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Abstract 89 

Cigarette smoking is associated with numerous differentially-methylated genomic loci in 90 

multiple human tissues. These associations are often assumed to reflect the causal effects of 91 

smoking on DNA methylation (DNAm), which may underpin some of the adverse health 92 

sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have 93 

found limited support for such effects. Here, we apply an integrated approach combining MR 94 

with twin causal models to examine causality between smoking and blood DNAm in the 95 

Netherlands Twin Register (N=2577). Analyses revealed potential causal effects of current 96 

smoking on DNAm at >500 sites in/near genes enriched for functional pathways relevant to 97 

known biological effects of smoking (e.g., hemopoiesis, cell- and neuro-development, and 98 

immune regulation). Notably, we also found evidence of reverse and bidirectional causation at 99 

several DNAm sites, suggesting that variation in DNAm at these sites may influence smoking 100 

liability. Seventeen of the loci with putative effects of DNAm on smoking showed highly 101 

specific enrichment for gene-regulatory functional elements in the brain, while the top three sites 102 

annotated to genes involved in G protein-coupled receptor signalling and innate immune 103 

response. These novel findings are partly attributable to the analyses of current smoking in twin 104 

models, rather than lifetime smoking typically examined in MR studies, as well as the increased 105 

statistical power achieved using multiallelic/polygenic scores as instrumental variables while 106 

controlling for potential horizontal pleiotropy. This study highlights the value of twin studies 107 

with genotypic and DNAm data for investigating causal relationships of DNAm with health and 108 

disease. 109 

 110 
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Introduction  115 

 116 

Epigenome-wide association studies (EWASs) identify variation in DNA methylation (DNAm) 117 

associated with complex human traits and diseases [1]. Arguably, the most successful EWASs 118 

have been studies of cigarette smoking. A large-scale EWAS meta-analysis of current versus 119 

never smoking revealed significant DNAm differences at 18,760 CpG (Cytosine-phosphate-120 

Guanine) sites in peripheral blood cells [2]. DNAm differences between former- and never-121 

smoking individuals were diminished but remained significant at 2,568 sites. Genes annotated to 122 

the differentially methylated CpGs have been implicated in genome-wide association studies 123 

(GWAS) of numerous smoking-associated traits, including cancers, lung functions, 124 

cardiovascular disorders, inflammatory disorders, and schizophrenia [2].  125 

 126 

As standard cross-sectional EWAS in unrelated individuals cannot differentiate between 127 

causation and confounding [3], different etiological mechanisms may underlie the associations 128 

between cigarette smoking and DNAm. These associations are typically interpreted as the causal 129 

effects of smoking exposure on DNAm. However, some smoking-associated CpGs may have 130 

reverse or bidirectional causal links with smoking, i.e., DNAm may reciprocally affect the 131 

development and maintenance of smoking behaviours [4]. Moreover, associations between 132 

smoking and DNAm may be attributable to confounders, such as schizophrenia [5], alcohol [6] 133 

and cannabis use [7] and body mass index [8].  134 

 135 

Mendelian Randomisation (MR) analyses use genetic variants as instrumental variables (IVs) to 136 

estimate causal effects [3,9]. MR analyses have identified the effects of lifetime (current or 137 

former) smoking on blood DNAm at only 11 CpGs [10], with reverse effects of blood DNAm at 138 

nine sites [11]. Causal inference in MR is based on the assumption that the genetic variants 139 

associated with the exposure influence the outcome exclusively through the exposure. 140 

Specifically, genetic IVs for smoking may show vertical, but not horizontal, pleiotropy with 141 

DNAm. To minimise the risk of horizontal pleiotropy, MR analyses require carefully selected 142 

single-nucleotide polymorphisms (SNPs), including using genetic colocalisation to filter out 143 

SNPs showing horizontal pleiotropy due to linkage disequilibrium (LD). Since SNPs usually 144 

have small effect sizes, traditional MR approaches may have limited power to detect causality 145 

and may be subject to weak-instrument bias [12]. Furthermore, causal inference in standard, 146 

summary-statistics-based MR analyses typically applies to the GWAS phenotype of lifetime 147 

smoking. However, as most smoking-associated DNAm changes exhibit substantial reversibility 148 

upon smoking cessation [2,13], it is important to examine the causal relationships of current 149 

smoking specifically. 150 

 151 
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Recent methodological developments integrate the principles of MR with the twin-based 152 

Direction of Causation (DOC) model [14], giving rise to the unidirectional MR-DoC1 [15] and 153 

the bidirectional MR-DoC2 models [16]. MR-DoC1 allows one to estimate and account for 154 

horizontal pleiotropy, while MR-DoC2 accommodates pleiotropy arising from LD. Thus, these 155 

models enable using polygenic risk scores (PRS) as IVs, increasing the statistical power to 156 

estimate causal effects and curtailing weak-instrument bias, relative to MR methods using 157 

individual SNPs as IVs. Incorporating MR with family data also helps to resolve additional 158 

assumptions of standard MR, such as random mating and no dyadic effects [15,17]. Moreover, 159 

by using participant-level information, these models estimate causal effects between the 160 

phenotypes measured in the twins, allowing separate causal models for current and former 161 

smoking.  162 

 163 

The present study used MR-DoC models to examine bidirectional causal effects between 164 

cigarette smoking and peripheral blood DNAm in a population-based cohort of European 165 

ancestry adult twins from the Netherlands Twin Register (NTR) [18,19]. The target sample 166 

included 2,577 individuals from 1,459 twin pairs with both genotypic and DNAm data, and self-167 

reported smoking status at the time of blood draw. Across 16,940 smoking-related CpGs, we 168 

fitted separate models for current (versus never) and former (versus never) smoking. We 169 

obtained a set of three causal estimates in each direction (Smoking → DNAm, DNAm → 170 

Smoking): the estimates from bidirectional MR-DoC2, and two different model specifications of 171 

unidirectional MR-DoC1 (Figure 1). We triangulated evidence across the three models based on 172 

the statistical significance and consistency of the causal estimates. The results indicated much 173 

more widespread putative causal influences of current smoking on DNAm than vice versa. 174 

Follow-up enrichment analyses highlighted biological processes and tissues relevant to the CpGs 175 

with potential effects in either direction of causation.  176 

  177 

 178 
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Figure 1. Study Design.  180 

Overview of the data and MR-DoC models used to examine the causality between cigarette smoking and blood DNA methylation (DNAm) in the 181 

Netherlands Twin Register. The models were fitted separately for current (versus never) and former (versus never) smoking. Applying the five MR-182 

DoC models shown in the path diagrams, we obtained a set of three causal estimates in each direction of causation: Smoking (Smk) → DNAm (the 183 

blue paths labelled g1) and DNAm → Smoking (the red paths labelled g2).  184 

In each MR-DOC model, the residual variance of each phenotype (smoking status liability and DNAm levels) is decomposed into latent additive 185 

genetic (A) and unique environmental (E) factors. The correlation between the latent A factors of smoking and DNAm (rA) represents confounding 186 

due to additive genetic factors, while that between the latent E factors (rE) represents confounding due to unique environmental factors. Note that 187 

these models did not include shared environmental (C) variance components, as the AE model was found to be the most parsimonious in univariate 188 

twin models (see Supplementary Methods). 189 

Note. For better readability, the path diagrams show only the within-individual part of the models fitted to data from twin pairs. The 190 

squares/rectangles indicate observed variables, the circles indicate latent (unobserved) variables, the single-headed arrows indicate regression 191 

paths, and the double-headed curved arrows indicate (co-)variances. 192 
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Methods 193 

Study Sample 194 

We analysed data from 706 monozygotic (MZ) twin pairs, 412 dizygotic (DZ) twin pairs, and 195 

341 individuals without their co-twin. The participants, 1,730 (67%) females and 847 (33%) 196 

males, were aged 18–79 (mean 35.2; S.D. 11.7 years) at the time of blood draw. Sample and 197 

variant quality control (QC) of genotypic data, imputation, genetic principal component analysis 198 

(PCA), and ancestry-outlier pruning have been described previously [20], and reviewed in 199 

Supplementary Methods. Since the summary statistics of methylation quantitative trait loci 200 

(mQTLs) were available for European ancestry only [21], we excluded 109 participants 201 

identified as European-ancestry outliers to avoid bias due to ancestry mismatch.  202 

 203 

The NTR is approved by the Central Ethics Committee on Research Involving Human Subjects 204 

of the VU University Medical Centre, Amsterdam, an Institutional Review Board certified by the 205 

U.S. Office of Human Research Protections (IRB number IRB00002991 under Federal-wide 206 

Assurance- FWA00017598; IRB/institute codes, NTR 98-222, 2003-180, 2008-244). All 207 

participants provided written informed consent before data collection. 208 

Peripheral Blood DNA Methylation and Cell Counts 209 

Epigenome-wide DNAm in peripheral whole blood was measured with the Infinium 210 

HumanMethylation450 BeadChip Kit (“Illumina 450k” microarray), following manufacturer’s 211 

protocol [22]. DNAm data QC and normalisation were performed using a custom pipeline 212 

developed by the BIOS (Biobank-based Integrative Omics Study) Consortium [23] 213 

(Supplementary Methods). In the current analyses, only autosomal probes were included, 214 

yielding 411,169 CpGs that passed QC, of which 16,940 sites were associated with current 215 

smoking (FDR <0.05) in a previous independent EWAS [2] (hereafter called the “smoking-216 

associated CpGs”). These CpGs were analysed in the MR-DoC1 models for Current Smoking → 217 

DNAm (Figure 2). Likewise, 2,330 autosomal, post-QC CpGs, previously associated with former 218 

smoking [2] (hereafter called the “former-smoking-associated CpGs”), were analysed in the MR-219 

DoC1 models for Former Smoking → DNAm. Differential white blood cell counts were also 220 

measured in the blood samples [23]. 221 

 222 

The normalised β-values of DNAm at each CpG were residualised by regressing out age, sex 223 

(genotypically inferred biological sex, matched with self-reported sex), measured white blood 224 

cell percentages (neutrophils, monocytes, and eosinophils), HM450k array row, and bisulfite 225 

sample plate [24]. The residuals were standardised (mean = 0, S.D. = 1). As in the previous NTR 226 
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work [24], we excluded lymphocyte percentage as a covariate, given its multicollinearity with 227 

neutrophil percentage. We excluded basophil percentage because of its low variance.  228 

  229 
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 230 

Figure 2. Selection of CpGs tested in each MR-DoC model. 231 

Previous independent EWAS meta-analysis of cigarette smoking [2] examined DNA methylation 232 

(DNAm) at CpGs from the Illumina HumanMethylation450 BeadChip array [22], which was also 233 

used to measure DNAm in the NTR biobank. In the unidirectional MR-DoC1 models for Smoking 234 
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→ DNAm, we included autosomal CpGs associated with smoking in the EWAS meta-analysis 235 

that also passed the QC metrics in NTR. The MR-DoC1 models for DNAm → Smoking and the 236 

bidirectional MR-DoC2 models were restricted to a subset of these sites having cis-mQTL 237 

summary statistics from the GoDMC [21] and a resulting mQTL allelic score with F-statistic 238 

>10. 239 

  240 
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Cigarette Smoking 241 

Self-reported cigarette smoking status was recorded during blood sample collection in 2004-242 

2008 and 2010-2011 (Supplementary Methods), with the question, “Do you smoke?” with 243 

three response options: “No, I never smoked” (N = 1,492), “No, but I did in the past” (N = 549), 244 

and “Yes” (N = 528). The responses were checked for consistency with data from the 245 

longitudinal NTR surveys and plasma cotinine levels (Supplementary Methods). 246 

Instrumental Variables 247 

mQTL allelic scores. We used a weighted sum of DNAm-increasing alleles at cis-mQTLs 248 

(“mQTL allelic score”) as the IV for DNAm, computed using clumping and thresholding in 249 

PLINK1.9 [25] (Supplementary Methods). Of the 16,940 smoking-associated CpGs, 12,940 250 

had summary statistics for cis-mQTLs available from the Genetics of DNA Methylation 251 

Consortium (GoDMC; excluding NTR) [21] (Figure 2). We used only cis-mQTLs, i.e., SNPs 252 

within 1Mb of the CpG, given that SNPs located close to the CpG are likely to be associated 253 

with smoking via DNAm. To further guard against potential horizontal pleiotropy with smoking, 254 

we relied on the consistency of the causal estimates in MR-DoC models accommodating 255 

horizontal pleiotropy. To reduce the risk of weak-instrument bias, we restricted the MR-DoC1 256 

models for DNAm → Current Smoking and the bidirectional MR-DoC2 models to 11,124 257 

(65.7%) CpGs having an mQTL allelic score with F-statistic >10 (Figure 2). The included 258 

mQTL allelic scores had an incremental R2 for the respective CpG site ranging from 0.43% to 259 

76.95% (mean 9.04%, S.D. = 10.94%). Similarly, a subset of 1,782 (76.5%) former-smoking-260 

associated CpGs had mQTL allelic scores with F-statistic >10 and were examined in the MR-261 

DoC1 models for DNAm → Former Smoking and the bidirectional model (MR-DoC2). 262 

  263 

PRS of Regular Smoking Initiation. We used a PRS of lifetime regular-smoking initiation as the 264 

IV for smoking status, computed using LDpred v0.9 [26] with European-ancestry GWAS 265 

summary statistics [27] (Supplementary Methods). This PRS had an incremental liability-scale 266 

R2 of 5.07% (F-statistic = 73.2) for current versus never smoking, and 2.02% (F-statistic = 28.8) 267 

for former versus never smoking. The smoking phenotypes in MR-DoC models differed from the 268 

GWAS phenotype (smoking initiation = current/former versus never smoking). However, in 269 

these causal models, the strength of the IV, the extent of horizontal pleiotropy with DNAm, and 270 

the estimated causal effects on DNAm apply to the smoking phenotype operationalised in the 271 

target data.  272 

 273 

We residualised the smoking PRS and all mQTL allelic scores for the genotyping platform and 274 

the first ten genetic PCs, and standardised the residuals (mean = 0, S.D. = 1). 275 
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MR-DoC Models 276 

Causal inference in twin data leverages the cross-twin cross-trait correlations to estimate the 277 

direction and magnitude of potential causal effects between traits [14]. On the other hand, MR 278 

analyses rely on the assumptions that the IV is (1) associated with the exposure (“relevance”), (2) 279 

not correlated with any omitted confounding variables (“exchangeability”), and (3) independent 280 

of the outcome, given the exposure (“exclusion restriction”) [3,28].  Here, we used the criterion 281 

of F-statistic >10 to identify “relevant” IVs. Further, genetic variants are assumed to satisfy the 282 

“exchangeability” assumption, given Mendel’s laws of random segregation and independent 283 

assortment. The “exclusion restriction” assumption for a genetic IV implies no horizontal 284 

pleiotropy with the outcome. Here, we applied different MR-DoC models (Figure 1) to account 285 

for possible horizontal pleiotropy. MR-DoC1 accommodates horizontal pleiotropy under the 286 

assumption of no confounding due to unique environmental factors. The alternative specification 287 

of MR-DoC1 accommodates unique environmental confounding (parameter “rE” in Figure 1), 288 

given the assumption of no horizontal pleiotropy [15]. In both cases, the model includes 289 

confounding due to genetic and shared environmental influences on the exposure and the 290 

outcome. In MR-DoC2 models, we estimated bidirectional causal effects by including the 291 

smoking PRS and the mQTL allelic score, allowing the two IVs to covary [16]. Beyond the 292 

causal effects between smoking and DNAm, the covariance between the PRS and the mQTL 293 

allelic score may arise from several sources, including shared pleiotropic SNPs, LD between the 294 

constituent SNPs, and population structure. By accommodating these sources of covariance, MR-295 

DoC2 may help reduce potential biases in the causal estimates.  296 

 297 

The MR-DoC models were fitted in the OpenMx package (v2.21.8) [29] in R (v4.3.2), using the 298 

code from the original publications [15,16] (Supplementary Methods). Binary smoking status 299 

was examined in the liability threshold model [30], so the causal estimate is interpreted as the 300 

effect of the underlying smoking liability rather than smoking exposure. Age and sex were 301 

included in the model as covariates of smoking status. For each set of causal estimates across 302 

CpGs (Figure 1), we calculated the Bayesian genomic inflation factor (λ) using the R package 303 

bacon [31], made QQ plots using the R package GWASTools [32], and applied Benjamini-304 

Hochberg FDR correction [33] to the p-values. 305 

Functional Enrichment Analyses 306 

We used Metascape (v3.5.20240101) [34] to perform gene-set annotation and functional 307 

enrichment analyses of the CpGs with potential causal effects in either direction 308 

(Supplementary Methods). The input list of gene IDs was selected based on proximity to the 309 

CpGs with consistent and nominally significant (p<0.05) estimates in all three models. 310 
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Furthermore, to explore the tissue-specific functional relevance of the implicated CpGs, we 311 

performed eFORGE 2.0 (experimentally derived Functional element Overlap analysis of 312 

ReGions from EWAS) analyses [35–37]. We examined the overlap between the implicated CpGs 313 

and multiple comprehensive reference sets of tissue-/cell type-specific gene regulatory genomic 314 

and epigenomic features, including chromatin states, histone marks, and DNase-I hotspots 315 

(Supplementary Methods).  316 

 317 

 318 

   319 
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Results 320 

Exemplar: Putative causality between current smoking and AHRR DNAm 321 

To illustrate the three MR-DoC models, we first present the results for two CpGs (cg23916896 322 

and cg05575921) in the Aryl-Hydrocarbon Receptor Repressor (AHRR) gene, with well-323 

established DNAm associations with cigarette smoking [2]. 324 

  325 

For probe cg23916896 (Supplement Figure S1A), the mQTL allelic score had an incremental 326 

R2 of 8.03% (F-statistic = 156.4). The MR-DoC models indicated that higher liability for current 327 

smoking likely causes hypomethylation of cg23916896, with statistically significant (FDR 328 

<0.05), consistently negative causal estimates in all three models. The reverse effect of 329 

cg23916896 methylation on the liability for current smoking had consistent negative estimates. 330 

However, the estimates were significant at FDR <0.05 in MR-DoC1 with horizontal pleiotropy, 331 

but only nominally significant (p <0.05) in the other two models. Taken together, these results 332 

provide robust evidence for current smoking’s causal effects on cg23916896 methylation, with 333 

suggestive evidence for reverse causation. Previous MR studies have not examined this CpG site, 334 

as these studies focused on a few pre-selected sites [10,11]. Our results indicate a potential 335 

bidirectional causal relationship between cigarette smoking and cg23916896, i.e., smoking-336 

induced hypomethylation at this locus may reciprocally increase smoking liability. 337 

  338 

In comparison, probe cg05575921 had an mQTL allelic score with an incremental R2 of 1.74% 339 

(F-statistic = 31.6). Similar to cg23916896, the effect of current smoking liability on 340 

cg05575921 methylation was consistently negative, with FDR <0.05 in all three models 341 

(Supplement Figure S1B). This aligns with the previously reported negative, albeit non-342 

significant, effect of lifetime smoking [10]. For the reverse effect of cg05575921 methylation on 343 

smoking liability, the estimates were negative in all three models, though statistically significant 344 

only in MR-DoC1 with horizontal pleiotropy. Notably, the estimates for cg05575921 are 345 

comparable to those for cg23916896, but have larger standard errors, likely due to the weaker IV 346 

of the former (mQTL allelic score). This variability in the precision of the causal estimates 347 

underscores the differences in the strength of the IV across CpGs and, consequently, the power 348 

to estimate their causal effect on smoking. 349 

 350 
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Evidence of more widespread effects of current smoking on DNAm than vice 351 

versa 352 

We used genomic inflation factor, λ, to evaluate potential widespread, small causal effects of 353 

current smoking on DNAm. Across the smoking-associated CpGs, MR-DoC1 including 354 

horizontal pleiotropy (rE = 0) had λ = 1.44, while MR-DoC1 with unique environmental 355 

confounding, but no horizontal pleiotropy, showed λ = 1.20. For comparison, fitting similar 356 

models epigenome-wide showed less inflation (λ = 0.98 and λ = 1.09, respectively), suggesting 357 

enrichment of low p-values among the smoking-associated CpGs, as also reflected in the QQ 358 

plots (Supplementary Figures S2-S3). The epigenome-wide inflation is consistent with that for 359 

cigarettes per day (λ >1.1), as seen in prior two-sample MR analyses [21]. In MR-DoC2 models, 360 

the estimated reverse effects of DNAm on current smoking showed little inflation (λ = 1.01) 361 

compared to current smoking’s effects on DNAm in the same model (λ = 1.20; Supplementary 362 

Figures S4-S5). These findings suggest that the causal influences of current smoking on DNAm 363 

contribute partly to the previously reported EWAS hits. However, for the reverse effects of 364 

DNAm on current smoking, the absence of λ inflation does not preclude potential localised small 365 

effects, albeit at fewer CpGs.  366 

  367 

There was considerable variability in the number of CpGs with statistically significant causal 368 

estimates across models (Figure 3; top panel), with a relatively higher number of significant 369 

estimates in MR-DoC1 with horizontal pleiotropy, likely due to its higher power [38]. Looking at 370 

the intersection of significant Current Smoking → DNAm estimates across models, 259 CpGs 371 

showed FDR <0.05 in at least two models, while 64 sites showed FDR <0.05 in all three models. 372 

These 64 sites also showed a consistent direction of effect in all models (Supplementary Figure 373 

S6, Table S1). Thus, we considered these 64 CpGs to exhibit robust evidence for current 374 

smoking’s effects on DNAm, including hypomethylation of 59 sites and hypermethylation of the 375 

other five (Figure 3; bottom panel). These CpGs annotate to several top genes implicated in 376 

prior EWAS of smoking [2], including hypomethylation of CpGs in/near AHRR, ALPPL2, 377 

CNTNAP2, and PARD3 and hypermethylation of CpGs in MYO1G. Only one of these 64 CpGs 378 

lies within the major histocompatibility complex (MHC) region: cg06126421 (near HLA-DRB5). 379 

Due to its complex LD structure, the causal estimates of the sites in the MHC region should be 380 

interpreted with caution.  381 

 382 
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Figure 3. Putative Causal Effects of Current Smoking on Blood DNA Methylation in MR-385 

DoC Models 386 

The top panel shows an UpSet plot of the intersection of CpGs with statistically significant (FDR 387 

<0.05) estimates of Current Smoking → DNAm in the three MR-DoC models. The matrix 388 

consists of the models along the three rows and their intersections along the columns. The 389 

horizontal bars on the left represent the number of CpGs with significant (FDR <0.05) causal 390 

estimates in each model. The vertical bars represent the number of CpGs belonging to the 391 

respective intersection in the matrix. A similar UpSet plot with Bonferroni correction is shown in 392 

Supplementary Figure S7. 393 

The bottom panel shows a Miami plot of the Current Smoking → DNAm causal estimates across 394 

16,940 smoking-associated CpGs. The X-axis shows the genomic positions of the CpGs aligned 395 

to Genome Reference Consortium Human Build 37 (GRCh37). The Y-axis shows the Z-statistic 396 

of the estimated effect of the liability for current (versus never) smoking on (residualised and 397 

standardised) DNA methylation b-values in the MR-DoC1 model with unique environmental 398 

confounding (rE). The solid points indicate the 64 sites with significant causal estimates (FDR 399 

<0.05) in all three models (i.e., the blue vertical bar in the UpSet plot). The 14 CpGs with causal 400 

estimates significant after Bonferroni correction in more than one model are labelled by their 401 

respective nearest gene. 402 

Note. The data underlying these plots are in Supplementary Table S1. 403 

— 404 

 405 

  406 
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For DNAm → Current Smoking, 44 CpGs showed FDR <0.05 in at least two models, but only 407 

three CpGs had FDR <0.05 in all models (Figure 4B). The three CpGs also had consistent, 408 

positive estimates across models, suggesting that hypermethylation of CpGs in GNG7, RGS3, 409 

and SLC15A4 genes may increase smoking liability (Figure 4A). None of these sites has been 410 

previously reported to influence smoking liability [11]. 411 

Suggestive Evidence of Bidirectional Effects 412 

Of the 64 sites with robust evidence of Current Smoking → DNAm effects, three sites also had 413 

consistently negative, nominally significant (p <0.05) estimates of reverse DNAm → Current 414 

Smoking effects (Figure 4C). The three CpGs (cg23916896, cg11902777, cg01899089) are 415 

located in the AHRR gene, suggesting that current smoking may cause hypomethylation of CpGs 416 

in AHRR, which may reciprocally increase smoking liability. Among the CpGs with robust 417 

evidence of DNAm effects on current smoking, cg13078421 (GNG7) also showed consistently 418 

positive, nominally significant estimates of current smoking’s effects on DNAm. Thus, GNG7 419 

hypermethylation increases smoking liability, with a potential reverse effect of current smoking 420 

on GNG7 methylation. Additionally, 15 CpGs had consistent, nominally significant bidirectional 421 

causal estimates in all three models, though not significant after FDR correction in either 422 

direction (Supplementary Figure S9). 423 

 424 

  425 
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 426 

Figure 4. Potential reverse and bidirectional effects of blood DNA methylation on current 427 

smoking 428 

(A.) Estimates and Wald-type 95% confidence intervals of DNAm → Current Smoking causal 429 

effects in each of the three MR-DoC models: bidirectional MR-DoC2, MR-DoC1 with horizontal 430 

pleiotropic path, and MR-DoC1 with unique environmental confounding (rE). (B.) An UpSet plot 431 

of the intersection of CpGs with statistically significant (FDR <0.05) estimates of DNAm → 432 
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Current Smoking in each of the three MR-DoC models. The matrix consists of the models along 433 

the three rows and their intersections along the columns. The horizontal bars on the left 434 

represent the number of CpGs with significant (FDR <0.05) causal estimates in each model. The 435 

vertical bars represent the number of CpGs belonging to the respective intersection in the 436 

matrix. A similar UpSet plot with Bonferroni correction is shown in Supplementary Figure S8 437 

for comparison. (C.) Estimates and Wald-type 95% confidence intervals of bidirectional causal 438 

effects between current smoking and DNA methylation in the three MR-DoC models. In panels A 439 

and C, the Y-axis labels indicate the CpG probe IDs and the respective genes in which the CpGs 440 

are located. 441 

Note. The numerical data underlying these plots are in Supplementary Tables S1-S4. 442 

 443 

— 444 
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DNAm loci potentially influenced by smoking are enriched for biological 446 

processes relevant to smoking’s adverse health outcomes 447 

In follow-up functional enrichment analyses, we identified 525 CpGs with potential Current 448 

Smoking → DNAm effects (excluding 21 sites in the MHC region), based on consistent, 449 

nominally significant estimates in all models (Supplementary Table S1). The mapped genes 450 

showed extensive significant enrichment (FDR <0.05) for ontology clusters, including 451 

hemopoiesis, cell morphogenesis, inflammatory response, regulation of cell differentiation, and 452 

regulation of nervous system development, underscoring DNAm’s potential role in the adverse 453 

health sequelae of smoking (Supplementary Figures S10-S12; Tables S5-S6). In the eFORGE 454 

analyses, these sites were significantly enriched (FDR <0.05) for overlap with a wide range of 455 

gene regulatory elements in most of the tissue/cell types in reference datasets, suggesting 456 

pervasive functional consequences of smoking’s effects on DNAm (Supplementary Figures 457 

S13-S15; Tables S7-S9).  458 

CpGs with consistent effects on current smoking show enrichment for brain-459 

related gene regulatory elements 460 

We identified 64 CpGs with potential DNAm → Current Smoking effects (none in the MHC 461 

region), as indicated by consistent, nominally significant estimates across models 462 

(Supplementary Figure S16). Gene-set enrichment analyses revealed no significant functional 463 

enrichment (FDR <0.05), likely due to too few loci (Supplementary Figures S17-S18; Tables 464 

S10-S11). However, the eFORGE analyses, which use precise chromatin-based information for 465 

each CpG, showed significant enrichment (FDR <0.05) for overlap with enhancers in the brain, 466 

blood (primary B cells, hematopoietic stem cells), lung, and mesodermal embryonic stem cells 467 

(Supplementary Figures S19-S21; Tables S12-S14). These CpGs also showed significant 468 

enrichment for histone marks in multiple tissues/cell types (including the brain, blood, and lung), 469 

though the overlap with DNase-I hotspots was not significantly enriched. The tissues/cell types 470 

predicted to be relevant for DNAm’s effects on smoking liability may be prioritised for follow-471 

up functional studies. 472 

 473 

To further gauge the tissue-specificity of eFORGE enrichment, we performed iterative follow-up 474 

analyses with the CpGs overlapping with tissue/cell types of interest (Supplementary Figures 475 

S22-S24; Tables S15-S17). These analyses elucidated a subset of 17 CpGs with significant and 476 

highly specific enrichment for enhancers and histone marks (H3K4me1 and H3K4me4) in the 477 

brain (Figure 5), along with weaker enrichment for H3K4me1 in the adrenal gland and thymus. 478 

Ten of the 17 sites also overlapped with DNase-I hotspots in the brain, though the enrichment 479 

was not statistically significant (FDR = 0.08) (Supplementary Figure S25, Table S20). The 480 
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causal estimates and mapped genes of these 17 CpGs are shown in Supplementary Figure S26. 481 

Four of these CpGs also had consistent estimates of current smoking’s effects on DNAm 482 

(identified by the column “g1_nominal” in Supplementary Table S4): cg25612391 483 

(SLC25A42), cg05424060 (GNAI1), cg10590964 (near KIAA2012), and cg05877788 (TP53I13). 484 

Furthermore, prior pre-clinical and clinical studies have implicated 14 of the 17 mapped genes, 485 

including three with potential bidirectional effects, in behavioural or neurological traits, 486 

including alcohol dependence (OSBPL5) [39], cocaine use (SLCO5A1) [40], anxiety (CCDC92) 487 

[41], depression (GNAI1) [42], encephalomyopathy and brain stress response (SLC25A42) 488 

[43,44], and dementia/Alzheimer’s disease pathology (SIAH3, SRM, TP53I13) [45–47]. 489 

 490 

Similar follow-up analyses with the CpGs overlapping with enhancers in the lung (potentially 491 

etiologically relevant tissue) and the primary B-cells in cord blood (the tissue type with the most 492 

significant enrichment) showed enrichment across several tissue/cell types, suggesting non-493 

specificity of the overlap in these tissues (Supplementary Figures S27-S32; Tables S21-S26). 494 

Furthermore, the 18 CpGs overlapping with enhancers in primary B cells mapped to 16 genes, of 495 

which five have been previously associated with (any) blood cell counts, but only one with 496 

lymphocyte count in GWAS [48]. Thus, the sites driving the enrichment for B cells had little 497 

overlap with the known lymphocyte-count GWAS associations, indicating likely minimal 498 

confounding by residual cell-composition effects [35]. By comparison, the 64 CpGs with 499 

potential DNAm → Current Smoking effects annotated to 51 genes, of which 16 show GWAS 500 

associations with (any) blood cell counts and only two with lymphocyte count.  501 

 502 
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 503 

Figure 5. Among the CpGs with potential effects of blood DNA methylation on current smoking liability, iterative eFORGE 504 

analyses elucidated sites enriched for overlap with brain-related chromatin states and histone marks. 505 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.06.19.24309184doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309184
http://creativecommons.org/licenses/by/4.0/


26 

The first iteration of eFORGE examined the 64 CpGs with potential effects of blood DNA methylation on current smoking liability 506 

(Supplementary Figure S15), revealing 21 CpGs enriched for overlap with enhancers in the brain (Supplementary Figure S18/Table 507 

S12). In follow-up analyses restricted to these 21 CpGs (eFORGE iteration 2), all 21 probes were also enriched for the brain 508 

H3K4me1 marks, while 17 of these probes overlapped with H3K4me3 marks in the brain (Supplementary Figure S22/Table S16). This 509 

iteration also showed significant enrichment (FDR q <0.01) for histone marks in other tissues, including small and large intestines, 510 

adrenal gland, and thymus. So, to identify a subset of these CpGs with potentially more specific enrichment for brain-related 511 

functional elements, we restricted further analyses to the 17 sites overlapping with the brain H3K4me3 marks (eFORGE iteration 3). 512 

This figure shows that these 17 sites showed highly specific enrichment for enhancers and histone marks in the brain (Supplementary 513 

Tables S18-S19). Ten of these sites also overlapped with DNase-I hotspots in the brain (Supplementary Table S20). 514 

  515 
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Attenuated effects of former smoking on DNAm 516 

Similar analyses for former smoking showed relatively attenuated inflation factor (λ) in all 517 

models. For instance, MR-DoC2 models fitted across the 11,124 smoking-associated CpGs had λ 518 

= 1.11 for Former Smoking → DNAm, and λ = 0.99 for DNAm → Former Smoking, compared to 519 

1.20 and 1.01, respectively, for current smoking. Note that these λ calculations were not 520 

restricted to the former-smoking-associated CpGs to allow for a comparison with current 521 

smoking.  522 

  523 

Among the former-smoking-associated CpGs, only five sites showed robust evidence of former 524 

smoking’s effects on DNAm, with consistent, statistically significant (FDR <0.05) causal 525 

estimates in all three models (Supplementary Figure S33). These CpGs include cg05575921 in 526 

AHRR, cg05951221, cg01940273, and cg21566642 near ALPPL2, and cg06126421 near HLA-527 

DRB5 gene (in the MHC region). The causal estimates at these sites are similar to those of 528 

current smoking’s effects on DNAm, with overlapping confidence intervals (Figure 6). Thus, 529 

the limited reversibility of smoking’s causal effects may underlie the persistent associations of 530 

former smoking with DNAm at these sites [2]. For the reverse effects of DNAm on former 531 

smoking, no CpG showed consistent (at least nominally significant) causal estimates across 532 

models (Supplementary Figure S34). Nevertheless, of the three CpGs with robust evidence of 533 

DNAm’s effects on current smoking, two were among the former-smoking-associated CpGs and 534 

had overlapping confidence intervals of DNAm’s estimated effects on former and current 535 

smoking (Supplementary Figure S35).   536 

 537 

 538 
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 539 

Figure 6. Putative causal effects of former smoking on blood DNA methylation. 540 

Estimates and Wald-type 95% confidence intervals of the causal effects of the liability for former 541 

(versus never) smoking and (residualised and standardised) DNA methylation beta-values in 542 

each of the three MR-DoC models: bidirectional MR-DoC2, MR-DoC1 with horizontal 543 

pleiotropic path, and MR-DoC1 with unique environmental confounding (rE). The 544 

corresponding estimates for current (versus never) smoking are also shown with dashed lines. 545 

The text labels on the left indicate the CpG probe IDs and the genes mapped by the CpGs. 546 

Note. The data underlying these plots are in Supplementary Tables S1 and S27, indicated by the 547 

column g1_robust. 548 
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Discussion  549 

The integrated MR and twin models suggest that the causal effects of cigarette smoking on blood 550 

DNAm likely underlie many of the associations seen in EWAS. Compared to a handful of CpGs 551 

causally linked with smoking in previous MR analyses, we found over 500 CpGs with consistent, 552 

nominally significant effects of current smoking on DNAm. These loci show broad enrichment 553 

for tissue types and functional pathways that implicate numerous well-established harmful health 554 

outcomes of smoking, including cell- and neuro-development, carcinogenesis, and immune 555 

regulation. The discovery of more extensive and novel causal effects may partly be attributable 556 

to the study design’s ability to estimate the causal influences of current smoking specifically, 557 

given the considerable reversibility of most smoking-associated DNAm changes upon smoking 558 

cessation. Consistently, most of the estimated effects of smoking on DNAm were no longer 559 

significant in the analyses of former smoking. Additionally, several CpGs showed evidence of 560 

reverse and possibly bidirectional effects of DNAm on smoking liability, with a subset of these 561 

loci enriched for gene regulatory functional elements in the brain. The detection of reverse or 562 

bidirectional causal effects of blood DNAm on smoking highlights the potential utility of blood 563 

DNAm as a biomarker to monitor addiction or interventions. 564 

 565 

Previous discordant-twin analyses in NTR found 13 CpGs with significant DNAm differences 566 

between MZ twins discordant for current smoking [24], suggesting potential causality. In the 567 

MR-DoC analyses, eight of the 13 CpGs showed robust evidence of current smoking’s effects on 568 

DNAm, while none showed reverse effects. Taken together, these findings further triangulate the 569 

evidence for smoking’s effects on DNAm at these sites. Prior summary-statistics-based MR 570 

analyses in GoDMC found no evidence of causal effects of lifetime smoking on DNAm, or vice 571 

versa [21]. Another study [10] applied a single MR method and found nominally significant 572 

effects of lifetime smoking on DNAm at 11 CpGs from the Illumina MethylationEPIC array 573 

[49], of which two (cg14580211, cg15212295) overlap with Illumina 450k array data used in the 574 

current study. In our MR-DoC analyses, only cg14580211 showed replication in the form of 575 

consistent negative causal estimates of current smoking on DNAm. Furthermore, the nine CpGs 576 

with previously reported reverse effects of DNAm on lifetime smoking behaviour in a single MR 577 

model [11] showed inconsistent estimates in the three MR-DoC models. Interestingly, two of 578 

these CpGs (cg09099830 and cg24033122; both in gene ITGAL) showed consistent, nominally 579 

significant effects of current smoking on DNAm, underscoring the need for further replication of 580 

both prior and current findings. 581 

 582 

Of the three loci with robust evidence of DNAm’s effects on current smoking liability, two are 583 

located in genes GNG7 and RGS3, which are integral to G protein-coupled receptor (GPCR) 584 

signalling, adding to the growing literature on GPCR signalling pathways’ potential role in 585 
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behavioural and neuropsychiatric outcomes [50]. Specifically, differential expression of both 586 

GNG7 [51] and RGS3 [52] has been associated with addiction-related phenotypes in model 587 

organisms. The third CpG annotates to SLC15A4, which encodes a lysosomal peptide/histidine 588 

transporter involved in antigen presentation and innate immune response [53], including in mast 589 

cells [54]. Thus, DNAm variation at this locus may reflect individual differences in 590 

immunological tolerance of cigarette smoke and, consequently, maintenance of smoking 591 

behaviour. Interestingly, these CpGs were significantly associated with neither cannabis use [7] 592 

nor alcohol consumption [6] in recent large-scale EWASs. However, these studies reported 593 

DNAm associations conditional on cigarette smoking, making them unsuitable for gauging 594 

whether the CpGs with putative effects on smoking liability are also associated with other 595 

substances. This raises the question of whether cigarette smoking should always be used as a 596 

covariate in EWAS. If so, it may be prudent to report supplementary EWAS results without 597 

smoking as a covariate, as some CpGs may have reverse or bidirectional causal relationships 598 

with smoking.  599 

 600 

Several factors need to be considered when interpreting the above results. We analysed DNAm 601 

from whole blood, but smoking’s causal relationships with DNAm may differ between specific 602 

blood cell types. The results may also vary in other peripheral tissues, like buccal cells [55], and 603 

other tissues relevant to smoking, like the brain. Moreover, the highly variable predictive 604 

strength of mQTL allelic scores across CpGs (incremental-R2 range: 0.43-76.95%; median 605 

4.61%) affected the power to detect causal effects of blood DNAm on smoking liability [38]. 606 

When considering similar model applications across different health traits, this impact on power 607 

is relevant to both directions of causation, as the IV of other traits may not be as strong as the 608 

smoking PRS. Additionally, the Illumina 450k microarray used in this study covers a small 609 

fraction of genome-wide potential methylation sites. Moreover, many of the measured smoking-610 

associated CpGs lacked a “relevant” mQTL allelic score with F-statistic >10 (Supplementary 611 

Figure S36), and so have yet to be tested for DNAm → Smoking causal effects. Newer low-cost 612 

sequencing technology [56] may facilitate further causal discovery in the future. 613 

 614 

Like all MR studies, the current results depend on the validity of the IV assumptions [28], which 615 

can be difficult to test. Here, we relied on the statistical significance and consistency of the 616 

causal estimates across different MR-DoC model specifications to account for potential 617 

assumption violations, particularly horizontal pleiotropy. Yet, we cannot rule out residual bias 618 

due to violations of the assumptions underlying MR [28] and twin modelling [57]. Moreover, 619 

current MR-DoC models estimated linear causal effects. However, since DNAm is constrained 620 

within certain biologically plausible values, the impact of smoking on DNAm may depend on 621 

prior DNAm. Further development of MR-DoC models with interaction or quadratic effects will 622 
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benefit the study of such non-linear causal effects. Finally, we examined causality using only 623 

binary smoking-status variables, as the number of individuals endorsing current or former 624 

smoking was too small to fit MR-DoC models to smoking quantity (e.g., cigarettes per day) or 625 

time since quitting. Further research with larger samples is needed to examine such dose-626 

response causal relationships. 627 

  628 

The current study included participants of European ancestry only. Although prior EWASs show 629 

highly concordant associations across ancestries [2,58], examining the generalizability of causal 630 

estimates in non-European populations is an essential objective for further research. As MR-DoC 631 

models estimate causal effects specific to the target dataset, rather than the discovery GWAS 632 

samples, future research may apply this study design to subpopulations of interest, e.g., stratified 633 

by sex or age, provided the population-wide GWAS results generalise adequately. Future 634 

applications of MR-DoC analyses to DNAm data may also extend the current work to other traits 635 

that show robust associations with DNAm [59] and have strong genetic IVs.  636 

  637 

In conclusion, the inability to establish causality is a clear limitation of EWAS based on 638 

surrogate tissues such as blood. Here, we applied the MR-DoC designs to examine the causality 639 

between cigarette smoking and blood DNAm. The results suggest that many of the EWAS 640 

associations are likely driven by the causal effects of current smoking on DNAm, and provide 641 

evidence for reverse and potentially bidirectional causal relationships at some sites. 642 

Underscoring the continuing value of twin studies for health and behaviour [60], our study 643 

highlights the value of integrating DNAm, phenotypic information, and genetic data in twin 644 

studies to uncover causal relationships of peripheral blood DNAm with complex traits. This 645 

study design might be valuable for detecting causal epigenetic biomarkers of mental health in 646 

general. 647 

  648 
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