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Abstract 118 

Epigenome-wide association studies (EWAS) aim to identify differentially methylated loci 119 

associated with complex traits and disorders. EWAS of cigarette smoking shows some of the 120 

most widespread DNA methylation (DNAm) associations in blood. However, traditional EWAS 121 

cannot differentiate between causation and confounding, leading to ambiguity in etiological 122 

interpretations. Here, we apply an integrated approach combining Mendelian Randomization and 123 

twin-based Direction-of-Causation analyses (MR-DoC) to examine causality underlying 124 

smoking-associated blood DNAm changes in the Netherlands Twin Register (N=2577). 125 

Evidence across models suggests that current smoking’s causal effects on DNAm likely drive 126 

many of the previous EWAS findings, implicating functional pathways relevant to several 127 

adverse health outcomes of smoking, including hemopoiesis, cell- and neuro-development, and 128 

immune regulation. Additionally, we find evidence of potential reverse causal influences at some 129 

DNAm sites, with 17 of these sites enriched for gene regulatory functional elements in the brain. 130 

The top three sites with evidence of DNAm’s effects on smoking annotate to genes involved in G 131 

protein-coupled receptor signaling (GNG7, RGS3) and innate immune response (SLC15A4), 132 

elucidating potential biological risk factors for smoking. This study highlights the utility of 133 

integrating genotypic and DNAm measures in twin cohorts to clarify the causal relationships 134 

between health behaviors and blood DNAm. 135 

  136 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309184doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309184
http://creativecommons.org/licenses/by/4.0/


Causation between Smoking and DNA methylation 

6 

Introduction  137 

Epigenome-wide association studies (EWASs) are valuable for identifying variation in DNA 138 

methylation (DNAm) associated with complex human traits and diseases1. By far, the most 139 

successful EWASs have been the studies of cigarette smoking. A large-scale EWAS meta-140 

analysis of smoking (N = 15,907 individuals) compared current versus never smoking to reveal 141 

significant DNAm differences at 18,760 CpG (Cytosine-phosphate-Guanine) sites in peripheral 142 

blood cells2. DNAm differences between former- and never-smoking individuals were 143 

diminished but remained statistically significant at 2,568 sites2. Genes annotated to the 144 

differentially methylated CpG sites have been implicated in genome-wide association studies 145 

(GWAS) of several smoking-associated traits, including cancers, lung functions, cardiovascular 146 

disorders, inflammatory disorders, and schizophrenia, indicating DNAm’s potential role in the 147 

adverse health effects of smoking2.  148 

 149 

As cross-sectional EWAS in unrelated individuals cannot differentiate between causation and 150 

confounding3, the widespread associations between cigarette smoking and DNAm2 may originate 151 

from a combination of different etiological mechanisms. These associations are typically 152 

interpreted as the causal effects of smoking exposure on DNAm. However, some smoking-153 

associated CpG sites may have reverse or bidirectional causal links with smoking, such that 154 

DNAm may reciprocally affect the development and maintenance of smoking behaviors4. 155 

Moreover, associations between smoking and DNAm could be attributable to potential 156 

confounders, such as schizophrenia5, alcohol consumption6, cannabis use7, and body mass 157 

index8.  158 

 159 

An alternative approach to causal inference in observational studies is Mendelian Randomization 160 

(MR) analysis, using genetic variants as instrumental variables (IVs) to estimate causal effects 161 

under specific assumptions3,9 (see Methods). Previous MR analyses have identified potential 162 

effects of lifetime (current or former) smoking liability on blood DNAm at only 11 CpG sites10, 163 

along with potential reverse effects of blood DNAm at 9 sites11. The causal inference in MR is 164 

based on the assumption that the genetic variants associated with the exposure influence the 165 

outcome exclusively through the exposure. In other words, the genetic variants used as IVs for 166 

smoking may show vertical pleiotropy, but not horizontal pleiotropy, with DNAm. To minimize 167 

potential violations of these assumptions, MR analyses require carefully selected single-168 

nucleotide polymorphisms (SNPs), including using genetic colocalization to filter out SNPs 169 

showing horizontal pleiotropy due to linkage disequilibrium (LD). Since individual SNPs usually 170 

have minuscule effect sizes on complex traits, traditional MR approaches using a few selected 171 

SNPs may have limited power to detect causality and may be subject to weak-instrument bias12.  172 

 173 

Recent methodological developments13,14 integrate the principles of MR with the twin-based 174 

Direction of Causation model (hence called MR-DoC) from biometrical studies of mono- and 175 

dizygotic twins15. Causal inference in twin data leverages the cross-twin cross-trait correlations 176 
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to estimate the direction and magnitude of potential causal effects between traits18. Further, the 177 

MR-DOC approaches, i.e., the unidirectional MR-DoC113 and the bidirectional MR-DoC214, help 178 

account for some of the horizontal pleiotropic associations of the genetic IV with the outcome, 179 

unmediated by the exposure trait. Consequently, MR-DoC models allow using polygenic risk 180 

scores (PRS) as potential IVs, increasing the statistical power to estimate causal effects while 181 

curtailing weak-instrument bias relative to traditional MR methods that use SNPs as IVs. 182 

Incorporating MR with family data also helps to resolve additional assumptions of standard MR, 183 

such as random mating and no dyadic effects13,16.   184 

 185 

The present study used MR-DoC models to examine bidirectional causal effects between 186 

cigarette smoking and peripheral blood DNAm in European ancestry adult twins from the 187 

Netherlands Twin Register (NTR)17 (Figure 1). The target sample included 2,577 individuals 188 

from 1,459 twin pairs with both genotypic and DNAm data, as well as their self-reported 189 

smoking status at the time of blood draw (comprising 528 currently, 549 formerly, and 1,492 190 

never-smoking individuals). Across 16,940 smoking-related CpGs previously identified2, we 191 

fitted separate models for current (versus never) and former (versus never) smoking. We 192 

obtained a set of three causal estimates in each direction (Smoking → DNAm, and DNAm → 193 

Smoking): the estimates from bidirectional MR-DoC2 and two different model specifications of 194 

unidirectional MR-DoC1 (Figure 1). We triangulated evidence across the three models based on 195 

the statistical significance and consistency of the causal estimates. The results indicated more 196 

widespread putative causal influences of smoking on DNAm than vice versa. Follow-up 197 

enrichment analyses highlighted biological processes and tissues relevant to the CpG sites with 198 

potential effects in either direction of causation.  199 

 200 
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Figure 1. Study Design.  202 

Overview of the data and MR-DoC models used to examine the causality between cigarette smoking and blood DNA methylation (DNAm) in the 203 

Netherlands Twin Register. The models were fitted separately for current (versus never) and former (versus never) smoking. Applying the five MR-204 

DoC models shown in the path diagrams, we obtained a set of three causal estimates in each direction of causation: Smoking (Smk) → DNAm (the 205 

blue paths labeled g1) and DNAm → Smoking (the red paths labeled g2).  206 

Note. For better readability, the path diagrams show only the within-individual part of the models fitted to data from twin pairs. The 207 

squares/rectangles indicate observed variables, the circles indicate latent (unobserved) variables, the single-headed arrows indicate regression 208 

paths, and the double-headed curved arrows indicate (co-)variances. 209 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309184doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309184
http://creativecommons.org/licenses/by/4.0/


Causation between Smoking and DNA methylation 

10 

Results 210 

cis-mQTLs identified for two-thirds of smoking-associated CpG sites 211 

We used a weighted sum of relevant DNAm-increasing alleles at cis-methylation quantitative 212 

trait loci (henceforth called mQTL allelic score) as the IV for DNAm. Of the 18,760 CpG sites 213 

associated with current smoking in a previous independent EWAS meta-analysis2, 16,940 214 

autosomal sites passed the QC metrics in NTR (hereafter called the “smoking-associated CpGs”) 215 

and were analyzed in the unidirectional MR-DoC1 models for Current Smoking → DNAm 216 

(Figure 2). Of these sites, 13,275 had mQTL summary statistics from the Genetics of DNA 217 

Methylation Consortium (GoDMC; excluding NTR)18. A subset of 12,940 sites had summary 218 

statistics for cis-mQTLs, i.e., SNPs within 1Mb of the CpG. We used only cis-mQTLs to derive 219 

the IVs for DNAm, given that SNPs located close to the CpG are more likely to be associated 220 

with smoking via DNAm. To further guard against potential horizontal pleiotropy with smoking, 221 

we relied on the consistency of the causal estimates in MR-DoC models accommodating 222 

horizontal pleiotropy. To reduce the risk of weak-instrument bias in the estimated effects of 223 

DNAm on smoking, we restricted the MR-DoC1 models for DNAm → Current Smoking and the 224 

bidirectional MR-DoC2 models to 11,124 (65.7%) smoking-associated CpGs having an mQTL 225 

allelic score with F-statistic >10, the criterion for the “relevance” assumption of a valid IV19 (see 226 

Methods). The included mQTL allelic scores had an incremental R2 for the respective CpG site 227 

ranging from 0.43% to 76.95% (mean 9.04%, S.D. = 10.94%). Applying similar inclusion 228 

criteria, we identified 2,330 autosomal, post-QC CpG sites previously associated with former 229 

smoking2 (hereafter called the “former-smoking-associated CpGs”), which were analyzed in the 230 

MR-DoC1 models for Former Smoking → DNAm. A subset of 1,782 (76.5%) former-smoking-231 

associated CpGs had mQTL allelic scores with F-statistic >10 and were examined in the MR-232 

DoC1 models for DNAm → Former Smoking and the bidirectional models.  233 

 234 

We used a PRS of lifetime regular-smoking initiation20 as the IV for smoking status, which had 235 

an incremental liability-scale R2 of 5.07% (F-statistic = 73.2) for current versus never smoking 236 

and 2.02% (F-statistic = 28.8) for former versus never smoking in the target NTR dataset.  237 

  238 
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 239 

Figure 2. Selection of CpG sites tested in each MR-DoC model.  240 

Previous independent EWAS meta-analysis of cigarette smoking2 examined DNA methylation 241 

(DNAm) at CpG sites from the Illumina HumanMethylation450 BeadChip array21, which was 242 
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also used to measure DNAm in the NTR biobank. In the unidirectional MR-DoC1 models for 243 

Smoking → DNAm, we included autosomal CpG sites associated with smoking in the EWAS 244 

meta-analysis that also passed the QC metrics in NTR. The MR-DoC1 models for DNAm → 245 

Smoking and the bidirectional MR-DoC2 models were restricted to a subset of these sites having 246 

cis-mQTL summary statistics from the GoDMC18 and a resulting mQTL allelic score with F-247 

statistic >10.  248 

  249 
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Exemplar: Putative causality between current smoking and AHRR DNAm 250 

To illustrate the three MR-DoC models, we first present the results for two CpG sites 251 

(cg23916896 and cg05575921) in the Aryl-Hydrocarbon Receptor Repressor (AHRR) gene, 252 

which are among the most well-established DNAm signatures of cigarette smoking2. 253 

 254 

One of the two MR-DoC1 model specifications allowed us to estimate and account for potential 255 

unbalanced horizontal pleiotropy from the mQTL allelic score to smoking in DNAm → Smoking 256 

models and from the smoking PRS to DNAm in Smoking → DNAm models. However, to 257 

estimate this pleiotropic association, the model requires fixing the confounding due to unique 258 

environmental factors to a specific value (here, zero)13. In the second specification of MR-DoC1, 259 

we freely estimated and controlled for potential unique environmental confounding (labeled “rE” 260 

in Figure 1), while instead assuming that the IV had no horizontal pleiotropy. In MR-DoC2 261 

models, we estimated bidirectional causal effects by including both the smoking PRS and the 262 

mQTL allelic score, while allowing the two IVs to covary with each other14. Covariance between 263 

the PRS and the mQTL allelic score may arise from many possible sources, including shared 264 

pleiotropic SNPs, LD between the constituent SNPs, and population structure. Therefore, MR-265 

DoC2 may help reduce potential biases in the causal estimates by accounting for these sources of 266 

covariance between smoking PRS and mQTL allelic score. Across all models, causal 267 

relationships with the binary smoking variable are estimated on the latent liability scale22. So, 268 

even where smoking is the “exposure” variable, the causal estimate is interpreted as the effect of 269 

the underlying smoking liability rather than smoking exposure.  270 

 271 

For probe cg23916896 (Figure 3A), the mQTL allelic score had an incremental R2 of 8.03% (F-272 

statistic = 156.4). The estimated effects indicated that higher liability for current smoking likely 273 

causes hypomethylation of cg23916896, with consistently negative causal estimates: -0.82 (95% 274 

confidence interval: -1.20, -0.44) in MR-DoC1 with horizontal pleiotropy, -0.43 (-0.62, -0.24) in 275 

MR-DoC1 with unique environmental confounding, and -0.38 (-0.55, -0.21) in the bidirectional 276 

MR-DoC2 model. These estimates remained statistically significant after FDR correction in all 277 

three models. The estimated reverse effect of cg23916896 methylation on the liability for current 278 

smoking also had consistently negative estimates in all models: -0.24 (-0.37, -0.12) in MR-DoC1 279 

with horizontal pleiotropy, -0.32 (-0.61, -0.04) in MR-DoC1 with unique environmental 280 

confounding, and -0.32 (-0.61, -0.04) in MR-DoC2. That is, hypomethylation of cg23916896 281 

putatively increases the liability for current smoking. These estimates were statistically 282 

significant at false discovery rate (FDR) <0.05 in MR-DoC1 with horizontal pleiotropy, but only 283 

nominally significant (p <0.05) in the other two models. Taken together, these results provide 284 

robust evidence for current smoking’s causal effects on cg23916896 methylation, with 285 

suggestive evidence for the reverse effect of cg23916896 methylation on smoking. Previous MR 286 

studies of lifetime smoking and DNAm have not examined this CpG site, as these studies 287 

focused on a few selected sites10,11. Our analyses indicate that cg23916896 potentially has a 288 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309184doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309184
http://creativecommons.org/licenses/by/4.0/


Causation between Smoking and DNA methylation 

14 

bidirectional causal relationship with cigarette smoking, such that the smoking-induced 289 

hypomethylation at this locus may reciprocally increase the liability for smoking.  290 

 291 

In comparison, probe cg05575921 (one of the CpGs most robustly associated with cigarette 292 

smoking) had an mQTL allelic score with a relatively modest incremental R2 of 1.74% (F-293 

statistic = 31.6). Similar to cg23916896, the effect of current smoking liability on cg05575921 294 

methylation had consistently negative, robust estimates, with FDR <0.05 in all three models 295 

(Figure 3B), which also aligns with the previously reported negative, albeit non-significant, 296 

effect of lifetime smoking10. The reverse effect of cg05575921 methylation on smoking liability 297 

was estimated to be -1.29 (-1.62, -0.96) in MR-DoC1 with horizontal pleiotropy, -0.41 (-1.03, 298 

0.21) in MR-DoC1 with unique environmental confounding, and -0.37 (-1.00, 0.26) in MR-299 

DoC2. Although the point estimates were negative in all three models, they were not statistically 300 

significant in the latter two models. Notably, the point estimates for cg05575921 are comparable 301 

to those for cg23916896 but have larger standard errors, likely due to the former’s weaker IV 302 

(mQTL allelic score).  303 

  304 
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305 
Figure 3. Illustrative MR-DoC models of causality between current smoking and blood DNAm 306 

at (A) cg23916896 and (B) cg05575921 in the AHRR gene.  307 
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We fitted five MR-DoC models at each CpG: (1) Smoking → DNAm MR-DoC1 with horizontal 308 

pleiotropy, (2) Smoking → DNAm MR-DoC1 with unique environmental confounding, (3) DNAm 309 

→ Smoking MR-DoC1 with horizontal pleiotropy, (4) DNAm → Smoking MR-DoC1 with unique 310 

environmental confounding, and (5) bidirectional MR-DoC2. Thus, for each CpG, three causal 311 

estimates were obtained in either direction of causation.  312 

In the path diagrams, squares/rectangles indicate observed variables, circles indicate latent 313 

(unobserved variables), single-headed arrows indicate regression paths, and double-headed 314 

curved arrows indicate (co-)variance. The residual variance of smoking status liability is 315 

partitioned into additive genetic (ASmk) and unique environmental (ESmk) components. Likewise, 316 

the residual variance of DNAm is partitioned into ADNAm and EDNAm. The correlation between 317 

ASmk and ADNAm represents the confounding between smoking and DNAm due to latent 318 

(unobserved) additive genetic factors, while the correlation between ESmk and EDNAm represents 319 

confounding due to latent unique environmental factors. Each model included age and sex as 320 

covariates of smoking status (not shown). DNAm -values were residualized for standard 321 

biological and technical covariates used in EWAS (see Methods). The smoking PRS and the 322 

mQTL allelic scores were residualized for standard GWAS covariates, including genetic 323 

principal components and genotyping platform. In the path diagrams, the residualized PRS and 324 

mQTL allelic scores are regressed on respective latent factors, representing the underlying 325 

“true” standardized scores (mean = zero; variance = one). The coefficient of the path from the 326 

latent score to the observed score estimates the standard deviation of the observed score.  327 

Note. The paths are labeled by the point estimate and its S.E. in parentheses. For better 328 

readability, the path diagrams show only the within-individual part of the models fitted to data 329 

from twin pairs. 330 

  331 
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Evidence of more widespread effects of current smoking on DNAm than vice 332 

versa 333 

To evaluate whether there was evidence of widespread, small causal effects of current smoking 334 

on DNAm, we examined the Bayesian genomic inflation factor23 (λ) using p-values of the causal 335 

estimates. Across the 16,940 smoking-associated CpG sites, MR-DoC1 with horizontal 336 

pleiotropy had λ = 1.44, while MR-DoC1 with unique environmental confounding showed λ = 337 

1.20. For comparison, fitting similar models epigenome-wide at 411,169 autosomal, post-QC 338 

CpGs showed much less inflation (λ = 0.98 and λ = 1.09, respectively), suggesting enrichment of 339 

low p-values among the smoking-associated CpGs. The epigenome-wide inflation is in line with 340 

that for cigarettes per day (λ >1.1) previously reported using two-sample MR18. Corresponding 341 

QQ plots showed a deviation of the causal estimate p-values from the null hypothesis across a 342 

broad range of smoking-associated CpG sites (Supplementary Figures S1, S2). Across the 343 

11,124 CpG sites with bidirectional MR-DoC2 models, the estimated reverse effects of DNAm 344 

on current smoking showed little inflation (λ = 1.01) compared to the effects of current smoking 345 

on DNAm in the same model (λ = 1.20; Supplementary Figures S3, S4). These findings 346 

suggest that the causal influences of current smoking on DNAm likely contribute, at least partly, 347 

to the previously reported EWAS hits. For the reverse effects of DNAm on current smoking, the 348 

absence of λ inflation does not preclude potential localized small effects at several CpG sites. 349 

Furthermore, despite the inflation of the test statistics, our sample size might be insufficient to 350 

obtain significant estimates of relatively small effects in either direction of causation.  351 

 352 

There also was considerable variability in the number of CpG sites with statistically significant 353 

causal estimates across models. The estimated Current Smoking → DNAm effects had FDR 354 

<0.05 at 1,368 CpGs in MR-DoC1 with horizontal pleiotropy, 334 CpGs in MR-DoC1 with 355 

unique environmental confounding, and 275 CpGs in MR-DoC2 (Figure 4; top panel). The 356 

relatively higher number of statistically significant causal estimates in MR-DoC1 with horizontal 357 

pleiotropy may partly be due to its higher power compared to the other models24. Looking at the 358 

intersection of significant estimates across models, 259 CpG sites showed FDR <0.05 in at least 359 

two models, while 64 sites showed FDR <0.05 in all three models. These 64 sites also showed 360 

consistency in the direction of effect across all three models (Supplementary Figure S5, Table 361 

S1). Thus, we considered these 64 CpG sites to exhibit robust evidence for the causal effects of 362 

current smoking liability on DNAm, including hypomethylation of 59 sites and hypermethylation 363 

of the other five (Figure 4; bottom panel). These CpGs are annotated to some of the top genes 364 

implicated in prior EWAS of smoking2, including hypomethylation of CpGs in/near AHRR, 365 

ALPPL2 (alkaline phosphatase placental-like 2), CNTNAP2 (contactin-associated protein 2), and 366 

PARD3 (par-3 family cell polarity regulator) and hypermethylation of CpGs in MYO1G (myosin 367 

1G). Only one of these 64 CpG sites lies within the major histocompatibility complex (MHC) 368 

region (chr6:28477797-33448354): cg06126421 located near gene HLA-DRB5. Due to its 369 

complex LD structure, the causal estimates of the sites in the MHC region should be interpreted 370 

with caution.  371 
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Figure 4. Putative Causal Effects of Current Smoking on Blood DNA Methylation in MR-375 

DoC Models 376 

The top panel shows an UpSet plot of the intersection of CpG sites with statistically significant 377 

(FDR <0.05) estimates of Current Smoking → DNAm in the three MR-DoC models. The matrix 378 

consists of the models along the three rows and their intersections along the columns. The 379 

horizontal bars on the left represent the number of CpGs with significant (FDR <0.05) causal 380 

estimates in each model. The vertical bars represent the number of CpGs belonging to the 381 

respective intersection in the matrix.  382 

The bottom panel shows a Miami plot of the Current Smoking → DNAm causal estimates across 383 

16,940 smoking-associated CpGs. The X-axis shows the genomic positions of the CpG sites 384 

aligned to Genome Reference Consortium Human Build 37 (GRCh37). The Y-axis shows the Z-385 

statistic of the estimated effect of the liability for current (versus never) smoking on (residualized 386 

and standardized) DNA methylation -values in the MR-DoC1 model with unique environmental 387 

confounding (rE). The solid points indicate the 64 sites with significant causal estimates (FDR 388 

<0.05) in all three models (i.e., the blue vertical bar in the UpSet plot). The CpG sites with 389 

causal estimates significant after Bonferroni correction in more than one model are labeled by 390 

their respective nearest gene. 391 

Note. The data underlying these plots are in Supplementary Table S1. 392 

  393 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309184doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309184
http://creativecommons.org/licenses/by/4.0/


Causation between Smoking and DNA methylation 

20 

On applying a more conservative Bonferroni correction for multiple testing, 14 sites had 394 

significant Current Smoking → DNAm causal estimates in more than one model, while only four 395 

CpGs had significant estimates in all three models (Supplementary Figure S6). Thus, these four 396 

CpGs showed the most robust evidence for the effects of current smoking on DNAm, comprising 397 

three sites with hypomethylation (cg05951221 and cg01940273 near ALPPL2, and cg06126421 398 

near HLA-DRB5) and one with hypermethylation (cg12803068 in MYO1G). 399 

 400 

The estimated DNAm → Current Smoking effects were significant (FDR <0.05) at 1,081 CpGs 401 

in MR-DoC1 with horizontal pleiotropy, 51 CpGs in MR-DoC1 with unique environmental 402 

confounding, and 54 CpGs in MR-DoC2 (Figure 5; right panel). Further, 44 CpGs showed 403 

FDR <0.05 in at least two models, but only three CpGs had FDR <0.05 in all three models. The 404 

three CpGs also had consistent, positive estimates across models, suggesting that 405 

hypermethylation of CpG sites in GNG7 (G-Protein Subunit Gamma 7), RGS3 (Regulator of G-406 

Protein Signaling 3), and SLC15A4 (Solute Carrier Family 15 Member 4) genes may increase the 407 

liability for current smoking (Figure 5; left panel). None of these sites has been previously 408 

reported to have effects on smoking liability11. Applying the more conservative Bonferroni 409 

correction, nine CpGs had significant DNAm → Current Smoking causal estimates in more than 410 

one model, but none showed Bonferroni-corrected significant effects in all three models 411 

(Supplementary Figure S7). 412 
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 413 

 414 

Figure 5. Putative causal effects of blood DNA methylation on current-smoking liability in MR-DoC models 415 

The left panel shows the estimates and Wald-type 95% confidence intervals of the causal effects of (residualized and standardized) 416 

DNA methylation -values on the liability for current (versus never) smoking in each of the three MR-DoC models: bidirectional MR-417 

DoC2, MR-DoC1 with horizontal pleiotropic path, and MR-DoC1 with unique environmental confounding (rE). The text labels 418 

indicate the gene to which the CpG is annotated. 419 
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The right panel shows an UpSet plot of the intersection of CpG sites with statistically significant (FDR <0.05) estimates of DNAm → 420 

Current Smoking in each of the three MR-DoC models. The matrix consists of the models along the three rows and their intersections 421 

along the columns. The horizontal bars on the left represent the number of CpGs with significant (FDR <0.05) causal estimates in 422 

each model. The vertical bars represent the number of CpGs belonging to the respective intersection in the matrix. 423 

Note. The data underlying these plots are in Supplementary Table S3. 424 

 425 
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Suggestive Evidence of Bidirectional Effects at Four CpG Sites 426 

The 64 CpG sites with robust evidence of current smoking’s effects on DNAm do not overlap 427 

with the three sites with robust evidence of reverse effects. However, further examining the 428 

causal estimates revealed that three of the 64 sites also had consistently negative, nominally 429 

significant (p <0.05) estimates of DNAm → Current Smoking effects in all models (Figure 6). 430 

The three CpGs (cg23916896, cg11902777, cg01899089) are all located in the AHRR gene, 431 

suggesting potential bidirectional effects between current smoking and AHRR DNAm. That is, 432 

current smoking putatively causes hypomethylation of CpGs in AHRR, which, in turn, may 433 

further increase smoking liability as a feedback effect. Among the CpGs with robust evidence of 434 

DNAm’s effects on current smoking, cg13078421 (GNG7) also showed consistently positive, 435 

nominally significant estimates of current smoking’s effects on DNAm. Thus, GNG7 436 

hypermethylation putatively increases smoking liability, with a potential reverse effect of current 437 

smoking on GNG7 methylation. Additionally, 15 CpGs had consistent, nominally significant 438 

bidirectional causal estimates in all three models, though the estimates were not significant after 439 

FDR correction in either direction (Supplementary Figure S8). 440 

 441 

 442 

Figure 6. Potential bidirectional effects between current smoking and blood DNA methylation 443 

Estimates and Wald-type 95% confidence intervals of bidirectional causal effects between the 444 

liability for current (versus never) smoking and (residualized and standardized) DNA 445 

methylation -values in the three MR-DoC models: bidirectional MR-DoC2, MR-DoC1 with 446 

horizontal pleiotropic path, and MR-DoC1 with unique environmental confounding (rE). The Y-447 
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axis labels indicate the CpG probe IDs and the respective genes in which the CpGs are located. 448 

Three of the four CpGs are in the AHRR gene and show robust evidence of the causal effects of 449 

current smoking on DNAm, along with weaker evidence of the reverse effects of DNAm on 450 

smoking. On the other hand, the fourth CpG is located in the GNG7 gene and shows robust 451 

evidence of the causal effects of DNAm on current smoking, with weaker evidence of the reverse 452 

effects of smoking on DNAm. 453 

Note. The data underlying these plots are in Supplementary Tables S1-S4. 454 

  455 
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DNAm loci potentially influenced by smoking are enriched for biological 456 

processes relevant to smoking’s adverse health outcomes  457 

For follow-up gene-set annotation and functional enrichment analyses25, we identified 525 CpG 458 

sites (outside the MHC region) with potential effects of current smoking on DNAm based on 459 

consistent, nominally significant estimates in all three models (Supplementary Table S1). The 460 

genes mapped by these CpGs showed extensive significant enrichment (FDR <0.05) for ontology 461 

clusters, including hemopoiesis, cell morphogenesis, inflammatory response, regulation of cell 462 

differentiation, and regulation of nervous system development, underscoring DNAm’s potential 463 

role in the adverse health sequelae of smoking (Supplementary Figures S9-S11; Tables S5-S6).  464 

 465 

Next, we performed eFORGE 2.0 (experimentally derived Functional element Overlap analysis 466 

of ReGions from EWAS)26,27 analyses to explore the tissue-specific functional relevance of these 467 

CpG sites. These sites were significantly enriched (FDR <0.05) for overlap with a wide range of 468 

gene regulatory elements, including chromatin states, histone marks, and DNase-I hotspots, in 469 

most of the tissue/cell types in reference datasets. These findings suggest that the functional 470 

consequences of the effects of smoking on DNAm are likely widespread across the body rather 471 

than specific to a few tissue types (Supplementary Figures S12-S14; Tables S7-S9).  472 

CpG sites with consistent effects on current smoking show enrichment for 473 

brain-related gene regulatory elements 474 

For potential DNAm → Current Smoking effects, we identified 64 CpGs with consistent, 475 

nominally significant estimates in all three models (Supplementary Figure S15). In the gene-set 476 

enrichment analyses (Supplementary Figures S16-S17; Tables S10-S11), the genes mapped by 477 

these CpGs did not show significant functional enrichment (FDR <0.05), likely due to too few 478 

loci implicated in this direction of causation. However, in the eFORGE analyses, which use 479 

precise chromatin-based information for each CpG, these CpG sites showed significant 480 

enrichment (FDR <0.05) for overlap with enhancers in the brain (fetal brain), blood (primary B 481 

cells, hematopoietic stem cells), lung, and mesodermal embryonic stem cells (Supplementary 482 

Figures S18-S20; Tables S12-S14). This set of CpGs also showed significant enrichment for 483 

histone marks in multiple tissues/cell types (including the brain, blood, and lung), but the overlap 484 

with DNase-I hotspots was not significantly enriched. The tissues/cell types predicted to be 485 

relevant for DNAm’s effects on smoking liability may be prioritized for follow-up tissue-/cell 486 

type-specific studies. 487 

  488 

To further gauge the tissue-specificity of the eFORGE enrichment, we performed iterative 489 

follow-up analyses with the CpGs overlapping with tissue/cell types of interest (see Methods 490 

and Supplementary Figures S21-S23; Tables S15-S17). These analyses elucidated a subset of 491 

17 CpGs with significant and highly specific enrichment for enhancers and histone marks 492 

(H3K4me1 and H3K4me4) in the brain (Figure 7), along with weaker enrichment for H3K4me1 493 
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in the adrenal gland and thymus. Ten of the 17 sites also overlapped with DNase-I hotspots in the 494 

brain, though the enrichment was not statistically significant (FDR = 0.08) (Supplementary 495 

Figure S24, Table S20). The causal estimates and the nearest gene of these 17 CpGs are shown 496 

in Supplementary Figure S25. Four of these CpGs also had consistent estimates of the reverse 497 

effects of current smoking on DNAm (identified by the column “g1_nominal” in 498 

Supplementary Table S4): cg25612391 (SLC25A42), cg05424060 (GNAI1), cg10590964 (near 499 

KIAA2012), and cg05877788 (TP53I13). Furthermore, prior pre-clinical and clinical studies have 500 

implicated 14 of the 17 mapped genes, including three with potential bidirectional effects, in 501 

behavioral or neurological traits, such as alcohol dependence (OSBPL5)28, cocaine use 502 

(SLCO5A1)29, anxiety (CCDC92)30, depression (GNAI1)31, encephalomyopathy and brain stress 503 

response (SLC25A42)32,33, and dementia or Alzheimer’s disease pathology (SIAH3, SRM, 504 

TP53I13)34–36.  505 

 506 

Similar follow-up analyses with other subsets of CpGs (e.g., probe sets enriched for enhancers in 507 

the lung or cord blood primary B cells) showed enrichment across several tissue/cell types, 508 

suggesting non-specificity of the enrichment seen in these tissues (Supplementary Figures S26-509 

S31; Tables S21-S26). The enrichment for specific blood cell types (here, B cells) may be partly 510 

confounded by residual cell-composition effects in whole blood analyses26. The 18 CpGs 511 

overlapping with enhancers in primary B cells mapped to 16 genes, of which five have been 512 

previously associated with (any) blood cell counts but only one with lymphocyte count in 513 

GWAS37. Thus, the sites driving the enrichment for B cells had little overlap with the known 514 

lymphocyte-count GWAS associations. For comparison, the 64 CpGs with potential DNAm → 515 

Current Smoking effects annotated to 51 genes, of which 16 are known to be associated with 516 

(any) blood cell counts and only two with lymphocyte count. 517 
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 518 

Figure 7. Among the CpG sites with potential effects of blood DNA methylation on current smoking liability, iterative eFORGE 519 

analyses elucidated sites enriched for overlap with brain-related chromatin states and histone marks.  520 

The first iteration of eFORGE examined the 64 CpG sites with potential effects of blood DNA methylation on current smoking liability 521 

(Supplementary Figure S15), revealing 21 CpGs enriched for overlap with enhancers in the brain (Supplementary Figure S18/Table 522 

S12). In follow-up analyses restricted to these 21 CpGs (eFORGE iteration 2), all 21 probes were also enriched for the brain 523 
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H3K4me1 marks, while 17 of these probes overlapped with H3K4me3 marks in the brain (Supplementary Figure S22/Table S16). This 524 

iteration also showed significant enrichment (FDR q <0.01) for histone marks in other tissues, including small and large intestines, 525 

adrenal gland, and thymus. So, to identify a subset of these CpGs with potentially more specific enrichment for brain-related 526 

functional elements, we restricted further analyses to the 17 sites overlapping with the brain H3K4me3 marks (eFORGE iteration 3). 527 

As seen in this figure, these 17 sites showed highly specific enrichment for enhancers and histone marks in the brain (Supplementary 528 

Tables S18-S19). Ten of these sites also overlapped with DNase-I hotspots in the brain (Supplementary Table S20). 529 
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Attenuated effects of former smoking on DNAm 530 

MR-DoC analyses estimating the causal effects between former smoking and DNAm showed 531 

attenuated inflation factor (λ) in all models, compared to the λ values in similar models fitted to 532 

current smoking. For instance, the MR-DoC2 models fitted across the 11,124 smoking-533 

associated CpGs had λ = 1.11 for Former Smoking → DNAm and λ = 0.99 for DNAm → Former 534 

Smoking, compared to 1.20 and 1.01, respectively, for current smoking. Note that these λ 535 

calculations were not restricted to the former-smoking-associated CpGs to allow for a 536 

comparison with current smoking.   537 

  538 

Among the former-smoking-associated CpGs, only five sites showed robust evidence of causal 539 

effects of former smoking on DNAm, with consistent, statistically significant (FDR <0.05) 540 

causal estimates in all three models (Supplementary Figure S32). These CpGs include 541 

cg05575921 in AHRR, cg05951221, cg01940273, and cg21566642 near ALPPL2, and 542 

cg06126421 near HLA-DRB5 gene (in the MHC region). The causal estimates at these sites are 543 

similar to those of the effects of current smoking on DNAm, with overlapping confidence 544 

intervals (Figure 8). Thus, unlike most smoking-associated CpGs38, smoking’s effects on DNAm 545 

at these sites likely have limited reversibility, in line with the previously reported persistent 546 

associations of these sites with former smoking 30 years after cessation2. For the reverse effects 547 

of DNAm on former smoking, no CpG showed consistent (at least nominally significant) causal 548 

estimates across models (Supplementary Figure S33). Nevertheless, of the three CpGs with 549 

robust evidence of DNAm’s effects on current smoking, two were among the former-smoking-550 

associated CpGs and had overlapping confidence intervals of the estimated effects of DNAm on 551 

former smoking and current smoking (Supplementary Figure S34).   552 

 553 
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 554 

Figure 8. Putative causal effects of former smoking on blood DNA methylation.  555 

Estimates and Wald-type 95% confidence intervals of the causal effects of the liability for former 556 

(versus never) smoking and (residualized and standardized) DNA methylation beta-values in 557 

each of the three MR-DoC models: bidirectional MR-DoC2, MR-DoC1 with horizontal 558 

pleiotropic path, and MR-DoC1 with unique environmental confounding (rE). The 559 

corresponding estimates for current (versus never) smoking are also shown with dashed lines. 560 

The text labels on the left indicate the CpG probe IDs and the genes mapped by the CpGs. 561 

Note. The data underlying these plots are in Supplementary Tables S1 and S27, indicated by the 562 

column g1_robust.  563 

 564 
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Discussion  565 

Results from integrated MR and biometrical genetic (MR-DoC) modeling suggest that the causal 566 

effects of cigarette smoking on blood DNAm likely underlie many of the associations seen in 567 

EWAS. Compared to a handful of CpGs previously found to be causally linked with smoking in 568 

standard MR studies, we found over 500 CpGs with consistent, nominally significant effects of 569 

current smoking on DNAm. These CpGs show broad enrichment for tissue types and functional 570 

pathways that implicate numerous well-established harmful health outcomes of smoking, 571 

including cell- and neuro-development, carcinogenesis, and immune regulation. In the analyses 572 

of former smoking, most of the estimated effects of smoking on DNAm were no longer 573 

significant, consistent with the reversibility of smoking’s effects at these loci. Additionally, 574 

several CpG sites showed evidence of reverse and possibly bidirectional effects of DNAm on the 575 

liability for current smoking, with a subset of these loci enriched for gene regulatory functional 576 

elements in the brain. The detection of reverse or bidirectional causal effects of blood DNAm on 577 

smoking highlights the potential utility of blood DNAm as a putative biomarker to monitor 578 

addiction or interventions. 579 

 580 

Previous analyses of smoking-discordant twin pairs in NTR, a subset of the current study sample, 581 

found 13 CpG sites with significant DNAm differences between MZ twins discordant for current 582 

smoking39, suggesting potential causality. In our MR-DoC analyses, eight of the 13 CpGs 583 

showed robust evidence of causal effects of current smoking on DNAm, while none showed 584 

reverse effects. Taken together, the findings from the two studies further triangulate the evidence 585 

for smoking’s effects on DNAm at these sites. Prior summary-statistics-based MR studies have 586 

examined causality between lifetime (current or former) cigarette smoking and blood DNAm. 587 

The MR analyses in GoDMC18 did not find evidence of causal effects of lifetime smoking on 588 

DNAm, nor vice versa. Another study10 applied a single MR method and found nominally 589 

significant effects of lifetime smoking on DNAm at 11 CpG sites from the Illumina 590 

MethylationEPIC array40, of which two (cg14580211, cg15212295) overlap with Illumina 450k 591 

array data used in the current study. In our MR-DoC analyses, only cg14580211 showed 592 

replication in the form of consistent negative causal estimates of current smoking on DNAm. 593 

The novel and more extensive causal effects found in our analyses may partly be attributable to 594 

the study design’s ability to estimate the causal influences of current smoking specifically, as 595 

most smoking-associated DNAm changes exhibit substantial reversibility upon smoking 596 

cessation2,21. Furthermore, the nine CpGs with previously reported reverse effects of DNAm on 597 

lifetime smoking behavior (a composite index of initiation, heaviness, and cessation)11 in a single 598 

MR model showed inconsistent estimates in the three MR-DoC models. Interestingly, two of 599 

these CpGs (cg09099830 and cg24033122; both located in gene ITGAL) instead showed 600 

consistent, nomically significant effects of current smoking on DNAm, underscoring the need for 601 

further replication of both prior and current findings.  602 

 603 
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Of the three CpG sites with robust evidence of DNAm’s effects on current smoking liability, two 604 

are located in genes GNG7 and RGS3 that are integral to G protein-coupled receptor (GPCR) 605 

signaling, adding to the growing literature on GPCR signaling pathways’ potential role in 606 

behavioral and neuropsychiatric outcomes41. Specifically, differential expressions of both 607 

GNG742 and RGS343 have been associated with addiction-related phenotypes in model 608 

organisms. The third CpG annotates to SLC15A4, which encodes a lysosomal peptide/histidine 609 

transporter involved in antigen presentation and innate immune response44, including in mast 610 

cells45. Thus, DNAm variation at this locus may plausibly reflect individual differences in 611 

immunological tolerance of cigarette smoke and, consequently, maintenance of smoking 612 

behavior. Interestingly, these CpGs were significantly associated with neither cannabis use7 nor 613 

alcohol consumption6 in recent large-scale EWASs. Notably, though, both these studies reported 614 

DNAm associations conditional on cigarette smoking, making them unsuitable for gauging 615 

whether the CpGs with putative effects on smoking liability are also associated with other 616 

substances. This raises the question of whether cigarette smoking should always be used as a 617 

covariate in EWAS. If so, it may be prudent to report supplementary EWAS results without 618 

smoking as a covariate, as some CpGs may have a reverse or bidirectional causal relationship 619 

with smoking. Note that the EWAS of cannabis use7 did perform such preliminary analyses but 620 

only reported the results conditional on cigarette smoking.  621 

 622 

Several factors need to be considered when interpreting the above results. Although we found 623 

relatively few sites with putative effects of whole blood DNAm on smoking liability or with 624 

suggestive bidirectional effects, the situation might differ in specific blood cell types or other 625 

tissues relevant to smoking, like the brain. The results may also vary in other peripheral tissues, 626 

like buccal cells46. Moreover, the highly variable predictive strength of mQTL allelic scores 627 

across CpG sites (incremental-R2 range: 0.43-76.95%; median 4.61%) likely also influenced the 628 

power to detect true causal effects of blood DNAm on smoking liability24. When considering 629 

similar model applications across different health traits, this impact on power is relevant to both 630 

directions of causation, as the IV of other traits may not be as strong as the smoking PRS. 631 

Additionally, the current study analyzed CpGs from the Illumina 450k array, which covers a 632 

small fraction of genome-wide potential methylation sites. Further, many of the measured 633 

smoking-associated CpGs lacked a “relevant” mQTL allelic score with F-statistic >10 634 

(Supplementary Figure S35) and so are yet to be tested for DNAm → Smoking causal effects. 635 

Newer low-cost sequencing technology47 may help uncover more such causal relationships in the 636 

future. 637 

 638 

Like all MR studies, the current results depend on the validity of the IV assumptions19, which 639 

cannot always be empirically tested. Here, we relied on the statistical significance and 640 

consistency of the causal estimates across different specifications of MR-DoC models to account 641 

for potential assumption violations, particularly horizontal pleiotropy. Yet, residual bias due to 642 

violations of the assumptions underlying MR19 and biometrical twin modeling48 cannot be ruled 643 
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out with certainty. Moreover, current MR-DoC models estimated linear causal effects. However, 644 

since DNAm is constrained within certain biologically plausible values, the impact of smoking 645 

on DNAm may depend on prior DNAm. To examine such non-linear causal relationships, MR-646 

DoC with interaction or quadratic effects would be a valuable area of further model 647 

development, with numerous potential applications. Finally, we examined causality using only 648 

binary smoking-status variables, as the sub-samples restricted to current or former smoking were 649 

too small to fit MR-DoC models to smoking quantity (e.g., cigarettes per day) or time since 650 

quitting. Further research with larger samples is needed to examine such dose-response causal 651 

relationships.  652 

 653 

The current study included participants of European ancestry only. Although prior EWASs show 654 

highly concordant associations across ancestries2,7, examining the generalizability of causal 655 

estimates in non-European populations is a critical subject of further research. As MR-DoC 656 

models provide causal inference specific to the target dataset, rather than the discovery GWAS 657 

samples, future research may apply this study design to subpopulations of interest, e.g., stratified 658 

by sex or age (such as children or elderly populations), provided the results from population-659 

wide GWAS generalize adequately. Future applications of MR-DoC analyses to DNAm data 660 

may also extend the current work to other health traits and disorders that show robust 661 

associations with DNAm and have strong genetic IVs. Recent developments in cost-effective 662 

population-scale DNAm microarray technology49 can help increase the sample sizes of twin 663 

cohorts with DNAm data, enabling wider application of similar causal analyses.  664 

 665 

In conclusion, the inability to establish causality is one of the key limitations of EWAS based on 666 

surrogate tissues such as blood. Here, we demonstrate an application of the MR-DoC design to 667 

examine causality between cigarette smoking and blood DNAm. The results suggest that many 668 

of the EWAS associations are likely driven by the causal effects of current smoking on DNAm, 669 

though we also find evidence of reverse and potentially bidirectional causal relationships at some 670 

sites. Our study highlights the value of integrating DNAm, phenotypic information, and genetic 671 

data in twin studies to uncover causal relationships of peripheral blood DNAm with human traits. 672 

This study design might be valuable for detecting causal epigenetic biomarkers of (mental) 673 

health in general. 674 

  675 
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Methods  676 

Study Sample 677 

The Netherlands Twin Register (NTR) is a community-based twin registry with longitudinal data 678 

on health, behaviors, and lifestyle factors, combined with biological samples, including DNA 679 

from blood and buccal samples. In the current analyses, we analyzed data from 2,577 individuals 680 

participating in the NTR longitudinal surveys17 and the NTR biobank project50. The study 681 

participants comprised 1,730 (67%) female and 847 (33%) male individuals of European genetic 682 

ancestry, including 706 monozygotic (MZ) twin pairs, 161 MZ individuals without their co-twin, 683 

412 dizygotic (DZ) twin pairs, and 180 DZ individuals without their co-twin. The participants 684 

had both genotypic and epigenome-wide DNAm data and were aged between 18 and 79 years 685 

(mean 35.2; S.D. 11.7 years) at the time of blood sample collection.  686 

 687 

Previous studies have described the NTR cohort in greater detail39,51. NTR genotypic sample and 688 

variant quality control (QC), imputation, genetic principal component analysis (PCA), and 689 

ancestry-outlier pruning have been described previously52. Details specific to the participants 690 

included in the present study are included in the Supplementary Methods. Since GoDMC18 691 

summary statistics are available for European ancestry only, the current study sample excluded 692 

109 participants identified as European-ancestry outliers in PCA to avoid bias due to ancestry 693 

mismatch. The NTR is approved by the Central Ethics Committee on Research Involving Human 694 

Subjects of the VU University Medical Centre, Amsterdam, an Institutional Review Board 695 

certified by the U.S. Office of Human Research Protections (IRB number IRB00002991 under 696 

Federal-wide Assurance- FWA00017598; IRB/institute codes, NTR 98-222, 2003-180, 2008-697 

244). All participants provided written informed consent before data collection. 698 

Peripheral Blood DNA Methylation and Cell Counts 699 

Epigenome-wide DNAm in peripheral whole blood was measured with the Infinium 700 

HumanMethylation450 BeadChip Kit (i.e., the Illumina 450k microarray), following the 701 

manufacturer’s protocol21. QC and normalization of the DNAm data were performed using a 702 

custom pipeline developed by the BIOS (Biobank-based Integrative Omics Study) Consortium, 703 

as previously described51. Briefly, sample QC was done using MethylAid53, followed by probe 704 

QC with DNAmArray54. The latter removed the probes with a raw signal intensity of zero, bead 705 

number <3, or a detection p-value >0.01, as well as the ambiguously mapped probes. Next, 706 

samples and probes with >5% missingness were removed. The resulting DNAm data were 707 

normalized using the Functional normalization55 algorithm implemented in DNAmArray54, with 708 

the first four PCs (with eigenvalue >1) derived from control probes. Finally, the probes 709 

containing a SNP within the CpG site (at C or G nucleotide) were removed regardless of the 710 

minor allele frequency. These SNPs were previously identified using DNA sequencing data from 711 

the Dutch population56. For the current analyses, only autosomal probes were included, yielding 712 
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411,169 CpG sites that passed all QC metrics, of which 16,940 sites were reported as associated 713 

with current smoking (FDR <0.05) in an independent EWAS2. Differential white blood cell 714 

counts were also measured in the blood samples to estimate the proportions of neutrophils, 715 

lymphocytes, monocytes, eosinophils, and basophils51.  716 

 717 

Using linear regression models, the normalized β-values of DNAm at each CpG were corrected 718 

for commonly used EWAS covariates57, including age at blood draw, sex (genotypically inferred 719 

biological sex, matched with self-reported gender), measured white blood cell percentages 720 

(neutrophils, monocytes, and eosinophils) at blood draw, MH450k array row, and bisulfite 721 

sample plate (dummy variables). The residuals from these regression models were standardized 722 

(mean = 0, S.D. = 1) and used in MR-DoC models. As in the previous work in this dataset39, we 723 

did not include lymphocyte percentage as a regression covariate to prevent multicollinearity with 724 

neutrophil percentage, while basophil percentage was not included because it had little variation 725 

between individuals.  726 

Cigarette Smoking 727 

Self-reported cigarette smoking status was recorded through an interview during the home visit 728 

for blood sample collection in 2004-2008 and 2010-2011. Participants were asked, “Do you 729 

smoke?” with one of three possible answers: “No, I never smoked” (N = 1,492), “No, but I did in 730 

the past” (N = 549), and “Yes” (N = 528). See Supplementary Methods for the original 731 

wording in Dutch. Those endorsing current smoking were asked how many years they had been 732 

smoking and how many cigarettes or rolling tobacco they smoked per day. Those endorsing 733 

former smoking were asked how many years ago they quit smoking, how many years they had 734 

smoked before quitting, and the maximum number of cigarettes or rolling tobacco they used to 735 

smoke per day. The responses were checked for consistency with the information from the NTR 736 

longitudinal surveys filled out closest to blood sampling. As previously described58, potential 737 

misclassification of smoking status through self-reports was evaluated based on plasma cotinine 738 

levels (a metabolite of nicotine and a biomarker of smoking exposure), measured in a subset of 739 

the sample. Of the 591 individuals with self-reported never smoking and measured plasma 740 

cotinine, only five (0.8%) had cotinine levels indicative of smoking (≥15 ng/ml), thus suggesting 741 

low misclassification of smoking status. The number of individuals endorsing current or former 742 

smoking was too small to evaluate a dose-response relationship of the causal effects in MR-DoC 743 

models restricted to currently or formerly smoking individuals. Likewise, the sample with former 744 

smoking was too small to examine the effect of “time since quitting smoking” on DNAm. 745 

Instrumental Variables  746 

mQTL allelic scores. We identified 12,940 smoking-associated CpGs with cis-mQTL summary 747 

statistics available from GoDMC18 (excluding NTR), using GoDMC’s definition of “cis” interval 748 

(within 1Mb of the CpG). In GoDMC, the contributing cohorts performed genome-wide mQTL 749 

analyses, testing the associations of ~480,000 CpG sites with ~12 million SNPs. However, 750 
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before the meta-analysis, the cohort-level results were filtered to retain the SNP-CpG pairs with 751 

p < 1 × 10–5 within the cohort. Thus, since the summary statistics were already partly 752 

thresholded, we computed the mQTL allelic scores by applying clumping and thresholding in 753 

PLINK1.959. Linkage disequilibrium (LD)-based clumping was performed using --clump-p1 754 

1 --clump-kb 250, with two levels of LD r2 (0.5 and 0.1) specified for --clump-r2, thus 755 

yielding two sets of LD-clumped cis-SNPs. Using either set of SNPs, we computed the allelic 756 

score with --score at a threshold of 0.05 (applied with --q-score-range). If none of the 757 

SNPs had p <0.05, no threshold was applied for score calculation. An additional allelic score was 758 

calculated using the top cis-mQTL (with the minimum association p-value) for each CpG. Thus, 759 

for every CpG, three scores were calculated (two LD-clumped mQTL allelic scores, plus the top-760 

mQTL), though these scores were not necessarily distinct; for example, if a CpG had only one 761 

cis-SNP, all three criteria yielded the same score. Likewise, for some CpGs, the two LD-762 

clumping cut-offs resulted in the same set of SNPs and, hence, identical mQTL allelic scores. 763 

 764 

To assess the strength of an mQTL allelic score, we first estimated its incremental R2 by fitting 765 

generalized estimating equations (GEE), controlling for the standard EWAS covariates (as 766 

above), genotyping platform, and the first ten genetic PCs. For each CpG, the effective GEE 767 

sample size (𝑁𝐸𝑓𝑓) was computed using the following formulae: 768 

 769 

𝑁𝐸𝑓𝑓
𝑀𝑍 =

2 ∗ 𝑁𝑀𝑍

1 +  𝑟𝑀𝑍
 770 

 771 

𝑁𝐸𝑓𝑓
𝐷𝑍 =

2 ∗ 𝑁𝐷𝑍

1 + 𝑟𝐷𝑍
 772 

 773 

𝑁𝐸𝑓𝑓 = 𝑁𝐸𝑓𝑓
𝑀𝑍  +  𝑁𝐸𝑓𝑓

𝐷𝑍  +  𝑁𝐼𝑛𝑑 774 

 775 

where, 𝑁𝐸𝑓𝑓
𝑀𝑍  and 𝑁𝐸𝑓𝑓

𝐷𝑍  are the estimated effective sample sizes of MZ and DZ twins, 𝑁𝑀𝑍 and 776 

𝑁𝐷𝑍 are the numbers of complete MZ and DZ twin pairs, while 𝑟𝑀𝑍 and 𝑟𝐷𝑍 are the twin 777 

phenotypic (DNAm) correlations in MZ and DZ twin pairs, respectively. 𝑁𝐼𝑛𝑑 is the number of 778 

individuals without the co-twin. The estimated effective sample size was then used to transform 779 

the incremental R2 value into an F-statistic as: 780 

 781 

𝐹 =
𝑅2

1 −  𝑅2
×

𝑁𝐸𝑓𝑓  −  𝐾

𝐾 −  1
  782 

 783 

where 𝐾 = 2, given two parameter estimates: the intercept and the regression coefficient of the 784 

mQTL allelic score. 785 

 786 
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PRS of Regular Smoking Initiation. We used European-ancestry GWAS summary statistics for 787 

smoking initiation (i.e., initiation of regular smoking) from the GWAS & Sequencing 788 

Consortium of Alcohol and Nicotine use (GSCAN; excluding NTR)20 to compute the PRS of 789 

smoking in NTR using LDpred v0.960. Of note, the phenotypic definition in the GWAS (smoking 790 

initiation = current/former versus never smoking) was different from the smoking phenotypes 791 

(current versus never and former versus never smoking) in the MR-DoC models. However, in 792 

these causal models, the strength of the IV, the extent of horizontal pleiotropy with DNAm, and 793 

the estimated causal effects on DNAm are specific to the smoking phenotype used in the models. 794 

As a result, this approach allowed us to assess the causal relationships of DNAm with current 795 

and former smoking separately. See Supplementary Methods for a detailed description of PRS 796 

calculation and estimation of incremental R2. Using linear regression models, we residualized the 797 

PRS of smoking and all mQTL allelic scores for the genotyping platform and the first ten genetic 798 

PCs. The residuals were scaled to have a mean of zero and a variance of one before being 799 

included as IVs in MR-DoC models. 800 

MR-DoC Models 801 

Causal inference in the twin Direction-of-Causation models uses the differences in cross-twin 802 

cross-trait correlations under different directions of causation to identify the model that fits the 803 

data best15. On the other hand, MR analyses rely on three assumptions of a valid IV3,19, that the 804 

IV is (1) associated with the exposure (“relevance”), (2) not correlated with any omitted 805 

confounding variables (“exchangeability”), and (3) independent of the outcome, given the 806 

exposure (“exclusion restriction”). Here, we used the criterion of F-statistic >10 to define the 807 

“relevance” of the IV. Further, germline genetic variants are often assumed to satisfy the 808 

“exchangeability” assumption due to Mendel’s laws of random segregation and independent 809 

assortment. The “exclusion restriction” assumption for a genetic IV implies no horizontal 810 

pleiotropy with the outcome. As described above, we relied on different specifications of MR-811 

DoC models to account for potential horizontal pleiotropy. MR-DoC1 model allowed estimating 812 

and controlling for horizontal pleiotropy from the IV to the outcome, though it required us to fix 813 

the unique environmental confounding at a specific value (here, zero)13. MR-DoC2 model 814 

leverages the covariance between two polygenic or multiallelic IVs, beyond the bidirectional 815 

causal effects, to partly accommodate horizontal pleiotropy14.  816 

 817 

We used the OpenMx (version 2.21.8)61 package in R (version 4.3.2) to fit the MR-DoC models, 818 

using the code provided in the original publications13,14. Binary smoking status was examined 819 

under the liability threshold model62, assuming a latent liability distribution with its mean fixed 820 

at zero and variance fixed at one, while the threshold was freely estimated.  821 

 822 

Before fitting the MR-DoC models, we examined univariate ACE twin models of smoking status 823 

to estimate the additive genetic (A), shared environmental (C), and unique environmental (E) 824 

variance components of the latent liability scale, with age and sex as covariates. Maximum-825 
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likelihood tetrachoric correlation estimates for current versus never smoking were: 𝑟𝑀𝑍 = 0.925 826 

(𝑆. 𝐸. = 0.021) in MZ pairs and 𝑟𝐷𝑍 = 0.533 (𝑆. 𝐸. = 0.083) in DZ pairs. Likewise, former 827 

versus never smoking had 𝑟𝑀𝑍 = 0.822 (𝑆. 𝐸. = 0.038) and 𝑟𝐷𝑍 = 0.474 (𝑆. 𝐸. = 0.096). Based 828 

on likelihood-ratio tests (LRT), an AE twin model was the most parsimonious model for both 829 

current versus never (AE versus ACE LRT 𝑝 = 0.417) and former versus never smoking (AE 830 

versus ACE LRT 𝑝 = 0.530) (Supplementary Table S31). The estimated variance components 831 

of current versus never smoking liability were 𝐴 = 0.927 (maximum-likelihood 95% confidence 832 

interval: 0.879, 0.959) and 𝐸 = 0.073 (0.041, 0.121). The corresponding estimates of former 833 

versus never smoking were 𝐴 = 0.827 (0.745, 0.888) and 𝐸 = 0.173 (0.112, 0.255). 834 

 835 

Prior twin analyses of DNAm at CpG sites in NTR51 showed that, of the 411,169 autosomal post-836 

QC CpG sites, the AE twin model was the best fitting model at all but 426 sites, with significant 837 

(after multiple-testing correction of LRT p-values) C variance at 185 sites and significant non-838 

additive genetic (D) variance at 241 sites. Of the smoking-associated CpGs2, only two CpGs had 839 

significant estimates of C, while only seven CpGs had significant estimates of D. Thus, in MR-840 

DoC models, we specified an AE variance decomposition of DNAm at all smoking-associated 841 

CpGs. Note that, in the results presented above, none of the CpG sites with consistent, nominally 842 

significant estimates of causal effects in either direction (525 sites with current smoking → 843 

DNAm; 64 sites with DNAm → current smoking) have significant C or D estimates per the 844 

previous univariate twin analyses51. Moreover, since smoking status liability also has an AE 845 

variance decomposition, including a C or D variance component of DNAm in the model would 846 

not change the possible sources of covariance between smoking status and DNAm in the model. 847 

 848 

We fitted five sets of MR-DoC models with current versus never smoking and similar sets with 849 

former versus never smoking (Figure 1): (1) Smoking → DNAm MR-DoC1 with horizontal 850 

pleiotropy, (2) Smoking → DNAm MR-DoC1 with unique environmental confounding, (3) 851 

DNAm → Smoking MR-DoC1 with horizontal pleiotropy, (4) DNAm → Smoking MR-DoC1 852 

with unique environmental confounding, and (5) bidirectional MR-DoC2. Each model included 853 

age and sex as covariates of smoking status. In each model, the residual variance of smoking 854 

status liability is decomposed into 𝑎𝑆
2 (A) and 𝑒𝑆

2 (E), while that of DNAm is decomposed into 855 

𝑎𝐷
2  (A) and 𝑒𝐷

2 (E). The correlation between the latent A factors of smoking and DNAm (rA) 856 

represents the confounding due to additive genetic factors. The correlation between the latent E 857 

factors (rE) represents the confounding due to unique environmental factors. Across all models, 858 

the causal path from smoking to DNAm is labeled g1, while that from DNAm to smoking is 859 

labeled g2. The residualized PRS and mQTL allelic scores are regressed on respective latent 860 

factors, representing the underlying “true” standardized scores with mean fixed at zero and 861 

variance fixed at one. The coefficient of the path from the latent score to the observed score 862 

estimates the standard deviation of the observed score (𝑆𝐷𝑃𝑅𝑆  and 𝑆𝐷𝑚𝑄𝑇𝐿, respectively).  863 

 864 
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Thus, for each CpG site included in the analyses, three causal estimates were obtained in either 865 

direction (Smoking → DNAm, or DNAm → Smoking) from (1) MR-DoC1 with horizontal 866 

pleiotropy, (2) MR-DoC1 with unique environmental confounding, and (3) MR-DoC2. For each 867 

set of causal estimates across CpG sites, we calculated the Bayesian inflation factor (λ) using the 868 

R package bacon23, made QQ plots using the R package GWASTools63, and then applied 869 

Benjamini-Hochberg FDR correction64 to the p-values using the R package qvalue65. For 870 

Bonferroni multiple-testing correction, the significance level was defined as 𝛼 = 0.05/16940 =871 

2.95 × 10−6  for Current Smoking → DNAm MR-DoC1 models and 𝛼 = 0.05/11124 =872 

4.49 × 10−6  for DNAm → Current Smoking MR-DoC1 and bidirectional current-smoking MR-873 

DoC2 models.  874 

Functional Enrichment Analyses 875 

We used Metascape25 (v3.5.20240101; https://metascape.org/gp/index.html#/main/step1, with 876 

the default settings for “Express” analyses) to perform gene-set annotation and functional 877 

enrichment analyses of the CpGs with potential causal effects in either direction. The input list of 878 

gene IDs was selected based on proximity to the CpGs with consistent and nominally significant 879 

(p <0.05) estimates in all three models; i.e., 64 CpGs with potential DNAm → Current Smoking 880 

effects (“Nearest Gene” in Supplementary Table S3) and 525 CpGs with potential Current 881 

Smoking → DNAm effects (“Nearest Gene” in Supplementary Table S1). None of the sites with 882 

potential DNAm → Current Smoking effects are located in the MHC region. For Current 883 

Smoking → DNAm effects, 21 additional sites in the MHC region showed consistent, nominally 884 

significant estimates. There was no significant relationship between a CpG site having consistent 885 

causal estimates and its being located in the MHC region (Fisher’s exact test p-value = 0.5455). 886 

However, out of an abundance of caution, the sites located in this region were not included in the 887 

enrichment analyses to avoid sites with potentially unreliable results due to its complex LD 888 

structure.  889 

 890 

As described in the Metascape manuscript25, the program performed integrated enrichment 891 

analyses against multiple reference ontology knowledgebases, including GO processes66, KEGG 892 

pathways67, canonical pathways68, and Reactome gene sets69. The significant terms with a 893 

hypergeometric p-value <0.01 and >1.5-fold enrichment were clustered into a hierarchical tree 894 

based on Kappa-statistical similarities among their gene memberships. The tree was then cast 895 

into clusters based on a threshold of 0.3 kappa score to obtain enriched, non-redundant ontology 896 

terms. 897 

eFORGE (experimentally derived Functional element Overlap analysis of 898 

ReGions from EWAS) 899 

We performed eFORGE 2.026,27,70 analyses of the selected CpG probe IDs with consistent and 900 

nominally significant (p <0.05) estimates in either direction (from Supplementary Tables S1, 901 
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S3). Using the web-based tool (https://eforge.altiusinstitute.org/), we examined the overlap 902 

between the implicated CpGs and multiple comprehensive reference sets of genomic and 903 

epigenomic features that regulate gene expression in different tissues and cell types. The 904 

platform was set as “Illumina 450k array”, with default analysis options: proximity = 1kb 905 

window, background repetitions = 1000, and significance thresholds of FDR <0.01 (strict) and 906 

FDR <0.05 (marginal). Three sets of analyses were performed for each list of probe IDs, 907 

selecting the reference data from “Consolidated Roadmap Epigenomics - Chromatin - All 15-908 

state marks”, “Consolidated Roadmap Epigenomics - DHS”, and “Consolidated Roadmap 909 

Epigenomics - All H3 marks”. 910 

 911 

The eFORGE results include the specific probe IDs overlapping between the input set and the 912 

reference sample. We performed iterative follow-up analyses for the CpGs with potential DNAm 913 

→ Current Smoking effects, based on the overlapping probe IDs to examine the specificity of 914 

significant (FDR <0.01) enrichment in tissues of interest. Analyses restricted to the 21 CpGs 915 

overlapping with enhancers in the fetal brain (Supplementary Figure S18, Table S12) showed 916 

significant enrichment only for enhancers in the fetal brain samples, suggesting high specificity 917 

(Supplementary Figure S21). The histone mark analyses also showed enrichment in the fetal 918 

brain (though not specific to the brain), wherein all 21 CpGs overlapped with H3K4me1, while a 919 

subset of 17 CpGs overlapped with H3K4me3 (Supplementary Figure S22). Finally, we 920 

performed analyses restricted to these 17 CpGs.  921 

 922 

We performed similar follow-up analyses with probe IDs showing overlap with enhancers in the 923 

lung (potentially etiologically relevant tissue) and the primary B-cells in cord blood (the tissue 924 

type with the most significant enrichment) (from Supplementary Figure S18, Table S12). We 925 

also examined the overlap between the CpGs with potential DNAm → Current Smoking effects 926 

and the genes implicated in the GWAS of blood cell counts37 to probe the potential impact of the 927 

cell-count GWAS associations on the causal inference and cell-type enrichment. Similar overlap 928 

was examined for the subset of CpGs overlapping with enhancers in cord blood primary B cells. 929 

  930 
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