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Abstract  

Whilst multiple sclerosis (MS) can be conceptualized as a network disorder, brain network 

analyses are typically dependent on advanced MRI sequences not commonly acquired in 

clinical practice. Here, we used conventional MRI to assess cross-sectional and longitudinal 

modifications of structural disconnection and morphometric similarity networks in people with 

MS (pwMS), along with their relationship with clinical disability. 

In this longitudinal monocentric study, 3T structural MRI scans of pwMS and healthy controls 

(HC) were retrospectively analysed. Physical and cognitive disabilities were assessed with the 

expanded disability status scale (EDSS) and the symbol digit modalities test (SDMT), 

respectively. Demyelinating lesions were automatically segmented on 3D-T1w and FLAIR 

images and, based on normative tractography data, the corresponding masks were used to 

compute pairwise structural disconnection between atlas-defined brain regions (100 cortical 

and 14 subcortical). Using the Morphometric Inverse Divergence (MIND) method, we built 

matrices of morphometric similarity between cortical regions based on FreeSurfer surface 

reconstruction. Using network-based statistics (NBS) and its prediction-based extension NBS-

predict, we tested whether subject-level connectomes were associated with disease status, 

progression, clinical disability, and long-term confirmed disability progression (CDP), 

independently from global lesion burden and atrophy. The coupling between structural 

disconnection and morphometric similarity was assessed at different scales. 

We studied 461 pwMS (age=37.2±10.6 years, F/M=324/137), corresponding to 1235 visits 

(mean follow-up time=1.9±2.0 years, range=0.1-13.3 years), and 55 HC (age=42.4±15.7 years; 

F/M=25/30). Long-term clinical follow-up was available for 285 pwMS (mean follow-up 

time=12.4±2.8 years), 127 of whom (44.6%) exhibited CDP. At baseline, structural 

disconnection in pwMS was mostly centered around the thalami and cortical sensory and 

association hubs, while morphometric similarity was extensively disrupted (pFWE<0.01). EDSS 

was related to fronto-thalamic disconnection (pFWE<0.01) and disrupted morphometric 

similarity around the left perisylvian cortex (pFWE=0.02), whilst SDMT was associated with 

cortico-subcortical disconnection in the left hemisphere (pFWE<0.01). Longitudinally, both 

structural disconnection and morphometric similarity disruption significantly progressed 

(pFWE=0.04 and pFWE<0.01), correlating with EDSS increase (rho=0.07, p=0.02 and rho=0.11, 

p<0.001), whilst baseline disconnection predicted long-term CDP with nearly 60% accuracy 

(p=0.03). On average, structural disconnection and morphometric similarity were positively 

associated at both the edge (rho=0.18, p<0.001) and node (rho=0.16, p<0.001) levels. 
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Structural disconnection and morphometric similarity networks, as assessed through 

conventional MRI, are sensitive to MS-related brain damage and its progression. They explain 

disease-related clinical disability and predict its long-term evolution independently from global 

lesion burden and atrophy, potentially adding to established MRI measures as network-based 

biomarkers of disease severity and progression. 
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Introduction  

Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of the 

central nervous system, commonly associated with physical disability and cognitive 

impairment, and carrying an important personal and socio-economic burden.1 Whilst the 

assessment of focal lesions and, to some extent, brain atrophy using conventional MRI have 

key roles in the clinical management of MS, they only partially explain the clinical 

heterogeneity observed in people with MS (pwMS).2  

From the field of network neuroscience, conceptualizing the brain as a complex system of gray 

matter (GM) regions - nodes - linked by structural and functional connections - edges, MS can 

be modeled as a network disorder.3,4 Demyelinating lesions disrupt white matter (WM) 

pathways connecting distant brain regions,5 while the development of atrophy subverts the 

ordered patterns of morphometric similarity between GM areas.6 Throughout MS, the 

accumulation of structural damage impacts the functional organization of the brain, ultimately 

leading to physical disability and cognitive impairment.4 Shifting the emphasis from 

characterizing damage in specific regions to understanding alterations at network level has 

yielded unprecedented insights into the pathophysiological mechanisms that underlie MS-

related brain damage and associated clinical manifestations.3 However, brain network analyses 

are typically dependent on advanced MRI sequences that are not routinely acquired, hampering 

their implementation in clinical settings. This has led to considerable efforts in developing 

network analyses using anatomical images, to enable the (re-)analysis of conventional MRI 

datasets that were previously thought to lack network-level information.7 

Structural disconnection between brain regions can be estimated from subject-level lesion 

masks, easily derived from anatomical images,8 and population-averaged tractography atlases, 

without requiring individual diffusion imaging.9 Such atlas-based approaches have 

demonstrated substantial agreement with individual tractography-based disconnectomes,10 

offering an alternative perspective for evaluating the impact of MS lesions. Disconnection 

metrics correlate with physical disability11 and systemic biomarkers of axonal damage in MS,12 

and disruption of specific brain subnetworks are linked to MS symptoms such as reduced 

information processing speed,13 memory dysfunction,14 or depression.15 

Similarly, single-subject GM networks can be built from anatomical MRI by estimating a set 

of morphological properties (e.g., volume, thickness, curvature) within each GM region and 

computing the similarities between regions.16 Different methods utilizing this framework have 

demonstrated a restructuring of morphological similarity networks towards more disorganized 
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configurations in pwMS, starting early in the disease,17 correlating with physical disability and 

cognitive impairment,18 and predicting disability worsening.19 However, these approaches have 

limitations, including how regions of interest are defined, the reliance on single metrics, or the 

reduction of complex data to simplistic summary statistics for each feature per region, making 

the link between GM networks and their neurobiological substrate somehow obscure.16 

Recently, the Morphometric INverse Divergence (MIND) method has been proposed that 

addresses these limitations by estimating within-subject similarity between cortical areas based 

on the divergence between their multivariate distributions of multiple MRI features, with the 

advantages of higher technical reliability and biological validity.20 

Most studies have assessed structural disconnection and morphometric similarity in isolation, 

using small sample sizes or short follow-up periods.11,12,17,18 Consequently, the potential of 

these measures as biomarkers of MS severity and progression remains largely unexplored. 

Here, leveraging a large monocentric cohort of pwMS, we jointly mapped structural 

disconnection and morphometric similarity both cross-sectionally and longitudinally. We 

aimed to demonstrate whether the corresponding networks: (i) are sensitive to MS-related brain 

damage and its progression over time; (ii) can explain MS-related physical disability and 

cognitive dysfunction; (iii) can predict long-term clinical worsening.  
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Materials and methods  

Participants  

In this retrospective longitudinal study, we analysed structural brain MRI and clinico-

demographic data of patients with a diagnosis of MS according to the 2010-McDonald criteria21 

and healthy controls (HC) from the radiological and clinical databases of the MS Center of the 

University of Naples “Federico II”. Exclusion criteria were age < 18 or > 75 years, and the 

presence of other relevant neurological, psychiatric, or systemic conditions. The study was 

conducted in compliance with the Declaration of Helsinki and approved by the Ethics 

Committee “Carlo Romano” of the Host Institution. Written informed consent was obtained 

from all participants. 

MRI acquisition 

All MRI scans were acquired on the same 3T scanner (Magnetom Trio, Siemens Healthineers), 

equipped with an 8-channel head coil, from October 2006 to October 2020. The acquisition 

protocol included a 3D T1-weighted magnetization prepared rapid acquisition gradient echo 

sequence (MPRAGE - TR = 1900ms; TE = 3.4ms; TI = 900ms; flip angle 9°; voxel size 1 x 1 

x 1 mm3; 160 axial slices) for morphometric analyses and, for pwMS, a T2-weighted Fluid 

Attenuated Inversion Recovery sequence (FLAIR - 3D: TR = 6000ms; TE = 396ms; TI = 

2200ms; Flip Angle = 120°; voxel size = 1x1x1 mm3; 160 sagittal slices; or 2D: TR = 9620ms; 

TE = 138ms; TI = 2500ms; Flip Angle = 150°; voxel size = 1x1x3 mm3; 48 axial slices) for 

the assessment of demyelinating lesions.  

Clinical evaluation 

Physical disability and information processing speed were assessed within one week from the 

MRI using the Expanded Disability Status Scale (EDSS) and the Symbol Digit Modalities Test 

(SDMT), respectively. SDMT values were converted into age-, sex- and education-adjusted z-

scores based on normative values in the healthy population.22 For consistency with interpreting 

EDSS associations, SDMT z-scores were inverted before entering statistical analyses such that 

more positive values reflected poorer cognitive performance. When long-term (> 5 years) 

clinical follow-up was available, the EDSS was recorded and confirmed disability progression 
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(CDP) with reference to the baseline examination was defined as an EDSS increase of ≥ 1 (for 

baseline EDSS ≤ 5.5) or ≥ 0.5 (for baseline EDSS > 5.5).23 

Lesion segmentation and structural disconnection networks 

For all pwMS, demyelinating lesions were automatically segmented on FLAIR-T2w and T1w 

scans using the cross-sectional SAMSEG method in FreeSurfer v7.3.2.24 The obtained lesion 

masks were then used to compute total lesion volume (TLV) and to fill lesions in T1w images 

for subsequent morphometric analyses via FSL’s lesion filling procedure.25 Also, individual 

lesion masks were registered to the MNI template brain coordinate space by applying the 

nonlinear transformation obtained by normalizing each subject T1w volume to the template 

using ANTs v2.4.3.26 Spatially normalized lesion masks were used to obtain structural 

disconnection matrices based on a regional GM parcellation including 100 cortical regions 

from the Schaefer atlas27 and 14 subcortical regions from the FreeSurfer aseg atlas.28 Briefly, 

using the Lesion Quantification Toolkit,29 which relies on the HCP-842 diffusion MRI 

tractography atlas,30 the pairwise disconnection between structurally connected GM regions 

was computed as the proportion of streamlines intersecting lesions and used to fill subject-level 

114 x 114 structural disconnection matrices. To help visualize the spatial distributions of 

lesions and resulting disconnection, we generated group-level lesion and disconnection 

probability maps, expressing the probabilities of each voxel containing a lesion or at least one 

streamline intersecting a lesion, respectively.29 To ease the visualization and interpretation of 

structural disconnection matrices, nodes were assigned to seven canonical functional system 

labels including visual (VIS), somatomotor (SM), dorsal attention (DAN), ventral attention 

(VAN), limbic (L), control (CONT), and default mode (DMN) networks,31 plus a network of 

subcortical regions (SUBC). Also, edge-level links were aggregated into region-level features 

by computing the sum of all values attached to each of the nodes. 

Structural MRI processing and morphometric similarity networks 

Lesion-filled T1w volumes were processed with FreeSurfer v6.0.1 using the recon-all pipeline with 

default settings.32 As for lesion segmentation, different MRI visits were considered as separate 

instances using a cross-sectional image processing pipeline. Brain parenchymal fraction (BPF), 

considered a measure of global brain atrophy, was computed from FreeSurfer output as the ratio of 

brain volume to intracranial volume and expressed as z-scores adjusted for the effects of age and 

sex in healthy population. Based on FreeSurfer cortical surface reconstruction, vertex-level 
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morphometric features (i.e., cortical thickness, GM volume, surface area, mean curvature and 

sulcal depth) were extracted for 100 regions of interest defined by the Schaefer atlas27 and used 

to compute the pairwise morphometric similarity between cortical regions using the MIND 

approach.20 Briefly, MRI features were standardized across all vertices and aggregated to form 

regional multivariate distributions. The similarity between each pair of regional multivariate 

distributions was computed based on the symmetrized Kullback-Leibler divergence metric and 

bounded between 0 and 1, with higher values representing greater similarity. The obtained values 

were used to fill subject-level 100 x 100 cortical morphometric similarity matrices. As for structural 

disconnection matrices, aggregated network- and region-level representations were also generated. 

Statistical analysis  

Unless otherwise specified, statistical analyses were carried out using R (version 4.1.2). The 

effect of group (pwMS vs HC, only for morphometric similarity networks), EDSS, and SDMT 

scores on baseline structural disconnection and morphometric similarity networks were tested 

with the network-based statistics (NBS) approach,33 as implemented in the NBR package.34 

NBS is a nonparametric method for performing statistical analysis on networks, that adjusts for 

multiple comparisons by clustering within topological rather than physical space. Briefly: 1) 

the hypothesis of interest is tested edge-wise using the general linear model; 2) connections are 

filtered according to a test statistic threshold; 3) connected graph components are identified 

among supra-threshold connections; 4) a family-wise error (FWE)-corrected p-value is 

computed for each component based on the sum of test statistic values using permutation 

testing.33 Likewise, longitudinal changes of structural disconnection and morphometric 

similarity networks were assessed using the implementation of linear mixed-effects models for 

NBS provided by the NBR package, with time points nested within subjects and random 

intercept and slope of follow-up time per subject. Similar mixed-effect models were used to 

assess the longitudinal evolutions of EDSS, TLV (log(x+1)-transformed to account for the 

positively skewed distribution), and z-scored BPF. For all NBS analyses, baseline age, age2 (to 

account for the nonlinear effect of age), and sex were included in the model as nuisance 

variables, with a primary statistical threshold of p < 0.01, 5000 permutations, and a statistical 

significance level set at pFWE < 0.05. As we were interested in subnetwork-specific effects 

rather than the influence of global lesion burden or atrophy, models assessing the correlations 

with clinical variables were additionally adjusted for log-transformed TLV (for structural 

disconnection matrices) and BPF z-scores (for morphometric similarity matrices). Also, when 
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subnetworks exhibiting significant change over time emerged, these were summarized for 

further analyses by z-scoring each edge using the healthy population as a reference and 

calculating the average of their modules to obtain global synthetic measures of longitudinal 

structural disconnection and morphometric similarity change. Specifically, we utilized 

Spearman’s rank correlation to test the associations of structural disconnection and 

morphometric similarity disruption over time with annualized EDSS change. Also, the 

longitudinal association between longitudinal structural disconnection and morphometric 

similarity disruption and disability worsening were reassessed while accounting for changes in 

log-transformed TLV and BPF z-scores, respectively, using partial correlations. 

To evaluate the prognostic value of structural disconnection and morphometric similarity, we 

tested whether baseline networks could predict long-term CDP using the NBS-Predict 

approach, a prediction-based extension of NBS combining machine learning models with 

connected components in a cross-validation (CV) structure, as implemented in the 

corresponding MATLAB (MathWorks, 2017) toolbox.35 We ran NBS-Predict with 5-fold 

nested CV (primary threshold p < 0.01) and hyperparameter optimization using Bayesian 

optimization with 100 iterations. The CV structure was repeated ten times to reduce the 

variation in the model performance estimation. We scaled data and regressed out baseline age, 

age2, sex, and log-transformed TLV (for structural disconnection matrices) and BPF z-scores 

(for morphometric similarity matrices), using a cross-validated deconfounding technique to 

prevent data leakage.36 Different machine learning algorithms (logistic regression, linear 

support vector classification, and linear discriminant analysis) were evaluated, with 

classification accuracy as the performance metric and 500 permutations to assess the 

significance of the models’ predictions.35 

Finally, to investigate the relationship between structural disconnection and morphometric 

similarity in pwMS at baseline, we utilized Spearman’s rank correlation to test the associations 

between the two networks at different scales. At the global network level, we determined the 

group-level correlation between mean structural disconnection and mean morphometric 

similarity across subjects. At the edge level, we first averaged structural disconnection and 

morphometric similarity networks across subjects and then correlated the two vectorized 

matrices. We also repeated this analysis using individual (rather than average) matrices to 

obtain a distribution of coupling values across subjects.37 At the node level, regional 

connectivity profiles were extracted from each row of the structural disconnection and 

morphometric similarity matrices and correlated with each other to obtain coupling values for 

each of the 100 cortical parcels.38  
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Results  

Participants 

We analysed a total of 461 pwMS (F/M = 324/137, mean age = 37.2 ± 10.6 years) 

corresponding to 1235 visits (median number of visits per patient = 4, range = 1 - 8; mean 

follow-up time = 1.9 ± 2.0 years, range = 0.1 - 13.3 years), and 55 healthy controls (F/M = 

25/30, mean age = 42.4 ± 15.7 years). 

Baseline EDSS (median = 2.5, interquartile range = 2.0 - 4.0) and SDMT (mean z-score = -1.1 

± 1.1) were available for 459 and 247 pwMS, respectively. Long-term clinical follow-up was 

available for 285 pwMS (mean follow-up time = 12.4 ± 2.8 years), 127 of whom (44.6%) 

exhibited CDP. Demographic, clinical, and MRI characteristics of the studied population are 

reported in Table 1. 

Structural disconnection and morphometric similarity disruption 

in MS 

At baseline, pwMS displayed the highest lesion probability in the periventricular WM (Figure 

1A), with the highest disconnection probability at the level of the occipital WM, splenial 

commissural fibers, and long-range frontal and temporal association tracts (Figure 1B). On 

average, structural disconnection was mainly observed between the VIS and the SM and non-

sensorimotor networks, as well as within and between cortical association networks and around 

subcortical structures (Figure 1C). At the regional level, the most structurally disconnected 

nodes were the thalami and temporal and posterior cortical regions (Figure 1D). 

Compared with HCs (Figure 2A), pwMS showed a distributed subnetwork of predominantly 

disrupted morphometric similarity (431 edges, pFWE < 0.01, Figure 2B-C), with the prominent 

involvement of occipital, pericentral, perisylvian, and prefrontal cortices (Figure 2D). Global 

structural disconnection and morphometric similarity disruption significantly correlated with 

TLV (Spearman’s rho = 0.94, p < 0.001, Supplementary Figure 1A) and BPF (Spearman’s rho 

= -0.40, p < 0.001, Supplementary Figure 1B), respectively. 
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Structural disconnection and morphometric similarity disruption 

explain physical and cognitive disability 

At baseline, we found a subnetwork of significant association between EDSS and structural 

disconnection (225 edges, pFWE < 0.01), mainly involving cortico-subcortical tracts, within-

transmodal connections of the DMN, the DAN and the CONT, and links between these and 

sensorimotor networks. The regions participating the most in this subnetwork were the thalami, 

the amygdalae, and the prefrontal cortex (Figure 3A-C). EDSS was also significantly 

associated with a smaller subnetwork of predominantly disrupted morphometric similarity 

between the DAN and the other networks, with the prominent participation of the insula and 

the perisylvian cortex of the left hemisphere (86 edges, pFWE = 0.02) (Figure 3D-F). Similarly, 

SDMT was associated with a relatively small subnetwork of predominantly cortico-subcortical 

structural disconnection mostly involving the left hemisphere (88 edges, pFWE < 0.01), with the 

participation of the thalamus and prefrontal, temporal, and occipital cortical regions (Figure 4). 

No significant subnetworks emerged when assessing the relationship between morphometric 

similarity and SDMT. 

Structural disconnection and morphometric similarity disruption 

progress over time and explain disability worsening 

Longitudinally, we found a smaller subnetwork of progressive structural disconnection (82 

edges, pFWE = 0.04) involving mainly fronto-thalamic tracts (Figure 5A-C). Moreover, we 

observed a larger and anatomically distributed subnetwork of progressive morphometric 

similarity alterations (509 edges, pFWE < 0.01), comprising pairs of regions exhibiting both 

increased and decreased similarity over time (Figure 5D-F). Longitudinal models also showed 

significant EDSS worsening (B = 0.084, SE B = 0.015, p < 0.01), and whole-brain volume loss 

(BPF: B = -0.095, SE B = 0.022, p < 0.01) over time, while the increase in global lesion burden 

was not significant (logTLV: B = 0.003, SE B = 0.004, p = 0.50). Annualized structural 

disconnection significantly correlated with annualized changes in EDSS scores (Spearman’s 

rho = 0.07, p = 0.02), with this correlation remaining significant after adjusting for longitudinal 

TLV change (Spearman’s rho = 0.08, p = 0.004). Similarly, individualized morphometric 

similarity change per year correlated with annualized EDSS change (Spearman’s rho = 0.11, p 

< 0.001), with this correlation remaining significant also after accounting for annualized BPF 

change (Spearman’s rho = 0.09, p = 0.002). 
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Baseline structural disconnection predicts long-term disability 

progression 

Using NBS-predict with the baseline structural disconnection matrices as input, a linear support 

vector machine classifier significantly predicted long-term CDP (710 edges, accuracy = 0.59, 

95%CI = 0.58 - 0.60, p = 0.03). The identified subnetwork mainly involved cortico-subcortical 

tracts, within-transmodal connections of the DMN, the DAN, the VAN, and the CONT, and 

links between these and sensorimotor networks. The regions participating the most in this 

subnetwork were preferentially located in the left hemisphere and included the thalamus and 

the parieto-occipital, pericentral, and prefrontal cortices (Figure 6). Models relying on baseline 

morphometric similarity matrices did not achieve above chance-level accuracy for the 

prediction of CDP. 

Coupling between structural disconnection and morphometric 

similarity 

At the global network level, higher mean structural disconnection in pwMS was associated 

with lower mean morphometric similarity (Spearman’s rho = -0.18, p < 0.001) (Figure 7A). 

Conversely, at a more granular level, edges with a greater probability of structural 

disconnection were generally associated with higher morphometric similarity (Spearman’s rho 

= 0.18, p < 0.001), with the distribution of values suggesting a nonlinear, multiphasic, 

relationship between the two (Figure 7B and Supplementary Figure 2). Similarly, at the node 

level, there was a positive association between regional structural disconnection and 

morphometric similarity profiles (average Spearman’s rho = 0.16, p < 0.001) with the strongest 

coupling observed at the level of sensorimotor areas and fronto-parietal association hubs 

(Figure 7C). 
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Discussion  

Using network analysis methods and conventional MRI sequences, we identified patterns of 

structural disconnection and morphometric similarity disruption in the brains of pwMS. These 

measures proved to be sensitive to disease progression and were able to explain disease-related 

clinical disability and predict its long-term evolution, independently from global lesion burden 

and atrophy.  

In line with well-established evidence,39 the highest T2 lesion occurrence in our cohort was 

observed in the bilateral periventricular WM, probably reflecting the preferential perivenular 

distribution of MS-related inflammatory demyelination.40 As the anatomical configurations of 

long-range and cortico-subcortical tracts make them more likely to traverse lesional areas, 

resulting in more severe damage, structural disconnection was mainly centered around the 

thalami and cortical sensory (occipital and pericentral cortices) and association (temporal 

cortex) hubs. The thalamus, in particular, with its multiple reciprocal connections, is sensitive 

to lesions occurring in many different regions, thus acting as a "barometer" for diffuse brain 

parenchymal damage.41 Likewise, the visual and sensorimotor cortices, as well as the temporal 

cortex, are served by long-range tracts sustaining their function as primary sensory areas and 

integration hubs, respectively, thus being particularly prone to structural disconnection.42,43 

While TLV and average structural disconnection are linked by a logarithmic relationship that 

is enforced by the brain’s geometry, not all lesion locations bear equal clinical relevance, 

differentially affecting physical disability,44 cognition,45, and long-term clinical outcomes.46 

The examination of topologically distributed effects, using structural disconnection networks, 

complements the impact of MS lesions, potentially resulting in more robust neurobiological 

and clinical associations compared with the assessment of isolated regions/connections.47,48 

Indeed, we found that, independent of the global lesion burden, physical disability and 

cognition were explained by disconnection within specific subnetworks. In particular, higher 

EDSS was associated with greater structural disconnection centered around the thalami and 

frontal cortices, confirming previously reported relations between physical disability and 

disruption of fronto-thalamic and frontal commissural pathways.11,44,49–51 Similarly, worse 

performances at the SDMT were mainly explained by structural disconnection involving 

fronto-thalamic and frontal commissural tracts, but also long-range occipito-frontal and 

temporo-frontal association tracts, mostly in the left hemisphere. The relevance of thalamo-

cortical, commissural and long-range association tracts for cognitive functioning, as well as the 

relationship between their disruption and the periventricular distribution of lesions, has been 
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highlighted with various approaches looking at lesion location or WM microstructural 

properties.42,45,52,53 Our results confirm that atlas-based lesion disconnectomics is also sensitive 

to these effects, potentially providing additional information compared to the assessment of 

lesions and regional tissue properties.13,54 

Morphometric similarity networks were also sensitive to MS-related brain damage, with an 

anatomically distributed subnetwork of similarity disruption in pwMS at baseline. The brain’s 

intrinsic structural organizing principles result in remote regions sharing comparable macro-

scale morphological traits, thereby establishing a network of morphological similarity that can 

be imaged using structural MRI.16 Using the MIND approach, we showed that the occurrence 

of a relatively disordered phenomenon like MS-related neurodegeneration can disrupt this 

genetically determined organization, resulting in an overall reduction of morphological 

similarity between brain regions. These results confirm previous evidence of a more random 

organization of single-subject GM networks in pwMS,17,18 with the advantage of a method that 

measures multiple morphological properties simultaneously and natively aligns with macro-

scale brain parcellations, therefore being more neurobiologically grounded. Morphometric 

similarity disruption centered around the left perisylvian cortex explained physical disability 

beyond whole-brain atrophy, which might speculatively be interpreted in light of the reported 

complex and clinically relevant anatomofunctional alterations of attentional networks in 

MS.55,56 

For longitudinal network changes, we identified a subnetwork of progressive structural 

disconnection mainly comprising fronto-thalamic tracts, explaining disability worsening 

independently from lesion accrual. These results further highlight the role of cortico-thalamic 

connections in the pathophysiology of MS,50 confirming that the assessment of structural 

disconnection at the network level yields clinically relevant information that extends beyond 

mere lesion burden. Likewise, morphometric similarity networks were sensitive to longitudinal 

changes in the brain’s structure. Along with edges of longitudinally decreasing morphological 

similarity, we found pairs of regions whose morphological traits tended to match over time, 

substantially aligning with previously described atrophy patterns encompassing the middle 

temporal gyrus and sensorimotor cortices,57 as well as insular and prefrontal cortices and the 

occipital pole.58 Indeed, despite being a relatively disordered phenomenon, MS-related 

neurodegeneration is not completely random, with different spatial patterns of atrophy that 

have been described in association with MS.57,58 This disease-related structural covariance 

between brain regions, which is likely constrained by network-based mechanisms and shared 

vulnerability,59 may explain the observed increase in morphometric similarity. Interestingly, 
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the longitudinal changes in morphometric similarity paralleled disability worsening 

independently from whole-brain volume loss, confirming its ability to capture additional 

information. 

We also assessed the prognostic value of the assessed networks. Previous attempts have been 

made to predict individual-level prognosis based on lesion location,46 or regional network 

measures.13,19 Using NBS-predict, we demonstrated that individual structural disconnectomes 

can be used to significantly predict long-term disability progression independently from global 

lesion burden. In particular, structural disconnections of the thalamus and the paracentral lobule 

were the most important predictors of disability worsening, with a slight predilection for the 

left hemisphere. While this confirms the major role of thalamic disconnection in sustaining MS-

related physical disability,11 the association between long-term disability progression and 

structural disconnection of the paracentral lobule, including the primary sensorimotor areas of 

the lower limbs, may be related to the known heavy dependence of EDSS on motor function 

and walking ability.60  

Finally, we investigated the relationship between the two explored network domains. As 

expected, patients with higher global structural disconnection were also the ones with more 

globally disrupted morphometric similarity. On the other hand, at more granular levels, 

structural disconnection was associated, on average, with higher morphometric similarity. In 

this regard, while the distribution of values at the edge and node levels suggested a nonlinear, 

multiphasic relationship between structural disconnection and morphometric similarity, the 

positive coupling between the two might confirm the role of disconnection in shaping the 

patterns of concerted neurodegeneration across GM regions, with lesion-related transneuronal 

degeneration likely inducing similar atrophic changes at both ends of the disrupted WM tract.59  

Our study has some limitations. First, while the assessment of structural disconnection using 

atlas-based approaches has been previously validated and has the advantage of greater 

accessibility, diffusion MRI-based tractography remains the gold standard in this regard and 

would have given further strength to our results. Also, the MIND approach in its standard form 

fails to consider subcortical GM, which is known to be highly relevant in MS, prompting the 

development of methodological extensions to incorporate deep GM structures in the analysis. 

Assessing structural disconnection and morphometric similarity changes in relation to finer 

clinical outcomes would help identify more focused and domain-specific network alterations, 

potentially informing treatment targeting. Finally, additional research relying on advanced 

statistical methods and prospective designs will be necessary to establish any causal 
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relationships between the reported changes and to model their potential patterns of progression 

throughout the disease course. 

In conclusion, our results show that networks of structural disconnection and morphometric 

similarity obtained from conventional MRI are sensitive to MS-related brain damage and its 

progression over time, potentially providing complementary information to other established 

MRI-derived biomarkers of disease severity and progression. Extracting network measures 

from conventional MRI scans holds the potential for bridging the gap between connectomics 

and clinical practice, driving advanced network analyses toward real-world applicability. 
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Figures 

Figure 1. Structural disconnection in pwMS. Group-level lesion (A) and disconnection (B) 

probability maps in pwMS, expressing the probabilities of each voxel containing a lesion or at 

least one streamline intersecting a lesion, respectively. Network- (C) and region- (D) level 

representations of average structural disconnection in pwMS.  

Abbreviations: pwMS = patients with multiple sclerosis. 
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Figure 2. Morphometric similarity disruption in pwMS. Average morphometric similarity 

network in the HC group (A). Network- (B), edge- (C), and region- (D) level representations 

of the subnetwork of significant between-group differences in terms of morphometric similarity 

(pwMS > HC).  

Abbreviations: pwMS=patients with multiple sclerosis; HC=healthy controls. 
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Figure 3. Structural disconnection and morphometric similarity disruption explain 

physical disability. Network- (A), edge- (B), and region- (C) level representations of the 

subnetwork of significant association between EDSS and structural disconnection. Network- 

(D), edge- (E), and region- (F) level representations of the subnetwork of significant association 

between EDSS and morphometric similarity.  

Abbreviations: EDSS=expanded disability status scale. 
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Figure 4. Structural disconnection explains cognitive performance. Network- (A), edge- 

(B), and region- (C) level representations of the subnetwork of significant association between 

SDMT and structural disconnection.  

Abbreviations: SDMT=symbol digit modalities test. 
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Figure 5. Structural disconnection and morphometric similarity changes over time. 

Network- (A), edge- (B), and region- (C) level representations of the subnetwork of significant 

structural disconnection over time in pwMS. Network- (D), edge- (E), and region- (F) level 

representations of the subnetwork of significant morphometric similarity change over time in 

pwMS.  

Abbreviations: pwMS=patients with multiple sclerosis. 
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Figure 6. Baseline structural disconnection predicts long-term disability progression. 

Network- (A), edge- (B), and region- (C) level representations of the structural disconnection 

subnetwork predicting long-term CDP.  

Abbreviations: CDP=confirmed disability progression. 
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Figure 7. Coupling between structural disconnection and morphometric similarity. 

Network- (A), edge- (B), and region- (C) level associations between structural disconnection 

and morphometric similarity. (A) Group-level correlation between mean structural 

disconnection and mean morphometric similarity across subjects. (B) Edge-level correlation 

between average structural disconnection and morphometric similarity networks. (C) For each 

of the 100 cortical parcels, correlation between regional structural disconnection and 

morphometric similarity profiles. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309154doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Tables 

Table 1. Demographical and clinical data of the study population. 

 

 HC (N = 55) MS (N = 461) p-value 

Age, years 42.4 (15.7) 37.2 (10.6) 0.02 

Sex, F/M 25/30 324/137 < 0.001 

DD, years \ 9.1 (7.9) n.a. 

EDSS \ 2.5 (2.0 - 4.0) n.a. 

SDMT, z-score \ -1.1 (1.1) n.a. 

TLV, mm3 \ 7,997.9 

(8,832.8) 

n.a. 

BPF, z-score 0.0 (1.0) -2.1 (2.7) < 0.001 
 

 

Data are expressed as mean (SD), except for EDSS which is expressed as median (IQR). 

Between-group differences were tested with either Welch’s t-test (age and BPF) or chi-square 

(sex) tests.  

Abbreviations: HC=healthy controls; MS=multiple sclerosis; DD=disease duration; 

EDSS=expanded disability status scale; SDMT=symbol digit modalities test; TLV=total lesion 

volume; BPF=brain parenchymal fraction; IQR=interquartile range; SD=standard deviation. 
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