by the ethics committee SHARE 131 

East of Scotland (REF: NHS REC 13/ES/0020). 132 

DMDSC: NIHR Global Health Research Unit on Global Diabetes Outcomes Research, Institutional 133 

Ethics Committee of Madras Diabetes Research Foundation, Chennai, India. IRB number 134 

IRB00002640. Granted 24th August 2017.  135 

Statistical Analysis 136 

GWAS analysis and ascertainment of independent loci 137 

The analytical approaches are shown in Supplementary Figure 1. Continuous variables were 138 

summarized as mean/median and categorical variables as frequencies and percentages. GWAS was 139 

performed in SNPtest version 2.5.2 with 10 principal components, age, sex, and diabetes status as 140 

covariates. Genome-wide Complex Trait Analysis (GCTA) software was used to identify independent 141 

genomic loci and genomic inflation was controlled during the computation process.30 We used the 142 

cojo-joint function in the GCTA suite which uses all the SNPs to calculate joint effect size without 143 

eliminating less important SNPs from the model. GWAS summary estimates were meta-analyzed 144 

with GWAMA (Genome-Wide Association Meta-Analysis) by applying the the genomic control 145 

option (-gco) in GWAMA to address inflation and assuming an inverse variance weighted model with 146 

a p value significance cut off of 5x10-8.31  147 

Gene enrichment, functional analysis, heritability estimation, and gene network analysis 148 

Functional Mapping and Annotation of Genome-wide Association Studies (FUMA) was used to 149 

create the regional plot, annotation, enrichment statistics, and gene-based tests. We also took 150 

annotations from gnomAD (https://gnomad.broadinstitute.org/), UCSC browsers 151 
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(https://genome.ucsc.edu/), and genecards (https://www.genecards.org/) if the annotations were not 152 

available in the FUMA. GeneMANIA was used to understand the co-expression and pathway analysis 153 

(https://genemania.org). GeneMANIA predicts weighted gene networks based on well-known genetic 154 

databases to visualize gene interactions.32  Narrow-sense heritability (h2
) was estimated using  LDAK 155 

software.33  156 

PRS estimation 157 

PRSice-2 and packages in R version 3.6.1 (The R Foundation for Statistical Computing, Vienna, 158 

Austria) were used to generate PRS and perform competing risks analyses, respectively.34–36 The 159 

Clumping and Thresholding method (C+T) in PRSice-2 was utilized for SNP thinning. GoDARTS 160 

T2D and GoDARTS controls were used as the base data and SHARE as the target data.  161 

Competing risks regression and MR analysis 162 

MR and competing risk analyses were performed using allele score as an instrument in the SHARE 163 

cohort. Fine and Gray analysis using the riskRegression package with deaths as a competing event 164 

adjusting for age, sex, HbA1c, BMI, and creatinine.37,38 Subsequently, The PRS from the SHARE 165 

cohort was used to test the causal relationship between NLR and DR using the one-sample Mendelian 166 

randomization (MR) method. For the Mendelian randomization analysis, we experimented with both 167 

cross-sectional and time-based models for the same DR phenotypes using R codes, and the ivtools 168 

package was used for survival MR.39 169 

Role of the Funding Source 170 

The funder had no role in the design, conduct, or analysis of the study or the decision to submit the 171 

manuscript for publication. 172 

Results 173 

Baseline characteristics of the participants 174 

The characteristics of the Scottish discovery cohort (white Europeans, n= 21,153) are shown in 175 

Supplementary Table 1. Among these, the GoDARTS had the highest sample size. Over 96% of 176 
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individuals had diabetes in the Affymetrix and Illumina sub-cohorts. The median NLR for all the 177 

Scottish cohorts was above 2. GoDARTS controls had the lowest median NLR (2.04), and only 7.7% 178 

had diabetes. Participants in the GoDARTS were older in comparison to the SHARE cohort. Except 179 

for GoDARTS controls, the proportion of males in all other cohorts was above 50%. In the DMDSC 180 

(Asian Indians = 8,164), the median NLR (1.93) and the median age was lower (less than 60 years) 181 

than the Scottish cohort (Supplementary Table 2).  182 

Discovery Phase in white European cohorts 183 

Meta-analysis of the 3 Scottish cohorts revealed 150 significant SNPs, most of which were in 184 

Chromosome 4 and Chromosome 17 (Supplementary Figures 2-3). Out of these, 128 were from 185 

Chromosome 17 and were in high linkage disequilibrium (LD). Only 3 SNPs were independently 186 

associated with the NLR trait, of which only one, rs3826331 in chromosome 17, and the rest, 187 

rs6841652 and rs16850400 in chromosome 4 (Table 1). Among these, rs3826331 is an intron near the 188 

neutrophil gene PSMD3, rs6841652 can be mapped either to the LINCO2513 or TBC1D1 genetic 189 

regions, and the gene corresponding to rs16850400 is yet to be determined. Of the 3 SNPs, the 190 

association signal for rs16850400 was suggestive (p=2.39 x 10-6). The estimated SNP heritability was 191 

35.3% (SD: 0.03). The genomic inflation factor (λ) was within reasonable limits for individual 192 

GWAS but was slightly on the higher side for the fixed effects meta-analysis (λ=1.09).  193 

Table 1. SNP estimates were identified as conditionally independent using GCTA in the Scottish 194 

GWAS meta-analysis  195 

rsid Genotype MAF Beta freq bJ pJ GC Gene 

rs3826331 T/C 0.40 -0.076 0.40 -0.076 6.53 x 10-14  PSMD3 

rs6841652 T/C 0.31 -0.065 0.31 -0.065 1.37 x 10-9 LINCO2513, TBC1D1 

rs16850400 T/C 0.40 0.049 0.60 0.049 2.39 x 10-6       --- 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309194doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309194


9 

 

 Note. MAF minor allele frequency, freq genotype frequency, bJ beta from the conditional analysis, pJ 196 

GC - p values from the conditional analysis. 197 

Replication phase in Asian Indian cohort 198 

The DMSDC GWAS plots are shown in Supplementary Figures 5 and 6. The genome-wide search for 199 

SNPs in the DMDSC cohorts found two highly correlated SNPs in Chromosome 6. Table 2 shows the 200 

details of these SNPs: rs17330192 (p=1.8 x 10-8), and rs139801819 (p=2.4 x10-8) were introns found 201 

near the non-coding region of LOC102724591 (the RNA gene). Heritability estimated in the Indian 202 

population was 8.7% (SD: 0.07). During the replication effort, a reversal of SNP effects was noted 203 

(Table 3), and rs3826331 (T/C) remained statistically significant but with a reversed effect as a trait-204 

increasing allele (Beta =0.06, p=1.5 x 10-6). We were unable to replicate rs6841652 (p=0.06) and 205 

rs16850400 (p=0.08) in the DMDSC cohort. Arguably, the MAF was relatively common in both 206 

ancestries and therefore would not have been the reason for non-replication.  207 

Table 2. Estimates of SNP associations with NLR from the replication analysis in the DMDSC 208 

(n=8,164)  209 

rsid chr: Pos Genotype MAF Beta p I2 Gene 

rs3826331 17:38150492 T/C 0.39 0.06 1.5x 10-6 0.77 PSMD3 

rs6841652 4:38363262 T/C 0.39 0.02 0.06 0 LINCO2513, TBC1D1 

rs16850400 4:74927915 T/C 0.43 -0.02 0.08 0 --- 

Note. MAF minor allele frequency, chr: pos chromosome to position, I2 - heterogeneity index 210 

indicating the percentage of variation across studies 211 

Fixed effects trans-ancestry meta-analysis phase 212 

The final sample size for the FE trans-ancestry meta-analysis was 29,317, and the SNP associations 213 

are shown in Supplementary Figures 6-7. We identified two novel SNPs in Chromosome 4 and 8: 214 

rs1825819 (p=2.0x10-9) and rs2980871 (p=4.6x10-8) respectively (Table 3). The genomic inflation 215 

factor post-correction was 1.07. Regional plots show that both chromosome 17 and chromosome 19 216 
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had many SNPs in high linkage disequilibrium (Supplementary Figures 8-12). Conversely, 217 

chromosome 8 and chromosome 4 had very few highly correlated SNPs.  218 

In the FE trans-ancestry analysis, all the lead SNPs were found to be in the non-coding regions. 219 

Four lead SNPs were found statistically to be significant, of which rs2227322 had the highest trait-220 

increasing effect size (0.07, p=4.12x10-20). This UTR5 variant was located on chromosome 17 in 221 

the CSF3 gene. This gene was responsible for granulocyte synthesis and also cytokine-related 222 

inflammatory responses (https://www.ncbi.nlm.nih.gov/gene/1440). The second notable SNP was 223 

rs4808047 on Chromosome 19 (-0.07, p=5.93x10-12) in the EPS15L1 gene and had the lowest 224 

MAF (0.28) among the lead SNPs.  SNP rs2980871 in Tribbles homolog 1 (TRIB1) was another 225 

interesting finding. In mouse models, TRIB1 expression affects hepatic lipid synthesis and 226 

glycogenesis.40 On chromosome 4, rs1825819 with a MAF of 0.38 was found to be associated with 227 

NLR (-0.05, 2.00x10-9). However, there were no known previous phenotype associations or 228 

functions identified for this specific SNP, making it a novel locus for NLR. The sentinel SNPs 229 

identified in the trans-ancestry meta-analysis generally showed a consistent direction in terms of 230 

their effects, except for the SNP rs1825819. The direction of this SNP was trait-increasing in the 231 

Broad array and reversed for other cohorts. 232 

Figure 1 shows the significant genes in the trans-ancestry meta-analysis, in the gene-based test, 233 

CLECL1 (chromosome 12), GSDMA (chromosome 17), CSF3 (chromosome 17), PSMD3 234 

(chromosome 17), MED24 (chromosome 17), THRA (chromosome 17), CTD-3222D19.2 235 

(chromosome 19), EPS15L1 (chromosome 19), CALR3 (chromosome 19), CHERP (chromosome 19), 236 

CTC429P9.4 (chromosome 19), MED26 (chromosome 19), and SLC35E1 (chromosome 19) were 237 

identified. CLECL1 on chromosome 12 was another important gene that was identified.  Among the 238 

13 genes reported in the gene-based test, GSDMA, CLECL1, CALR3, and SLC35E1 did not have any 239 

functional relationships with other genes in the network analysis. No gene interaction or pathway 240 

information was available for the genes CTD-3222D19.2 and CTC429P9. 241 

 242 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309194doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309194


11 

 

 243 

Figure 1. Manhattan plot and (left) Q-Q plot (right) corresponding to the gene set analysis from the 244 

trans-ancestry GWAS summary (n= 29,317) Note: The SNPs corresponded to 9528 protein coding 245 

genes, the genome-wide significance threshold (red dashed line in the plot) was established at P = 246 

0.05/9528 = 5.248e-6. 247 

Table 3. Lead SNPs identified from trans-ancestry inverse variance meta-analysis of Scottish and 248 

Indian Cohorts (n=29,317) 249 

 

rsid 

 

chr: Position 

 

Genotype 

 

MAF 

 

Beta 

 

p 

 

I2 

 

Location 

 

Nearest Locus 

rs1825819 4:38340430 T/C 0.38 -0.05 2.00x10-9 0.63 -- -- 

rs2980871 8:126488930 A/G 0.50 0.04 4.64x10-8 0 intron TRIB1, LINC00861 

rs2227322 17:38171668 C/G 0.45 0.07 4.12x10-20 0 UTR5 CSF3 

rs4808047 19:16527834 T/C 0.28 -0.07 5.93x10-12 0 intronic EPS15L1 

MAF minor allele frequency, chr: Position chromosome to position, I2  heterogeneity index indicating 250 

the percentage of variation across studies 251 

The independent SNPs identified in the discovery set also remained statistically significant in the FE 252 

tran-ancestry analysis. Supplementary Figure 13 illustrates the details of the number of SNPs and 253 

genes in the important genomic loci in the meta-analysis. Tissue-wise differential gene expression 254 

analysis showed that the genes were generally upregulated in the adrenal glands, whole blood, and 255 

multiple regions of the brain (Supplementary Figure 14). However, these did not surpass the statistical 256 

significance threshold. Gene expression for nine selected significant genes from the gene-based 257 
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analysis is plotted in Supplementary Figure 15. PSMD3, the major gene in our analysis, along with 258 

MED24 and KLF2, had a wider gene expression for all the tissues explored in the GTEx v8 dataset. 259 

CSF3 had an increased expression level in adipose tissue, fibroblasts, the pituitary, the prostate, the 260 

fallopian tubes, and musculoskeletal tissue. GSMDA expressions were significant only in two tissues, 261 

both relating to skin. Other genes, CHERP, KLF2, MED24, PSMD3, and THRA, showed heightened 262 

expression levels in an overlapping manner for a wide variety of tissues. Significant overlap in gene 263 

enrichment was seen in chromosomes 17 and 19 (Supplementary Figure 16). In the gene set analysis, 264 

for the 10 leading pathways, only the potassium ion transport pathway remained significant after 265 

applying the Bonferroni correction (Supplementary Table 5). 266 

We also explored the network of genes closest to the significant SNPs in the trans-ancestry meta-267 

analysis (Supplementary Figure 17). The network analysis of significant genes in the trans-ancestry 268 

meta-analysis revealed evidence of high co-expression (56.34%), physical interaction (25.35%), and 269 

common pathways (13.44%). For the construction of the best-fit PRS, we used 74,377 of 55,333,12 270 

variants using the clumping and thresholding (C+T) method for SNP thinning (Supplementary Figures 271 

18-19). The strata plot indicates a dose-response relationship between allele scores and the phenotype, 272 

although this was not discernible in the two uppermost quantiles (Figure 2). The gender-wise 273 

distribution of NLR and PRS is shown in Supplementary Figure 20.  274 

 275 
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 276 

Figure 2. Strata Plot for the NLR PRS in SHARE. Note: The plot illustrates the change in the 277 

computed PRS for NLR on the x-axis and the values of NLR on the y-axis. The blue dot represents 278 

the point estimates, and the lines represent the upper and lower 95% confidence intervals for the 279 

change in NLR corresponding to the PRS. In general, the NLR phenotype increases with the predicted 280 

PRS scores, indicating that PRS can adequately explain the individual variation of the NLR. 281 

Competing risks analyses 282 

In the SHARE cohort (n=3,892), the Fine and Gray model did not indicate any statistically significant 283 

association with DR (n=1,610) in both adjusted and unadjusted models (Supplementary Table 6). 284 

There were 184 competing events, and the mean follow-up time was 4.8 years.  The adjusted 285 

subhazards for NLR PRS with DR were 1.01 (95% CI: 0.97, 1.06, p=0.48). Thus, PRS for NLR may 286 

not be useful for predicting the long-term manifestation of diabetic retinopathy. 287 

Mendelian randomization analysis for DR using NLR allele scores 288 

The regression coefficient between the phenotype and PRS was statistically significant at 0.11 289 

(p=3.41x10-15) (Supplementary Figure 21). The PRS predicted only 1.2% of the NLR variation, which 290 

improved to 3.5% after the addition of age and sex (Supplementary Table 7). We analysed 3,561 291 
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Scottish individuals (Supplementary Figures 22-23) with data on PRS, NLR, and diabetic retinopathy 292 

for the MR analysis, of which 1,537 (43.1%) had DR. The F-statistic indicates a strong relationship 293 

between the PRS and NLR (close to 60), even after adjusting for the effects of age and sex. The 294 

results from the MR analysis are given in Figure 3. The estimates were very similar between the 295 

models. Logistic-linear and TSPS estimated a non-significant effect (n= 3,561, beta = 0.22, 95% CI: -296 

0.25, 0.70, p=0.35). For the Cox IV method (n=3,081, DR=1216), The mean follow-up time was 4.8 297 

years.  Again, there were no statistically relevant findings between a unit change in the PRS and 298 

hazards for DR (-0.15, 95% CI: -0.65, 0.34, p=0.55). Overall, our analysis provided no evidence of a 299 

causal association between genetically determined levels of NLR and DR. 300 

 301 

Figure 3. MR analysis of NLR allele score with any DR. Note. Log-linear Logistic linear, TSRI two-302 

stage residual inclusion, TSPS two-stage predictor substitution, IV Instrumental Variable, SE standard 303 

error, CI confidence interval 304 
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Discussion 305 

Our study found a divergence in the genetic architecture of NLR between South Asians and white 306 

Europeans. South Asian populations are generally underrepresented in genetic studies of NLR, and 307 

the present results may cover this gap.  In general, white Europeans had a much higher NLR relative 308 

to other ancestries.41 The heritability estimates (h2) in our work also reflect this disparity. Our 309 

heritability estimates almost matched  those in the previous Dutch twins’ study.42 White blood cells 310 

are genetically determined; an example is  the Duffy-Null polymorphism among the African 311 

population arising due to selection pressures.43  312 

     Remarkably, NLR was significantly correlated with multiple inflammatory markers such as CRP 313 

and IL6, but not platelet-lymphocyte ratio (PLR), implying that the variation of WBC ratios could 314 

provide biological insights.42 Overall, some important genes are associated with white blood cell-315 

related traits, but not specifically with the NLR. Chromosome 17q21 contains many genes that exert 316 

substantial pleiotropic effects across different WBC subcomponents and is highly expressed in 317 

inflammatory disorders such as asthma and diabetes. 44,45 Given diabetes and inflammation, there was 318 

evidence of PSMD3 involvement through insulin resistance and receptor tyrosine kinase (RET) 319 

signalling, respectively.46–49 CSF3, MED24, and PSMD3 genes were reported together to influence 320 

neutrophil counts in a Bayesian meta-analysis involving multiple ancestries.50 Similarly, GSDMA, 321 

THRA, EPS15L1, CALR3, CHERP, and MED24 were also associated with multiple white blood cell 322 

types, including neutrophils and lymphocytes.45 Importantly, the rest of the significant genes; 323 

CTC429P9.4, CTD3222D19.2, and SLC35E1, do not seem to have a direct link with white blood cell 324 

physiology and are therefore novel findings that merit further mechanistic studies. Another novel 325 

NLR  gene was CLECL1, which takes part in the T lymphocyte pathway but is also differentially 326 

expressed in clusters of inflammatory conditions such as diabetes mellitus and dyslipidemia.51  327 

    We replicated rs6841652 of the LINCO2513/TBC1D gene. This SNP was also associated with 328 

monocyte-lymphocyte ratio and multiple SNPs, that could be traced back to the same genes were 329 

significant for NLR.52 We were also able to detect associations with the thyroid hormone receptor 330 

gene (THRA) that were previously reported for NLR in the Korean population.53 The complex cross-331 
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talk between thyroid hormones and immune cells is vital for the proper regulation of inflammatory 332 

activity.54 Most genes from the gene-based set were related in varying degrees, as elicited in the 333 

network analysis. Moreover, the gene set analysis overwhelmingly showed affinity for the potassium 334 

ion transportation pathway.  335 

One of  the strengths of the study is that, we did not transform the NLR as opposed to previous studies 336 

53,55 As data transformation could rasie concerns of reduced  statistical power and ease of beta 337 

interpretation.56 A summarized NLR could override possible bias arising from health conditions, 338 

outliers, and other unusual deviations from the original phenotype for accurate genome-wide 339 

scanning.  We further refined the SNP results in each ancestry to identify independent SNPs free from 340 

LD. To our knowledge, this is the first study that details the generation of an allelic summary score 341 

for NLR and uses it for a causal analysis for DR. We could not replicate the NLR association for DR 342 

in the observational study using the PRS.57–59 The high F statistics for the IV-phenotype relation do 343 

not completely eliminate the possibility of bias.60 It is also possible that the NLR is regulated at a 344 

more downstream level by several competing inflammatory pathways or environmental stimuli. 345 

Therefore, the current findings may not be sufficient to rule out the role of inflammation in DR. The 346 

major limitation was that a substantial proportion of the dataset was used to train the PRSice-2 347 

algorithm, leaving a much smaller sample to investigate DR. Due to ancestry differences, PRS and 348 

subsequent analysis were conducted only in the Scottish cohorts. Finally, our one sample MR analysis 349 

is relatively less powerful compared to a two-sample MR.61,62 Additional studies are required to 350 

understand the genetic mechanisms influencing the NLR between ancestrally diverse populations and 351 

subpopulations. 352 

Conclusion 353 

In summary, we report multiple novel intergenic SNPs associated with the NLR in addition to those 354 

identified for WBC previously and most of the identified SNPs were in the intergenic regions. There 355 

was no evidence to suggest causality between systemic inflammation represented by NLR and DR. In 356 

the context of chronic diseases, our findings may provide insights into inflammatory pathways to 357 

develop better strategies to deal with inflammatory outcomes. 358 
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Availability of data and materials:  359 

The Scottish and DMDSC datasets are stored electronically in a secure environment. The data is not 360 

currently available in the public domain as the participant consent restricts the public sharing of the 361 

data. Researchers will require prior approval from the HIC and DMDSC for accessing the related 362 

datasets. 363 

 364 

Abbreviations 365 

BMI                    Body Mass Index 

CI 

CIF 

Confidence Interval 

Cumulative Incidence Function 

chr: Position Chromosome to Position 

CURES            Chennai Urban Rural Epidemiology Study  

DBP                   Diastolic Blood Pressure  

DMDSC Dr. Mohan’s Diabetes Specialties Clinics 

DR                       Diabetic Retinopathy 

eGFR                 Estimated Glomerular Filtration Rate 

FE Fixed Effects 

FGR 

FUMA 

Fine and Gray model 

Functional Mapping aand Annotation of Genome-wide Association 

Studies 

GCTA Genome-wide Complex Trait Analysis 

GIF Genomic Inflation Factor 

GoDARTS Genetics of Diabetes Audit and Research in Tayside Scotland 

HbA1c               Glycated Haemoglobin  

HDLc High-density lipoprotein cholesterol 

HIC Health Informatics Centre 
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HRC Haplotype Reference Consortium 

HWE Hardy-Weinberg Equilibrium 

LD Linkage Disequillibrium 

LDL-C               Low-density Lipoprotein -Cholesterol  

MAGMA Multi-marker Analysis of GenoMic Annotation 

MDRF Madras Diabetes Research Foundation 

NLR                    Neutrophil Lymphocyte Ratio 

Non-HDL-C      Non–high-density Lipoprotein Cholesterol 

PLR Platelet-lymphocyte ratio 

PRS Polygenic Risk Score 

RET Receptor Tyrosine Kinase 

SBP                    Systolic Blood Pressure 

SD                      Standard Deviation 

SHARE Scottish Health Research Register 

SE Standard Error 

sHR                  Sub Hazard Ratio 

SNP Single Nucleotide Polymorphisms 
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